Hugo Machado Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4585674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Molecular Therapy, 2022, 30, 2257-2273.	3.7	12
2	Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Molecular Therapy - Nucleic Acids, 2022, 28, 307-327.	2.3	7
3	Editorial. Methods, 2021, 190, 1-2.	1.9	0
4	Exogenous loading of miRNAs into small extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12111.	5.5	43
5	High-throughput screening of nanoparticles in drug delivery. APL Bioengineering, 2021, 5, 031511.	3.3	11
6	Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology, 2020, 17, 685-697.	6.1	228
7	A SOX2 Reporter System Identifies Gastric Cancer Stem-Like Cells Sensitive to Monensin. Cancers, 2020, 12, 495.	1.7	29
8	A high-throughput screening platform to identify nanocarriers for efficient delivery of RNA-based therapies. Methods, 2020, 190, 13-25.	1.9	8
9	A Highâ€Throughput Screening Method to Identify Compounds Displaying Human Vascular Embryonic Toxicity. Current Protocols in Stem Cell Biology, 2019, 50, e93.	3.0	1
10	From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation. Nanoscale, 2019, 11, 14312-14321.	2.8	10
11	The role of ENPP1/PC-1 in osteoinduction by calcium phosphate ceramics. Biomaterials, 2019, 210, 12-24.	5.7	33
12	Muscle-Secreted Factors Improve Anterior Cruciate Ligament Graft Healing: An <i>In Vitro</i> and <i>In Vivo</i> Analysis. Tissue Engineering - Part A, 2018, 24, 322-334.	1.6	14
13	Bioactive Tape With BMP-2 Binding Peptides Captures Endogenous Growth Factors and Accelerates Healing After Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2018, 46, 2905-2914.	1.9	25
14	Soft-molecular imprinted electrospun scaffolds to mimic specific biological tissues. Biofabrication, 2018, 10, 045005.	3.7	19
15	Anterior cruciate ligament- and hamstring tendon-derived cells: <i>in vitro</i> differential properties of cells involved in ACL reconstruction. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1077-1088.	1.3	8
16	TGF-β1 activation in human hamstring cells through growth factor binding peptides on polycaprolactone surfaces. Acta Biomaterialia, 2017, 53, 165-178.	4.1	29
17	Prolotherapy Induces an Inflammatory Response in Human Tenocytes In Vitro. Clinical Orthopaedics and Related Research, 2017, 475, 2117-2127.	0.7	24
18	High-throughput identification of small molecules that affect human embryonic vascular development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3022-E3031.	3.3	35

#	Article	IF	CITATIONS
19	High-Throughput Screening Assay Identifies Small Molecules Capable of Modulating the BMP-2 and TGF-β1 Signaling Pathway. SLAS Discovery, 2017, 22, 40-50.	1.4	7
20	High throughput screening of photocatalytic conversion of pharmaceutical contaminants in water. Environmental Pollution, 2017, 220, 1199-1207.	3.7	14
21	Spatial distribution and survival of human and goat mesenchymal stromal cells on hydroxyapatite andβ-tricalcium phosphate. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 233-244.	1.3	12
22	Crossâ€Talk Between Human Tenocytes and Bone Marrow Stromal Cells Potentiates Extracellular Matrix Remodeling In Vitro. Journal of Cellular Biochemistry, 2016, 117, 684-693.	1.2	22
23	Means of enhancing bone fracture healing: optimal cell source, isolation methods and acoustic stimulation. BMC Biotechnology, 2016, 16, 89.	1.7	3
24	Supporting data of spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo. Data in Brief, 2015, 5, 84-94.	0.5	1
25	Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression inÂvitro and inÂvivo. Biomaterials, 2015, 61, 190-202.	5.7	9
26	High-Throughput Screening Assay for the Identification of Compounds Enhancing Collagenous Extracellular Matrix Production by ATDC5 Cells. Tissue Engineering - Part C: Methods, 2015, 21, 726-736.	1.1	12
27	Decellularized Extracellular Matrix Scaffolds for Cartilage Regeneration. Methods in Molecular Biology, 2015, 1340, 133-151.	0.4	15
28	Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells. Integrative Biology (United Kingdom), 2013, 5, 920-931.	0.6	88
29	A small molecule approach to engineering vascularized tissue. Biomaterials, 2013, 34, 3053-3063.	5.7	31
30	Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Biofabrication, 2013, 5, 025003.	3.7	30
31	A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials, 2012, 33, 3205-3215.	5.7	363
32	The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice. Biomaterials, 2012, 33, 5696-5705.	5.7	54
33	Endothelial Differentiation of Mesenchymal Stromal Cells. PLoS ONE, 2012, 7, e46842.	1.1	171
34	'Smart' biomaterials and osteoinductivity. Nature Reviews Rheumatology, 2011, 7, 1-1.	3.5	9
35	<i>In vivo</i> evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 567-575.	2.1	38
36	Fabrication of Bioactive Composite Scaffolds by Electrospinning for Bone Regeneration. Macromolecular Bioscience, 2010, 10, 1365-1373.	2.1	52

#	Article	IF	CITATIONS
37	Effect of Chordin-Like 1 on MC3T3-E1 and Human Mesenchymal Stem Cells. Cells Tissues Organs, 2010, 191, 443-452.	1.3	17
38	Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13614-13619.	3.3	618
39	<i>In Vitro</i> and <i>In Vivo</i> Bioluminescent Imaging of Hypoxia in Tissue-Engineered Grafts. Tissue Engineering - Part C: Methods, 2010, 16, 479-485.	1.1	17
40	Endogenous Collagen Influences Differentiation of Human Multipotent Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2010, 16, 1693-1702.	1.6	57
41	cAMP/PKA Signaling Inhibits Osteogenic Differentiation and Bone Formation in Rodent Models. Tissue Engineering - Part A, 2009, 15, 2135-2143.	1.6	40
42	The Role of Collagen Crosslinking in Differentiation of Human Mesenchymal Stem Cells and MC3T3-E1 Cells. Tissue Engineering - Part A, 2009, 15, 3857-3867.	1.6	42
43	Growth, Metabolism, and Growth Inhibitors of Mesenchymal Stem Cells. Tissue Engineering - Part A, 2009, 15, 1877-1886.	1.6	155
44	Extracellular matrix and tissue engineering applications. Journal of Materials Chemistry, 2009, 19, 5474.	6.7	62
45	The Response of Human Mesenchymal Stem Cells to Osteogenic Signals and its Impact on Bone Tissue Engineering. Current Stem Cell Research and Therapy, 2007, 2, 209-220.	0.6	59
46	High-content imaging. , 0, , 85-100.		0
47	Bioassay development. , 0, , 67-84.		0