
Calvin A Henard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4585587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimized Tools and Methods for Methanotroph Genome Editing. Methods in Molecular Biology, 2022, 2489, 421-434.	0.9	2
2	Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath. Applied and Environmental Microbiology, 2021, 87, e0088121.	3.1	14
3	Biological valorization of natural gas for the production of lactic acid: Techno-economic analysis and life cycle assessment. Biochemical Engineering Journal, 2020, 158, 107500.	3.6	25
4	Methods for Algal Protein Isolation and Proteome Analysis. Methods in Molecular Biology, 2020, 2096, 51-59.	0.9	0
5	Development of a high-productivity, halophilic, thermotolerant microalga Picochlorum renovo. Communications Biology, 2019, 2, 388.	4.4	58
6	Direct Writing of Tunable Living Inks for Bioprocess Intensification. Nano Letters, 2019, 19, 5829-5835.	9.1	74
7	Development of a CRISPR/Cas9 System for Methylococcus capsulatus <i>In Vivo</i> Gene Editing. Applied and Environmental Microbiology, 2019, 85, .	3.1	40
8	Muconic acid production from methane using rationally-engineered methanotrophic biocatalysts. Green Chemistry, 2019, 21, 6731-6737.	9.0	29
9	Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach. Scientific Reports, 2018, 8, 2512.	3.3	90
10	Zinc-dependent substrate-level phosphorylation powers Salmonella growth under nitrosative stress of the innate host response. PLoS Pathogens, 2018, 14, e1007388.	4.7	23
11	Biogas Biocatalysis: Methanotrophic Bacterial Cultivation, Metabolite Profiling, and Bioconversion to Lactic Acid. Frontiers in Microbiology, 2018, 9, 2610.	3.5	36
12	Metabolic Engineering of Methanotrophic Bacteria for Industrial Biomanufacturing. , 2018, , 117-132.		7
13	Salmonella enterica serovar Typhimurium has three transketolase enzymes contributing to the pentose phosphate pathway. Journal of Biological Chemistry, 2018, 293, 11271-11282.	3.4	13
14	Phosphoproteome of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395, under Nitrogen-Replete and -Deplete Conditions. Frontiers in Bioengineering and Biotechnology, 2018, 6, 19.	4.1	1
15	Genome Sequence of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395. Frontiers in Bioengineering and Biotechnology, 2018, 6, 37.	4.1	21
16	Building a genome engineering toolbox in nonmodel prokaryotic microbes. Biotechnology and Bioengineering, 2018, 115, 2120-2138.	3.3	23
17	Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metabolic Engineering, 2017, 41, 152-158.	7.0	66
18	DksA-Dependent Transcriptional Regulation in Salmonella Experiencing Nitrosative Stress. Frontiers in Microbiology, 2016, 7, 444.	3.5	27

CALVIN A HENARD

#	Article	IF	CITATIONS
19	Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Scientific Reports, 2016, 6, 21585.	3.3	124
20	The Chlorella vulgaris S-Nitrosoproteome under Nitrogen-Replete and -Deplete Conditions. Frontiers in Bioengineering and Biotechnology, 2016, 4, 100.	4.1	10
21	Interactions between Neutrophils and <i>Leishmania braziliensis</i> Amastigotes Facilitate Cell Activation and Parasite Clearance. Journal of Innate Immunity, 2015, 7, 354-363.	3.8	39
22	Leishmania amazonensis Amastigotes Highly Express a Tryparedoxin Peroxidase Isoform That Increases Parasite Resistance to Macrophage Antimicrobial Defenses and Fosters Parasite Virulence. PLoS Neglected Tropical Diseases, 2014, 8, e3000.	3.0	27
23	The 4â€cysteine zincâ€finger motif of the <scp>RNA</scp> polymerase regulator <scp>DksA</scp> serves as a thiol switch for sensing oxidative and nitrosative stress. Molecular Microbiology, 2014, 91, 790-804.	2.5	58
24	Leishmania amazonensis Amastigotes Trigger Neutrophil Activation but Resist Neutrophil Microbicidal Mechanisms. Infection and Immunity, 2013, 81, 3966-3974.	2.2	55
25	Lowâ€molecularâ€weight thiolâ€dependent antioxidant and antinitrosative defences in <i><scp>S</scp>almonella</i> pathogenesis. Molecular Microbiology, 2013, 87, 609-622.	2.5	40
26	DksA-Dependent Resistance of Salmonella enterica Serovar Typhimurium against the Antimicrobial Activity of Inducible Nitric Oxide Synthase. Infection and Immunity, 2012, 80, 1373-1380.	2.2	39
27	Nitric Oxide and Salmonella Pathogenesis. Frontiers in Microbiology, 2011, 2, 84.	3.5	88
28	Control of Redox Balance by the Stringent Response Regulatory Protein Promotes Antioxidant Defenses of Salmonella. Journal of Biological Chemistry, 2010, 285, 36785-36793.	3.4	67
29	Amplified Fragment Length Polymorphism and Mitochondrial DNA Analyses Reveal Patterns of Divergence and Hybridization in the Hispid Cotton Rat (Sigmodon hispidus). Journal of Mammalogy,	1.3	16