Susanne Neugart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4585626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxicity, Antioxidant Activity, and Phytochemicals of Basil (Ocimum basilicum L.) Leaves Cultivated in Southern Punjab, Pakistan. Foods, 2022, 11, 1239.	4.3	25
2	Zusammenhang zwischen phenolischen Verbindungen, antioxidativen Eigenschaften und dem allergenen Protein Mal d 1 in verschiedenen Selenâ€biofortifizierten Apfelsorten. Lebensmittelchemie, 2021, 75, S1-067.	0.0	0
3	Relationship between Phenolic Compounds, Antioxidant Properties, and the Allergenic Protein Mal d 1 in Different Selenium-Biofortified Apple Cultivars (Malus domestica). Molecules, 2021, 26, 2647.	3.8	5
4	Rapid adjustment in epidermal <scp>UV</scp> sunscreen: Comparison of optical measurement techniques and response to changing solar <scp>UV</scp> radiation conditions. Physiologia Plantarum, 2021, 173, 725-735.	5.2	6
5	Subsequent treatment of leafy vegetables with low doses of UVB-radiation does not provoke cytotoxicity, genotoxicity, or oxidative stress in a human liver cell model. Food Bioscience, 2021, 43, 101327.	4.4	8
6	Flavonoid Glycosides in Brassica Species Respond to UV-B Depending on Exposure Time and Adaptation Time. Molecules, 2021, 26, 494.	3.8	15
7	Aqueous and gaseous plasma applications for the treatment of mung bean seeds. Scientific Reports, 2021, 11, 19681.	3.3	10
8	The Function of Flavonoids in the Diurnal Rhythm under Rapidly Changing UV Conditions—A Model Study on Okra. Plants, 2021, 10, 2268.	3.5	6
9	Interactions of Ascorbic Acid, 5-Caffeoylquinic Acid, and Quercetin-3-Rutinoside in the Presence and Absence of Iron during Thermal Processing and the Influence on Antioxidant Activity. Molecules, 2021, 26, 7698.	3.8	9
10	Editorial: Ultraviolet Radiation: Friend or Foe for Plants?. Frontiers in Plant Science, 2020, 11, 541.	3.6	4
11	Assessment of hyperspectral indicators related to the content of phenolic compounds and multispectral fluorescence records in chicory leaves exposed to various light environments. Plant Physiology and Biochemistry, 2020, 154, 429-438.	5.8	18
12	Influence of a Selenium Biofortification on Antioxidant Properties and Phenolic Compounds of Apples (Malus domestica). Antioxidants, 2020, 9, 187.	5.1	36
13	The transgenerational effects of solar short-UV radiation differed in two accessions of Vicia faba L. from contrasting UV environments. Journal of Plant Physiology, 2020, 248, 153145.	3.5	6
14	Ultraviolet-B radiation exposure lowers the antioxidant capacity in the Arabidopsis thaliana pdx1.3-1 mutant and leads to glucosinolate biosynthesis alteration in both wild type and mutant. Photochemical and Photobiological Sciences, 2020, 19, 217-228.	2.9	5
15	Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position. Global Food Security, 2020, 25, 100367.	8.1	41
16	Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts. Frontiers in Plant Science, 2020, 11, 611247.	3.6	9
17	Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiology and Biochemistry, 2019, 134, 94-102.	5.8	86
18	Narrow-Banded UVB Affects the Stability of Secondary Plant Metabolites in Kale (Brassica oleracea) Tj ETQq0 0	0 rgBT /Ov 4.3	verlock 10 Tf 5 12

2

Approach for Producing Functional Foods. Foods, 2019, 8, 427.

SUSANNE NEUGART

#	Article	IF	CITATIONS
19	Application of supplemental UVâ€B radiation in preâ€harvest to enhance healthâ€promoting compounds accumulation in green and red lettuce. Journal of Food Processing and Preservation, 2019, 43, e14213.	2.0	12
20	Responses of flavonoid profile and associated gene expression to solar blue and UV radiation in two accessions of Vicia faba L. from contrasting UV environments. Photochemical and Photobiological Sciences, 2019, 18, 434-447.	2.9	26
21	A perspective on ecologically relevant plant-UV research and its practical application. Photochemical and Photobiological Sciences, 2019, 18, 970-988.	2.9	69
22	Boiling and steaming induced changes in secondary metabolites in three different cultivars of pak choi (Brassica rapa subsp. chinensis). Journal of Food Composition and Analysis, 2019, 82, 103232.	3.9	14
23	Precultivation of young seedlings under different color shades modifies the accumulation of phenolic compounds in Cichorium leaves in later growth phases. Environmental and Experimental Botany, 2019, 165, 30-38.	4.2	24
24	Different irradiances of UV and PAR in the same ratios alter the flavonoid profiles of Arabidopsis thaliana wild types and UV-signalling pathway mutants. Photochemical and Photobiological Sciences, 2019, 18, 1685-1699.	2.9	14
25	Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale. Food Chemistry, 2019, 295, 412-422.	8.2	28
26	How do cryptochromes and UVR8 interact in natural and simulated sunlight?. Journal of Experimental Botany, 2019, 70, 4975-4990.	4.8	57
27	Flavonoid Glycosides and Hydroxycinnamic Acid Derivatives in Baby Leaf Rapeseed From White and Yellow Flowering Cultivars With Repeated Harvest in a 2-Years Field Study. Frontiers in Plant Science, 2019, 10, 355.	3.6	22
28	Amaranth's 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages. Nutrients, 2019, 11, 571.	4.1	16
29	The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Scientia Horticulturae, 2018, 233, 460-478.	3.6	91
30	UVB and UVA as eustressors in horticultural and agricultural crops. Scientia Horticulturae, 2018, 234, 370-381.	3.6	120
31	Effects of Developmental Stages and Reduced UVB and Low UV Conditions on Plant Secondary Metabolite Profiles in Pak Choi (<i>Brassica rapa</i> subsp. <i>chinensis</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 1678-1692.	5.2	47
32	Mutual Interaction of Phenolic Compounds and Microbiota: Metabolism of Complex Phenolic Apigenin- <i>C</i> - and Kaempferol- <i>O</i> -Derivatives by Human Fecal Samples. Journal of Agricultural and Food Chemistry, 2018, 66, 485-497.	5.2	42
33	Natural diversity of hydroxycinnamic acid derivatives, flavonoid glycosides, carotenoids and chlorophylls in leaves of six different amaranth species. Food Chemistry, 2018, 267, 376-386.	8.2	22
34	Are Raw Brassica Vegetables Healthier Than Cooked Ones? A Randomized, Controlled Crossover Intervention Trial on the Health-Promoting Potential of Ethiopian Kale. Nutrients, 2018, 10, 1622.	4.1	13
35	UV-B Pre-treatment Alters Phenolics Response to Monilinia fructicola Infection in a Structure-Dependent Way in Peach Skin. Frontiers in Plant Science, 2018, 9, 1598.	3.6	14
36	Effects of Amaranthus cruentus L. on aflatoxin B1- and oxidative stress-induced DNA damage in human liver (HepG2) cells. Food Bioscience, 2018, 26, 42-48.	4.4	15

SUSANNE NEUGART

#	Article	IF	CITATIONS
37	African Nightshade (Solanum scabrum Mill.): Impact of Cultivation and Plant Processing on Its Health Promoting Potential as Determined in a Human Liver Cell Model. Nutrients, 2018, 10, 1532.	4.1	17
38	Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp. chinensis. Frontiers in Plant Science, 2018, 9, 305.	3.6	13
39	Bread Enriched With Legume Microgreens and Leaves—Ontogenetic and Baking-Driven Changes in the Profile of Secondary Plant Metabolites. Frontiers in Chemistry, 2018, 6, 322.	3.6	32
40	Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.). Molecules, 2018, 23, 1197.	3.8	18
41	The role of plant processing for the cancer preventive potential of Ethiopian kale (Brassica carinata). Food and Nutrition Research, 2017, 61, 1271527.	2.6	44
42	Indigenous leafy vegetables of Eastern Africa — A source of extraordinary secondary plant metabolites. Food Research International, 2017, 100, 411-422.	6.2	88
43	UV-A radiation effects on higher plants: Exploring the known unknown. Plant Science, 2017, 255, 72-81.	3.6	220
44	Chlorogenic acid versus amaranth's caffeoylisocitric acid – Gut microbial degradation of caffeic acid derivatives. Food Research International, 2017, 100, 375-384.	6.2	30
45	Environmental plasticity of Pinot noir grapevine leaves: A transâ€European study of morphological and biochemical changes along a 1,500â€km latitudinal climatic gradient. Plant, Cell and Environment, 2017, 40, 2790-2805.	5.7	34
46	Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656T. Plant and Soil, 2017, 419, 557-573.	3.7	24
47	Nutritional compound analysis and morphological characterization of spider plant (Cleome) Tj ETQq1 1 0.78431	.4 rgBT /O	verlock 10 Tf
48	Intercropping Induces Changes in Specific Secondary Metabolite Concentration in Ethiopian Kale (Brassica carinata) and African Nightshade (Solanum scabrum) under Controlled Conditions. Frontiers in Plant Science, 2017, 8, 1700.	3.6	20
49	A Guide to the Variability of Flavonoids in Brassica oleracea. Molecules, 2017, 22, 252.	3.8	38
50	Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?. PLoS ONE, 2017, 12, e0188522.	2.5	22
51	Comparative Evaluation of Total Antioxidant Capacities of Plant Polyphenols. Molecules, 2016, 21, 208.	3.8	146
52	Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica). Frontiers in Plant Science, 2016, 7, 326.	3.6	61
53	Are Neglected Plants the Food for the Future?. Critical Reviews in Plant Sciences, 2016, 35, 106-119.	5.7	149
54	Different Narrow-Band Light Ranges Alter Plant Secondary Metabolism and Plant Defense Response to Aphids. Journal of Chemical Ecology, 2016, 42, 989-1003.	1.8	26

#	Article	IF	CITATIONS
55	Effects of light-emitting diode treatments on Brevicoryne brassicae performance mediated by secondary metabolites in Brussels sprouts. Journal of Plant Diseases and Protection, 2016, 123, 321-330.	2.9	16
56	Environmental Factors Correlated with the Metabolite Profile of <i>Vitis vinifera</i> cv. Pinot Noir Berry Skins along a European Latitudinal Gradient. Journal of Agricultural and Food Chemistry, 2016, 64, 8722-8734.	5.2	52
57	Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica). Food Chemistry, 2016, 197, 530-538.	8.2	25
58	UV-B Elicitation of Secondary Plant Metabolites. Springer Series in Materials Science, 2016, , 387-414.	0.6	9
59	Recent progress in the use of ââ,¬Ëœomics technologies in brassicaceous vegetables. Frontiers in Plant Science, 2015, 6, 244.	3.6	30
60	Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum â€~Salamanca'). Food Research International, 2015, 76, 132-141.	6.2	67
61	Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Research International, 2015, 76, 114-121.	6.2	59
62	Identification of novel saponins in vegetable amaranth and characterization of their hemolytic activity. Food Research International, 2015, 78, 361-368.	6.2	21
63	Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochemistry Reviews, 2015, 14, 273-297.	6.5	98
64	Influence of Cultivar and Fertilizer Approach on Curly Kale (<i>Brassica oleracea</i> L. var.) Tj ETQq0 0 0 rgBT /O Concentration. Journal of Agricultural and Food Chemistry, 2014, 62, 11393-11402.	verlock 10 5.2	D Tf 50 387 To 19
65	Singlet oxygen scavenging by leaf flavonoids contributes to sunlight acclimation in Tilia platyphyllos. Environmental and Experimental Botany, 2014, 100, 1-9.	4.2	71
66	Interaction of Moderate UV-B Exposure and Temperature on the Formation of Structurally Different Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (<i>Brassica oleracea</i> var.) Tj ETQq0 0 0 rg	BT \$⊙ verlo	ock 6150 Tf 50 2
67	Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chemistry, 2014, 163, 51-60.	8.2	75
68	The hydroxycinnamic acid content of barley and brewers' spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chemistry, 2013, 141, 2567-2574.	8.2	91
69	Low and moderate photosynthetically active radiation affects the flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) dependent on two low temperatures. Plant Physiology and Biochemistry, 2013, 72, 161-168.	5.8	22
70	Thermal-induced changes of kale's antioxidant activity analyzed by HPLC–UV/Vis-online-TEAC detection. Food Chemistry, 2013, 138, 857-865.	8.2	39
71	Mixed cropping with maize combined with moderate UV-B radiations lead to enhanced flavonoid production and root growth in faba bean. Journal of Plant Interactions, 2012, 7, 333-340.	2.1	13
72	Highly glycosylated and acylated flavonols isolated from kale (Brassica oleracea var. sabellica) — Structure–antioxidant activity relationship. Food Research International, 2012, 47, 80-89.	6.2	53

#	Article	IF	CITATIONS
73	Structurally different flavonol glycosides and hydroxycinnamic acid derivatives respond differently to moderate UVâ€B radiation exposure. Physiologia Plantarum, 2012, 145, 582-593.	5.2	69
74	The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (Brassica oleracea var. sabellica). Food Chemistry, 2012, 133, 1456-1465.	8.2	46
75	Genotypic and climatic influences on the concentration and composition of flavonoids in kale (Brassica oleracea var. sabellica). Food Chemistry, 2010, 119, 1293-1299.	8.2	106
	Identification of complex, naturally occurring flavonoid glycosides in kale (<i>Brassica oleracea</i>) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
76	ionization multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 2009-2022.	1.5	105
77	Genotypic and Climatic Influence on the Antioxidant Activity of Flavonoids in Kale (Brassica oleracea) Tj ETQq1 1	0. <u>7</u> 84314	· rggT /Overlo