
Suresh C Tyagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4585537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impaired Folate-Mediated One-Carbon Metabolism in Type 2 Diabetes, Late-Onset Alzheimer's Disease and Long COVID. Medicina (Lithuania), 2022, 58, 16.	0.8	15
2	Remote Hindâ€Limb Ischemia Mechanism of Preserved Ejection Fraction During Heart Failure. FASEB Journal, 2022, 36, .	0.2	0
3	Mechanism of Bloodâ€Heartâ€Barrier Leakage: Implications for COVIDâ€19 induced Cardiovascular Injury. FASEB Journal, 2022, 36, .	0.2	0
4	Protecting the aging eye with hydrogen sulfide. Canadian Journal of Physiology and Pharmacology, 2021, 99, 161-170.	0.7	5
5	Hyperhomocysteinemia: an instigating factor for periodontal disease. Canadian Journal of Physiology and Pharmacology, 2021, 99, 115-123.	0.7	12
6	Gut microbiota and the periodontal disease: role of hyperhomocysteinemia. Canadian Journal of Physiology and Pharmacology, 2021, 99, 9-17.	0.7	9
7	Epigenetic memory: gene writer, eraser and homocysteine. Molecular and Cellular Biochemistry, 2021, 476, 507-512.	1.4	12
8	Regulation of the parental gene GRM4 by circGrm4 RNA transcript and glutamate-mediated neurovascular toxicity in eyes. Molecular and Cellular Biochemistry, 2021, 476, 663-673.	1.4	9
9	High-methionine diet in skeletal muscle remodeling: epigenetic mechanism of homocysteine-mediated growth retardation. Canadian Journal of Physiology and Pharmacology, 2021, 99, 56-63.	0.7	11
10	Multi-organ damage by covid-19: congestive (cardio-pulmonary) heart failure, and blood-heart barrier leakage. Molecular and Cellular Biochemistry, 2021, 476, 1891-1895.	1.4	17
11	Rebuilding Microbiome for Mitigating Traumatic Brain Injury: Importance of Restructuring the Gut-Microbiome-Brain Axis. Molecular Neurobiology, 2021, 58, 3614-3627.	1.9	20
12	High Fat Diet Dysbiotic Mechanism of Decreased Gingival Blood Flow. Frontiers in Physiology, 2021, 12, 625780.	1.3	4
13	Sustained Inhibition of NF-κB Activity Mitigates Retinal Vasculopathy in Diabetes. American Journal of Pathology, 2021, 191, 947-964.	1.9	16
14	Remote Hind-Limb Ischemia Mechanism of Preserved Ejection Fraction During Heart Failure. Frontiers in Physiology, 2021, 12, 745328.	1.3	6
15	Mechanism of Blood–Heart-Barrier Leakage: Implications for COVID-19 Induced Cardiovascular Injury. International Journal of Molecular Sciences, 2021, 22, 13546.	1.8	9
16	Genes and genetics in hyperhomocysteinemia and the "1-carbon metabolismâ€∎ implications for retinal structure and eye functions. Canadian Journal of Physiology and Pharmacology, 2020, 98, 51-60.	0.7	14
17	Dysbiotic 1â€carbon metabolism in cardiac muscle remodeling. Journal of Cellular Physiology, 2020, 235, 2590-2598.	2.0	17
18	Cardioprotective effects of highâ€intensity interval training are mediated through microRNA regulation of mitochondrial and oxidative stress pathways. Journal of Cellular Physiology, 2020, 235, 5229-5240.	2.0	6

#	Article	IF	CITATIONS
19	Oxidative Stress and Cardiovascular Dysfunction: From Basic Science to Applied Investigations. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-3.	1.9	0
20	Garlic Derived Diallyl Trisulfide in Experimental Metabolic Syndrome: Metabolic Effects and Cardioprotective Role. International Journal of Molecular Sciences, 2020, 21, 9100.	1.8	30
21	Hidradenitis Suppurativa and 1-Carbon Metabolism: Role of Gut Microbiome, Matrix Metalloproteinases, and Hyperhomocysteinemia. Frontiers in Immunology, 2020, 11, 1730.	2.2	13
22	The role of gut microbiota in bone homeostasis. Bone, 2020, 135, 115317.	1.4	78
23	Epigenetics, 1-Carbon Metabolism, and Homocysteine During Dysbiosis. Frontiers in Physiology, 2020, 11, 617953.	1.3	7
24	The Physiology of Sphincter and Dilator Muscles in the Regulation of Intraocular Pressure. FASEB Journal, 2020, 34, 1-1.	0.2	0
25	Probiotic Mitigates High Fat Dietâ€Induced Mammary Gland Inflammation and Matrix Remodeling. FASEB Journal, 2020, 34, 1-1.	0.2	0
26	Dysregulation of 1-carbon metabolism and muscle atrophy: potential roles of forkhead box O proteins and PPARÎ ³ co-activator-1α. Canadian Journal of Physiology and Pharmacology, 2019, 97, 1013-1017.	0.7	3
27	The cardioprotective effects of diallyl trisulfide on diabetic rats with ex vivo induced ischemia/reperfusion injury. Molecular and Cellular Biochemistry, 2019, 460, 151-164.	1.4	23
28	Effect of <i>MMP-9</i> gene knockout on retinal vascular form and function. Physiological Genomics, 2019, 51, 613-622.	1.0	11
29	Hyperhomocysteinemia induced endothelial progenitor cells dysfunction through hyper-methylation of CBS promoter. Biochemical and Biophysical Research Communications, 2019, 510, 135-141.	1.0	23
30	Exosomes: cell-created drug delivery systems. Molecular and Cellular Biochemistry, 2019, 459, 1-6.	1.4	114
31	Hydrogen sulfide inhibits Ca ²⁺ -induced mitochondrial permeability transition pore opening in type-1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E269-E283.	1.8	25
32	Hydrogen sulfide attenuates homocysteineâ€induced osteoblast dysfunction by inhibiting mitochondrial toxicity. Journal of Cellular Physiology, 2019, 234, 18602-18614.	2.0	23
33	Role of hydrogen sulfide in the musculoskeletal system. Bone, 2019, 124, 33-39.	1.4	15
34	Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: An emerging research perspective. Journal of Cellular Biochemistry, 2019, 120, 77-92.	1.2	13
35	TFAM overexpression diminishes skeletal muscle atrophy after hindlimb suspension in mice. Archives of Biochemistry and Biophysics, 2019, 666, 138-147.	1.4	9
36	Circular RNAs constitute an inherent gene regulatory axis in the mammalian eye and brain. Canadian Journal of Physiology and Pharmacology, 2019, 97, 463-472.	0.7	24

#	Article	IF	CITATIONS
37	Restoration of skeletal muscle homeostasis by hydrogen sulfide during hyperhomocysteinemia-mediated oxidative/ER stress condition. Canadian Journal of Physiology and Pharmacology, 2019, 97, 441-456.	0.7	19
38	TFAM overexpression reduces pathological cardiac remodeling. Molecular and Cellular Biochemistry, 2019, 454, 139-152.	1.4	20
39	Expression Analysis of the Circular RNA Molecules in the Human Retinal Cells Treated with Homocysteine. Current Eye Research, 2019, 44, 287-293.	0.7	20
40	Hydrogen sulfide intervention in cystathionine-Î ² -synthase mutant mouse helps restore ocular homeostasis. International Journal of Ophthalmology, 2019, 12, 754-764.	0.5	16
41	NFâ€kB p65 Subunit Inhibitor: JSHâ€23 Mitigates Diabetic Retinopathy via Reducing Oxidative Stress. FASEB Journal, 2019, 33, .	0.2	1
42	Probiotic Supplementation Mitigates Vascular Remodeling in the Retina. FASEB Journal, 2019, 33, 484.11.	0.2	2
43	Probiotics Ameliorate Gutâ€Microbial Dysbiosis, Intestinal Permeability, Systemic Inflammation, and Skeletal Muscle Dysfunction in Cystathionineâ€Ĥâ€synthaseâ€Deficient Mice. FASEB Journal, 2019, 33, 701.16.	0.2	1
44	Hyperhomocysteinemia and the effects of Lactobacillus rhamnosus GG on cardiac functions in CBS +/â^' mice. FASEB Journal, 2019, 33, 531.7.	0.2	0
45	NAD ⁺ : A big player in cardiac and skeletal muscle remodeling and aging. Journal of Cellular Physiology, 2018, 233, 1895-1896.	2.0	9
46	Mechanisms of TFAM-mediated cardiomyocyte protection. Canadian Journal of Physiology and Pharmacology, 2018, 96, 173-181.	0.7	13
47	Genes and genetics in eye diseases: a genomic medicine approach for investigating hereditary and inflammatory ocular disorders. International Journal of Ophthalmology, 2018, 11, 117-134.	0.5	28
48	Exercise mitigates the effects of hyperhomocysteinemia on adverse muscle remodeling. Physiological Reports, 2018, 6, e13637.	0.7	5
49	Remodeling of Retinal Architecture in Diabetic Retinopathy: Disruption of Ocular Physiology and Visual Functions by Inflammatory Gene Products and Pyroptosis. Frontiers in Physiology, 2018, 9, 1268.	1.3	45
50	Hydrogen Sulfide Promotes Bone Homeostasis by Balancing Inflammatory Cytokine Signaling in CBS-Deficient Mice through an Epigenetic Mechanism. Scientific Reports, 2018, 8, 15226.	1.6	41
51	Hydrogen sulfide improves postischemic neoangiogenesis in the hind limb of cystathionine- <i>l²</i> -synthase mutant mice via PPAR- <i>l³</i> /VEGF axis. Physiological Reports, 2018, 6, e13858.	0.7	37
52	Role of Fibrinogen in Vascular Cognitive Impairment in Traumatic Brain Injury. , 2018, , .		2
53	Circular RNAs profiling in the cystathionine-β-synthase mutant mouse reveals novel gene targets for hyperhomocysteinemia induced ocular disorders. Experimental Eye Research, 2018, 174, 80-92.	1.2	24
54	Exercise preconditioning diminishes skeletal muscle atrophy after hindlimb suspension in mice. Journal of Applied Physiology, 2018, 125, 999-1010.	1.2	22

#	Article	IF	CITATIONS
55	Hydrogen sulfide alleviates hyperhomocysteinemia-mediated skeletal muscle atrophy via mitigation of oxidative and endoplasmic reticulum stress injury. American Journal of Physiology - Cell Physiology, 2018, 315, C609-C622.	2.1	46
56	Hydrogen sulfide epigenetically mitigates bone loss through OPG/RANKL regulation during hyperhomocysteinemia in mice. Bone, 2018, 114, 90-108.	1.4	66
57	Connecting homocysteine and obesity through pyroptosis, gut microbiome, epigenetics, peroxisome proliferator-activated receptor γ, and zinc finger protein 407. Canadian Journal of Physiology and Pharmacology, 2018, 96, 971-976.	0.7	31
58	Role of Hydrogen Sulfide (H 2 S) on Homocysteine Mediated Glutamate Excitotoxicity, Endoplasmic Reticulum Stress and Pyroptosis in Retina. FASEB Journal, 2018, 32, 748.5.	0.2	3
59	A hypothesis for treating inflammation and oxidative stress with hydrogen sulfide during age-related macular degeneration. International Journal of Ophthalmology, 2018, 11, 881-887.	0.5	23
60	Hydrogen Sulfide Improves Hyperhomocysteinemiaâ€Mediated Impairment of Angiogenesis in Skeletal Muscle. FASEB Journal, 2018, 32, 573.2.	0.2	0
61	Hyperhomocysteinemiaâ€Mediated Endoplasmic Reticulum Stress in Skeletal Muscle Dysfunction via JNK/proâ€inflammatory Pathway. FASEB Journal, 2018, 32, 538.4.	0.2	0
62	Interactions of hyperhomocysteinemia and T cell immunity in causation of hypertension. Canadian Journal of Physiology and Pharmacology, 2017, 95, 239-246.	0.7	19
63	Browning of White Fat: Novel Insight Into Factors, Mechanisms, and Therapeutics. Journal of Cellular Physiology, 2017, 232, 61-68.	2.0	152
64	Dementia-like pathology in type-2 diabetes: A novel microRNA mechanism. Molecular and Cellular Neurosciences, 2017, 80, 58-65.	1.0	29
65	Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases. Biomedicine and Pharmacotherapy, 2017, 92, 1073-1084.	2.5	26
66	Mdivi-1 induced acute changes in the angiogenic profile after ischemia-reperfusion injury in female mice. Physiological Reports, 2017, 5, e13298.	0.7	22
67	Toll-like receptor 4 mediates vascular remodeling in hyperhomocysteinemia. Molecular and Cellular Biochemistry, 2017, 433, 177-194.	1.4	8
68	Dysbiosis and Disease: Many Unknown Ends, Is It Time to Formulate Guidelines for Dysbiosis Research?. Journal of Cellular Physiology, 2017, 232, 2929-2930.	2.0	4
69	Hypermethylation: Causes and Consequences in Skeletal Muscle Myopathy. Journal of Cellular Biochemistry, 2017, 118, 2108-2117.	1.2	23
70	The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. Journal of Cellular Physiology, 2017, 232, 2348-2358.	2.0	106
71	Ablation of toll-like receptor 4 mitigates cardiac mitochondrial dysfunction in hyperhomocysteinemia. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1369-1375.	0.7	7
72	Toll-like Receptor 4 Deficiency Reduces Oxidative Stress and Macrophage Mediated Inflammation in Hypertensive Kidney. Scientific Reports, 2017, 7, 6349.	1.6	76

#	Article	IF	CITATIONS
73	Hyperhomocysteinemia and Age-related Macular Degeneration: Role of Inflammatory Mediators and Pyroptosis; A Proposal. Medical Hypotheses, 2017, 105, 17-21.	0.8	12
74	Ablation of Toll-like receptor 4 mitigates central blood pressure response during hyperhomocysteinemia. Journal of Hypertension, 2017, 35, 2226-2237.	0.3	3
75	Homocysteine as a Pathological Biomarker for Bone Disease. Journal of Cellular Physiology, 2017, 232, 2704-2709.	2.0	61
76	Localization of Fibrinogen in the Vasculo-Astrocyte Interface after Cortical Contusion Injury in Mice. Brain Sciences, 2017, 7, 77.	1.1	24
77	Homocysteine mediates transcriptional changes of the inflammatory pathway signature genes in human retinal pigment epithelial cells. International Journal of Ophthalmology, 2017, 10, 696-704.	0.5	16
78	Metalloproteinases as mediators of inflammation and the eyes: molecular genetic underpinnings governing ocular pathophysiology. International Journal of Ophthalmology, 2017, 10, 1308-1318.	0.5	28
79	Post-menopausal breast cancer: from estrogen to androgen receptor. Oncotarget, 2017, 8, 102739-102758.	0.8	26
80	Regulation and involvement of matrix metalloproteinases in vascular diseases. Frontiers in Bioscience - Landmark, 2016, 21, 89-118.	3.0	63
81	Ablation of Matrix Metalloproteinase-9 Prevents Cardiomyocytes Contractile Dysfunction in Diabetics. Frontiers in Physiology, 2016, 7, 93.	1.3	19
82	Cerebrovascular disorders caused by hyperfibrinogenaemia. Journal of Physiology, 2016, 594, 5941-5957.	1.3	17
83	Toll-like receptor 4 mutation suppresses hyperhomocysteinemia-induced hypertension. American Journal of Physiology - Cell Physiology, 2016, 311, C596-C606.	2.1	28
84	Mitochondrial pathways to cardiac recovery: TFAM. Heart Failure Reviews, 2016, 21, 499-517.	1.7	72
85	Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacological Research, 2016, 113, 300-312.	3.1	60
86	Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. International Journal of Biochemistry and Cell Biology, 2016, 79, 360-369.	1.2	200
87	Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise. Annals of the New York Academy of Sciences, 2016, 1363, 138-154.	1.8	37
88	Epigenetic silencing of TIMP 4 in heart failure. Journal of Cellular and Molecular Medicine, 2016, 20, 2089-2101.	1.6	14
89	Homocysteine, Alcoholism, and Its Potential Epigenetic Mechanism. Alcoholism: Clinical and Experimental Research, 2016, 40, 2474-2481.	1.4	44
90	High Methionine Diet Poses Cardiac Threat: A Molecular Insight. Journal of Cellular Physiology, 2016, 231, 1554-1561.	2.0	24

#	Article	IF	CITATIONS
91	Inhibition of MMP-9 attenuates hypertensive cerebrovascular dysfunction in Dahl salt-sensitive rats. Molecular and Cellular Biochemistry, 2016, 413, 25-35.	1.4	17
92	Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. Journal of Molecular and Cellular Cardiology, 2016, 92, 163-173.	0.9	78
93	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
94	Hyperhomocysteinemia Alters Sinoatrial and Atrioventricular Nodal Function: Role of Magnesium in Attenuating These Effects. Cell Biochemistry and Biophysics, 2016, 74, 59-65.	0.9	7
95	Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vascular Health and Risk Management, 2015, 11, 173.	1.0	105
96	Exercise ameliorates high fat diet induced cardiac dysfunction by increasing interleukin 10. Frontiers in Physiology, 2015, 6, 124.	1.3	44
97	Hydrogen Sulfide Epigenetically Attenuates Homocysteineâ€Induced Mitochondrial Toxicity Mediated Through NMDA Receptor in Mouse Brain Endothelial (bEnd3) Cells. Journal of Cellular Physiology, 2015, 230, 378-394.	2.0	74
98	Homocysteine elicits an M1 phenotype in murine macrophages through an EMMPRIN-mediated pathway. Canadian Journal of Physiology and Pharmacology, 2015, 93, 577-584.	0.7	12
99	Hyperhomocysteinemia associated skeletal muscle weakness involves mitochondrial dysfunction and epigenetic modifications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 732-741.	1.8	58
100	Role of hydrogen sulfide in skeletal muscle biology and metabolism. Nitric Oxide - Biology and Chemistry, 2015, 46, 66-71.	1.2	38
101	Epigenetic revival of a dead cardiomyocyte through mitochondrial interventions. Biomolecular Concepts, 2015, 6, 303-319.	1.0	5
102	Hyperhomocysteinemia: a missing link to dysfunctional HDL via paraoxanase-1. Canadian Journal of Physiology and Pharmacology, 2015, 93, 755-763.	0.7	8
103	A possible molecular mechanism of hearing loss during cerebral ischemia in mice. Canadian Journal of Physiology and Pharmacology, 2015, 93, 505-516.	0.7	11
104	Mechanisms of Hyperhomocysteinemia Induced Skeletal Muscle Myopathy after Ischemia in the CBSâ^'/+ Mouse Model. International Journal of Molecular Sciences, 2015, 16, 1252-1265.	1.8	21
105	Cardiac tissue inhibitor of matrix metalloprotease 4 dictates cardiomyocyte contractility and differentiation of embryonic stem cells into cardiomyocytes: Road to therapy. International Journal of Cardiology, 2015, 184, 350-363.	0.8	11
106	Cardiosome mediated regulation of <scp>MMP</scp> 9 in diabetic heart: role of mir29b and mir455 in exercise. Journal of Cellular and Molecular Medicine, 2015, 19, 2153-2161.	1.6	154
107	Resuscitation of a dead cardiomyocyte. Heart Failure Reviews, 2015, 20, 709-719.	1.7	6
108	Hyperhomocysteinemia inhibits satellite cell regenerative capacity through p38 alpha/beta MAPK signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H325-H334.	1.5	28

#	Article	IF	CITATIONS
109	Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice. Metabolic Brain Disease, 2015, 30, 411-426.	1.4	61
110	Increased Cerebrovascular Protein Transcytosis and Amyloidâ€Î² Deposition during Hyperfibrinogenemia Alter Shortâ€ŧerm Memory. FASEB Journal, 2015, 29, 673.1.	0.2	0
111	A Link between Mitophagy and Apoptosis in Endothelial Cells: Exosomal Delivery of Mfnâ€⊋ siRNA. FASEB Journal, 2015, 29, 974.13.	0.2	2
112	Homocysteine Elicits an Inflammatory Profile in Murine Macrophages Through an EMMPRIN Mediated Pathway. FASEB Journal, 2015, 29, 634.7.	0.2	0
113	Exercise Mitigates Aberrant Mitophagy and Cardiovascular Remodeling in Diabetes. FASEB Journal, 2015, 29, 821.8.	0.2	0
114	Exercise Mitigates Hyperhomocysteinemia Induced Vascular Dysfunction and Adverse Skeletal Muscle Remodeling. FASEB Journal, 2015, 29, 1055.31.	0.2	0
115	Taming the Promoter: Regulation of Tissue Inhibitor of Matrix Metalloprotease 4 in Heart Failure. FASEB Journal, 2015, 29, 974.9.	0.2	0
116	Cardiosomes and Cardiac Remodeling: Role of Exercise. FASEB Journal, 2015, 29, 1038.4.	0.2	0
117	Hyperhomocysteinemia (HHcy) Causes Mitochondrial Dysfunction and Epigenetic Modifications Leading to Skeletal Muscle Weakness. FASEB Journal, 2015, 29, 1050.4.	0.2	0
118	Exercise mitigates the adverse effects of hyperhomocysteinemia on macrophages, MMP-9, skeletal muscle, and white adipocytes. Canadian Journal of Physiology and Pharmacology, 2014, 92, 575-582.	0.7	16
119	Ablation of <i>MMP9</i> Gene Ameliorates Paracellular Permeability and Fibrinogen–Amyloid Beta Complex Formation during Hyperhomocysteinemia. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1472-1482.	2.4	44
120	Epigenetic regulation of aortic remodeling in hyperhomocysteinemia. FASEB Journal, 2014, 28, 3411-3422.	0.2	28
121	Epigenetic mechanisms underlying cardiac degeneration and regeneration. International Journal of Cardiology, 2014, 173, 1-11.	0.8	44
122	Mitochondrial mitophagy in mesenteric artery remodeling in hyperhomocysteinemia. Physiological Reports, 2014, 2, e00283.	0.7	22
123	Role of MicroRNA29b in Blood–Brain Barrier Dysfunction during Hyperhomocysteinemia: An Epigenetic Mechanism. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1212-1222.	2.4	60
124	Hyperhomocysteinemia attenuates angiogenesis through reduction of HIF-11± and PGC-11± levels in muscle fibers during hindlimb ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1116-H1127.	1.5	21
125	Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo: an epigenetic mechanism. Physiological Genomics, 2014, 46, 245-255.	1.0	50
126	Elevated Level of Fibrinogen Increases Caveolae Formation; Role of Matrix Metalloproteinase-9. Cell Biochemistry and Biophysics, 2014, 69, 283-294.	0.9	21

#	Article	IF	CITATIONS
127	Exercise and nutrition in myocardial matrix metabolism, remodeling, regeneration, epigenetics, microcirculation, and muscle. Canadian Journal of Physiology and Pharmacology, 2014, 92, 521-523.	0.7	10
128	Homocysteine in renovascular complications: Hydrogen sulfide is a modulator and plausible anaerobic ATP generator. Nitric Oxide - Biology and Chemistry, 2014, 41, 27-37.	1.2	17
129	Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Canadian Journal of Physiology and Pharmacology, 2014, 92, 583-591.	0.7	61
130	Anti-Parstatin Promotes Angiogenesis and Ameliorates Left Ventricular Dysfunction during Pressure Overload. International Journal of Biomedical Science, 2014, 10, 1-7.	0.5	3
131	Cardiac matrix: A clue for future therapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2271-2276.	1.8	49
132	Matrix metalloproteinase inhibition mitigates renovascular remodeling in salt-sensitive hypertension. Physiological Reports, 2013, 1, e00063.	0.7	30
133	Angiotensin-II induced hypertension and renovascular remodelling in tissue inhibitor of metalloproteinase 2 knockout mice. Journal of Hypertension, 2013, 31, 2270-2281.	0.3	36
134	Ablation of MMPâ€9 gene ameliorates paracellular permeability and fibrinogenâ€amyloid beta plaque formation during hyperhomocysteinemia. FASEB Journal, 2013, 27, 709.4.	0.2	0
135	Hydrogen sulfide attenuates homocysteine induced neurovascular dysfunction. FASEB Journal, 2013, 27, lb728.	0.2	0
136	Matrix Metalloproteinase Inhibition Protects Kidney from Adverse Remodeling Induced by Hypertension. FASEB Journal, 2013, 27, 906.6.	0.2	0
137	Mitochondrial division inhibitor (Mdiviâ€I) ameliorates post myocardial infarction via stimulating stem cell by elevating level of MiRâ€499 in diabetes. FASEB Journal, 2013, 27, 1151.1.	0.2	0
138	Epigenetic inhibition by 5 Aza 2′ deoxycytidine mitigates hypertension in hyperhomocysteinemia. FASEB Journal, 2013, 27, 955.9.	0.2	0
139	H 2 S Therapy Improves MMPâ€9 and NMDA Receptor Mediated Diabetic Renovascular Remodeling. FASEB Journal, 2013, 27, 702.9.	0.2	0
140	Ablation of MMP9 ameliorates epigenetic modifications and mitigates diabetic cardiomyopathy. FASEB Journal, 2013, 27, 1129.3.	0.2	0
141	Mesenteric vascular remodeling in different mouse strains. FASEB Journal, 2013, 27, 916.7.	0.2	0
142	C3H Mice are Resistant to Hypertensive Renovascular Remodeling Due to Decreased Mitochondrial Oxidative Stress. FASEB Journal, 2013, 27, 704.13.	0.2	0
143	Hyperhomocysteinemia during aortic aneurysm, a plausible role of epigenetics. International Journal of Physiology, Pathophysiology and Pharmacology, 2013, 5, 32-42.	0.8	15
144	Fibrinogen-Induced Increased Pial Venular Permeability in Mice. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 150-163.	2.4	33

#	Article	IF	CITATIONS
145	Autophagy mechanism of right ventricular remodeling in murine model of pulmonary artery constriction. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H688-H696.	1.5	52
146	Increased endogenous H ₂ S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. American Journal of Physiology - Cell Physiology, 2012, 303, C41-C51.	2.1	102
147	Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor. Molecular and Cellular Biochemistry, 2012, 371, 89-96.	1.4	25
148	Mitochondrial mitophagic mechanisms of myocardial matrix metabolism and remodelling. Archives of Physiology and Biochemistry, 2012, 118, 31-42.	1.0	23
149	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
150	Hydrogen Sulfide Mitigates Cardiac Remodeling During Myocardial Infarction via Improvement of Angiogenesis. International Journal of Biological Sciences, 2012, 8, 430-441.	2.6	92
151	Tetrahydrocurcumin Ameliorates Homocysteinylated Cytochrome-c Mediated Autophagy in Hyperhomocysteinemia Mice after Cerebral Ischemia. Journal of Molecular Neuroscience, 2012, 47, 128-138.	1.1	64
152	Matrix metalloproteinaseâ€9 in homocysteineâ€induced intestinal microvascular endothelial paracellular and transcellular permeability. Journal of Cellular Biochemistry, 2012, 113, 1159-1169.	1.2	28
153	Autophagy and Heart Failure: A Possible Role for Homocysteine. Cell Biochemistry and Biophysics, 2012, 62, 1-11.	0.9	21
154	Mitochondrial division/mitophagy inhibitor (Mdivi) Ameliorates Pressure Overload Induced Heart Failure. PLoS ONE, 2012, 7, e32388.	1.1	177
155	Hyperhomocysteinemia decreases intestinal motility leading to constipation. FASEB Journal, 2012, 26, 1163.6.	0.2	0
156	Renovascular remodeling in Angiotensinâ€l induced hypertension is strain–dependent. FASEB Journal, 2012, 26, lb809.	0.2	0
157	Matrix Metalloproteinaseâ€9 in Homocysteineâ€Induced Intestinal Microvascular Endothelial Paracellular and Transcellular Permeability. FASEB Journal, 2012, 26, 862.4.	0.2	0
158	Mitochondrial mechanism of right ventricular failure (RVF). FASEB Journal, 2012, 26, 1127.3.	0.2	0
159	Mitophagy causes coronary artery endothelial dysfunction in oxidative stress doseâ€dependent (i.e.) Tj ETQq1 I	0.78431 0.2	4 rgBT /Overla
160	Role Of MMP9 In Cardiac Stem Cell Differentiation And Autophagy. FASEB Journal, 2012, 26, .	0.2	0
161	Bad to Bone: Homocysteine. FASEB Journal, 2012, 26, 1143.5.	0.2	0
162	Epigenetic Reprogramming of Mitochondrial Dysfunction in hyperhomocysteinemia. FASEB Journal, 2012, 26, 701.17.	0.2	0

#	Article	IF	CITATIONS
163	Exercise Mitigates Betaâ€2 Adrenergic Receptor Dysfunction By Decreasing Homocysteine In Diabetes. FASEB Journal, 2012, 26, 1076.2.	0.2	Ο
164	MiRâ€133 As An Epigenetic Regulator Of Diabetic Heart Failure. FASEB Journal, 2012, 26, 1057.22.	0.2	1
165	Epigenetic mechanism of atherosclerosis and hypertension in Hyperhomocysteinemia. FASEB Journal, 2012, 26, 874.7.	0.2	0
166	Attenuation of conducted vasodilatation in the skeletal muscle during hyperhomocysteinemia. FASEB Journal, 2012, 26, 1058.7.	0.2	0
167	Hydrogen sulfide mitigates renovascular matrix pathobiology in hyperhomocysteinemia. FASEB Journal, 2012, 26, 866.4.	0.2	Ο
168	Chronic hyperhomocysteinemia causes vascular remodelling by instigating vein phenotype in artery. Archives of Physiology and Biochemistry, 2011, 117, 270-282.	1.0	8
169	Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. Journal of Applied Physiology, 2011, 110, 1093-1100.	1.2	61
170	Mesenteric vascular remodeling in hyperhomocysteinemia. Molecular and Cellular Biochemistry, 2011, 348, 99-108.	1.4	31
171	Homocysteine mediated decrease in bone blood flow and remodeling: Role of folic acid. Journal of Orthopaedic Research, 2011, 29, 1511-1516.	1.2	46
172	Folic acid improves acetylcholineâ€induced vasoconstriction of coronary vessels isolated from hyperhomocysteinemic mice: An implication to coronary vasospasm. Journal of Cellular Physiology, 2011, 226, 2712-2720.	2.0	28
173	Mechanisms of Cardiovascular Remodeling in Hyperhomocysteinemia. Antioxidants and Redox Signaling, 2011, 15, 1927-1943.	2.5	148
174	X-ray imaging of differential vascular density in MMP-9â^'/â^', PAR-1â^'/+, hyperhomocysteinemic (CBSâ^'/+) and diabetic (Ins2â^'/+) mice. Archives of Physiology and Biochemistry, 2011, 117, 1-7.	1.0	18
175	Hydrogen sulfide improves angiogenesis and regulates cardiac function and structure during myocardial infarction in mice. FASEB Journal, 2011, 25, .	0.2	0
176	The siRNA targeting MMPâ€9 mitigates Homocysteine induced dysruption of barrier integrity in Human intestinal microvascular cells. FASEB Journal, 2011, 25, 1066.7.	0.2	0
177	Exercise ameliorates diabetic cardiomyopathy by inducing beta2â€adrenergic receptors and miRâ€133a, and attenuating MMPâ€9. FASEB Journal, 2011, 25, 1032.4.	0.2	3
178	Synergism between arrhythmia and hyperhomo-cysteinemia in structural heart disease. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 107-19.	0.8	16
179	Cystathionine beta synthase gene dose dependent vascular remodeling in murine model of hyperhomocysteinemia. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 210-22.	0.8	17
180	Remodeling in vein expresses arterial phenotype in hyperhomocysteinemia. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 266-79.	0.8	4

#	Article	IF	CITATIONS
181	Role of PPARgamma, a nuclear hormone receptor in neuroprotection. Indian Journal of Biochemistry and Biophysics, 2011, 48, 73-81.	0.2	21
182	Hyperhomocysteinemia and Sudden Cardiac Death: Potential Arrhythmogenic Mechanisms. Current Vascular Pharmacology, 2010, 8, 64-74.	0.8	21
183	Hydrogen sulfide protects against vascular remodeling from endothelial damage. Amino Acids, 2010, 39, 1161-1169.	1.2	50
184	Homocysteine to Hydrogen Sulfide or Hypertension. Cell Biochemistry and Biophysics, 2010, 57, 49-58.	0.9	148
185	Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol. Cardiovascular Diabetology, 2010, 9, 49.	2.7	58
186	Stem cells as a therapeutic target for diabetes. Frontiers in Bioscience - Landmark, 2010, 15, 461.	3.0	42
187	Cardiac specific deletion ofN-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia. Journal of Receptor and Signal Transduction Research, 2010, 30, 78-87.	1.3	60
188	MMP-2/TIMP-2/TIMP-4 versus MMP-9/TIMP-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure [*] . Archives of Physiology and Biochemistry, 2010, 116, 63-72.	1.0	66
189	H ₂ S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H451-H456.	1.5	91
190	Folic acid mitigated cardiac dysfunction by normalizing the levels of tissue inhibitor of metalloproteinase and homocysteine-metabolizing enzymes postmyocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1484-H1493.	1.5	23
191	Functional consequences of the collagen/elastin switch in vascular remodeling in hyperhomocysteinemic wild-type, eNOS ^{â^'/â^'} , and iNOS ^{â^'/â^'} mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L301-L311.	1.3	50
192	Hydrogen Sulfide Regulates Homocysteine-Mediated Glomerulosclerosis. American Journal of Nephrology, 2010, 31, 442-455.	1.4	78
193	Blood Flow Regulates Vasculature by Maintaining Collagen/elastin and MMP/TIMP ratio. FASEB Journal, 2010, 24, 790.3.	0.2	0
194	Role of dicer in diabetic cardiomyopathy through dysregulation of MMPâ€9 and TIMPâ€4. FASEB Journal, 2010, 24, 978.19.	0.2	0
195	Inhibition of Matrix Metalloproteinaseâ€9 (MMPâ€9) Reverses Changes in Vascular Wall Structure and Function of Thoracic Aorta of Dahl Salt‧ensitive (DSS) Rats. FASEB Journal, 2010, 24, 599.4.	0.2	0
196	Folic acid mitigated homocysteineâ€mediated decrease in bone blood flow and bone remodeling. FASEB Journal, 2010, 24, 630.7.	0.2	0
197	Mild hyperhomocysteinemia increases atrioventricular nodal conduction: Role of the cardiac NMDA receptor. FASEB Journal, 2010, 24, 781.5.	0.2	0
198	DDAHâ€2 & eNOS in Mesenteric Vascular Remodeling : Role of Fenugreek. FASEB Journal, 2010, 24, 774.7.	0.2	0

#	Article	IF	CITATIONS
199	Folic Acid Attenuates Vascular Dysfunction in Typeâ€⊋ Diabetic Mice. FASEB Journal, 2010, 24, 981.11.	0.2	Ο
200	Activation of renal NMDA by Hcy causes ECM remodeling by modulating MMP/TIMP axis. FASEB Journal, 2010, 24, .	0.2	0
201	Tetrahydrocurcumin ameliorates mtMMPâ€9 mediated mitophagy and mitochondria remodeling in Stroke. FASEB Journal, 2010, 24, 604.4.	0.2	0
202	Folic Acid Mitigated Cardiac Dysfunction by Normalizing the Levels of Tissue Inhibitor of Metalloproteinase and homocysteineâ€metabolizing enzymes Post myocardial Infarction in Mice FASEB Journal, 2010, 24, 600.5.	0.2	0
203	Curcumin mitigated ischemic and hyperhomocysteinemic cerebral microvascular mitochondrial mitophagy by decreasing oxidative and inflammatory stresses. FASEB Journal, 2010, 24, 604.19.	0.2	0
204	Cystathionine βâ€synthase and cystathionine γâ€lyase double gene transfer ameliorated homocysteineâ€mediated mesangial inflammation through hydrogen sulfide generation. FASEB Journal, 2010, 24, 590.6.	0.2	0
205	Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H887-H892.	1.5	35
206	Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. American Journal of Physiology - Renal Physiology, 2009, 297, F410-F419.	1.3	146
207	Nitrotyrosinylation, remodeling and endothelialâ€myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. Journal of Cellular Biochemistry, 2009, 106, 119-126.	1.2	26
208	Activation of GABAâ€A receptor ameliorates homocysteineâ€induced MMPâ€9 activation by ERK pathway. Journal of Cellular Physiology, 2009, 220, 257-266.	2.0	60
209	Fibrinogen induces alterations of endothelial cell tight junction proteins. Journal of Cellular Physiology, 2009, 221, 195-203.	2.0	66
210	Matrix imbalance by inducing expression of metalloproteinase and oxidative stress in cochlea of hyperhomocysteinemic mice. Molecular and Cellular Biochemistry, 2009, 332, 215-224.	1.4	28
211	MicroRNAs Are Involved in Homocysteine-Induced Cardiac Remodeling. Cell Biochemistry and Biophysics, 2009, 55, 153-162.	0.9	74
212	H ₂ S Protects Against Methionine–Induced Oxidative Stress in Brain Endothelial Cells. Antioxidants and Redox Signaling, 2009, 11, 25-33.	2.5	149
213	Activation of GABA¬A receptor Protects Mitochondria and Reduces Cerebral ischemia FASEB Journal, 2009, 23, 614.8.	0.2	2
214	Hydrogen sulfide mitigates homocysteineâ€induced glomerular injury. FASEB Journal, 2009, 23, 604.9.	0.2	0
215	Structural and Functional Heterogeneity in Vascular Remodeling. FASEB Journal, 2009, 23, 593.20.	0.2	0
216	Cerebroprotective role of Tetrahydro Curcumin in hyperhomocysteinemic ischemic mice by regulating NFâ€kappa B. FASEB Journal, 2009, 23, 614.7.	0.2	1

#	Article	IF	CITATIONS
217	Role of MicroRNAs in homocysteine induced oxidative stress. FASEB Journal, 2009, 23, 1038.9.	0.2	0
218	Hyperhomocysteinemia induces matrix disruption and oxidative stress in inner ear. FASEB Journal, 2009, 23, 1028.5.	0.2	0
219	Role of Copper and Homocysteine in Pressure Overload Heart Failure. Cardiovascular Toxicology, 2008, 8, 137-144.	1.1	29
220	Renal mitochondrial damage and protein modification in type-2 diabetes. Acta Diabetologica, 2008, 45, 75-81.	1.2	32
221	Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMPâ€9 via inhibition of NFâ€Ĥβ in hyperhomocysteinemia. Journal of Cellular Physiology, 2008, 215, 771-781.	2.0	44
222	GABAA receptor agonist mitigates homocysteine-induced cerebrovascular remodeling in knockout mice. Brain Research, 2008, 1221, 147-153.	1.1	25
223	Homocysteine decreases blood flow to the brain due to vascular resistance in carotid artery. Neurochemistry International, 2008, 53, 214-219.	1.9	40
224	Ciglitazone, a PPARÎ ³ agonist, ameliorates diabetic nephropathy in part through homocysteine clearance. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1205-E1212.	1.8	38
225	Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H890-H897.	1.5	90
226	Congenic expression of tissue inhibitor of metalloproteinase in Dahl-salt sensitive hypertensive rats is associated with reduced LV hypertrophy. Archives of Physiology and Biochemistry, 2008, 114, 340-348.	1.0	11
227	Mitochondrial MMP Activation, Dysfunction and Arrhythmogenesis in Hyperhomocysteinemia. Current Vascular Pharmacology, 2008, 6, 84-92.	0.8	38
228	Cardiac Gαs and Gαi Modulate Sympathetic Versus Parasympathetic Mechanisms in Hyperhomocysteinemia. , 2008, , 51-66.		0
229	Homocysteine decreases bone blood flow in rats. FASEB Journal, 2008, 22, 732.7.	0.2	0
230	Electrical stimulation activates myocyte mitochondrial MMP. FASEB Journal, 2008, 22, 963.8.	0.2	0
231	Homocysteine attenuates blood brain barrier function by inducing oxidative stress and the junctional proteins. FASEB Journal, 2008, 22, 734.7.	0.2	5
232	Mitochondrial MMP activation decreases myocyte contractility in hyperhomocysteinemia FASEB Journal, 2008, 22, 751.8.	0.2	0
233	Mechanism of homocysteineâ€induced dementia/spasm. FASEB Journal, 2008, 22, 734.9.	0.2	0
234	Ex vivo realâ€ŧime MMP activation in kidney in hyperhomocysteinemia. FASEB Journal, 2008, 22, 942.10.	0.2	0

#	Article	IF	CITATIONS
235	Effect of hydrogen sulfide on methionineâ€induced oxidative stress in brain endothelial cells. FASEB Journal, 2008, 22, 734.8.	0.2	0
236	TWEAK augments matrix metallanoproteineaseâ€9 expression in skeletal muscle cells through the activation of p38 mitogenâ€activated protein kinase and nuclear factorâ€kappa B signaling pathways. FASEB Journal, 2008, 22, 962.26.	0.2	0
237	Hyperhomocysteinemia causes cardiac rhythm disturbances due to a shift in atrial and ventricular gap junction protein distribution. FASEB Journal, 2008, 22, 971.10.	0.2	0
238	Role of Copper and Homocysteine in Pressure Overload Heart Failure. FASEB Journal, 2008, 22, 1210.16.	0.2	0
239	Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. FASEB Journal, 2008, 22, .	0.2	0
240	High levels of dietary homocysteine (Hcy) accelerate impulse propagation across the murine atrioventricular node (AVN). FASEB Journal, 2008, 22, 58-58.	0.2	4
241	Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. Journal of Experimental Medicine, 2007, 204, 657-666.	4.2	150
242	Cystathionine-β-synthase gene transfer and 3-deazaadenosine ameliorate inflammatory response in endothelial cells. American Journal of Physiology - Cell Physiology, 2007, 293, C1779-C1787.	2.1	38
243	Oxidative remodeling in pressure overload induced chronic heart failure. European Journal of Heart Failure, 2007, 9, 450-457.	2.9	26
244	Cardiac Dys-Synchronization and Arrhythmia in Hyperhomocysteinemia. Current Neurovascular Research, 2007, 4, 289-294.	0.4	11
245	γ-Aminbuturic Acid A Receptor Mitigates Homocysteine-Induced Endothelial Cell Permeability. Endothelium: Journal of Endothelial Cell Research, 2007, 14, 315-323.	1.7	28
246	Differential expression of γ-aminobutyric acid receptor A (GABAA) and effects of homocysteine. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1777-84.	1.4	32
247	Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1633-44.	1.4	22
248	Cardiac Synchronous and Dys-synchronous Remodeling in Diabetes Mellitus. Antioxidants and Redox Signaling, 2007, 9, 971-978.	2.5	3
249	Reversal of Systemic Hypertension-Associated Cardiac Remodeling in Chronic Pressure Overload Myocardium by Ciglitazone. International Journal of Biological Sciences, 2007, 3, 385-392.	2.6	36
250	Homocysteine-induced biochemical stress predisposes to cytoskeletal remodeling in stretched endothelial cells. Molecular and Cellular Biochemistry, 2007, 302, 133-143.	1.4	12
251	Fibrinogen induces endothelial cell permeability. Molecular and Cellular Biochemistry, 2007, 307, 13-22.	1.4	83
252	Differential Expression of the GABA _A receptor subunits in the Kidney and Cardiovascular system. FASEB Journal, 2007, 21, A497.	0.2	1

#	Article	IF	CITATIONS
253	Homocysteine and Oxidative Mechanisms of Vascular Remodeling. FASEB Journal, 2007, 21, A1217.	0.2	1
254	REVERSAL OF DIABETIC COMPLICATIONS IN GENETIC MODEL OF TYPE I DIABETES (Akita mouse) BY TEMPOL. FASEB Journal, 2007, 21, A834.	0.2	0
255	Tyrosine Kinase transactivation of renal vascular adrenergic vasoconstriction. FASEB Journal, 2007, 21, A499.	0.2	0
256	HOMOCYSTEINEâ€INDUCED ENDOTHELIAL CELL PERMEABILITY, ROLE OF γâ€AMINOBUTURIC ACID A (GABA A) RECEPTOR. FASEB Journal, 2007, 21, A489.	0.2	0
257	Activation of GABA A receptor ameliorate homocysteineâ€induced MMPâ€9 by ERK pathway. FASEB Journal, 2007, 21, A497.	0.2	0
258	GABA Receptors Ameliorate Hcy-Mediated Integrin Shedding and Constrictive Collagen Remodeling in Microvascular Endothelial Cells. Cell Biochemistry and Biophysics, 2006, 45, 157-166.	0.9	22
259	Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. Journal of Cellular Biochemistry, 2006, 98, 1150-1162.	1.2	82
260	Homocysteine-induced myofibroblast differentiation in mouse aortic endothelial cells. Journal of Cellular Physiology, 2006, 209, 767-774.	2.0	33
261	Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia. Archives of Physiology and Biochemistry, 2006, 112, 219-227.	1.0	18
262	Homocysteine causes cerebrovascular leakage in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1206-H1213.	1.5	92
263	Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2825-H2835.	1.5	80
264	Pioglitazone mitigates renal glomerular vascular changes in high-fat, high-calorie-induced type 2 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2006, 291, F694-F701.	1.3	42
265	3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L905-L911.	1.3	49
266	Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway. American Journal of Physiology - Cell Physiology, 2006, 290, C883-C891.	2.1	90
267	Pioglitazone prevents cardiac remodeling in high-fat, high-calorie-induced Type 2 diabetes mellitus. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H81-H87.	1.5	23
268	Adaptive-Outward and Maladaptive-Inward Arterial Remodeling Measured by Intravascular Ultrasound in Hyperhomocysteinemia and Diabetes. Journal of Cardiovascular Pharmacology and Therapeutics, 2006, 11, 65-77.	1.0	19
269	Mechanisms of Vascular Remodeling in eNOS Knockout Mice. FASEB Journal, 2006, 20, A711.	0.2	1
270	Homocysteine alters Redox Regulation through Thioredoxinâ€Interacting Protein: A Novel role of Forkhead Transcription Factor (FOXOâ€3a/FKHRâ€L1). FASEB Journal, 2006, 20, A1456.	0.2	1

#	Article	IF	CITATIONS
271	Mitochondrial Mechanism of Microvascular Endothelial Cell Apoptosis Induced by Homocysteine. FASEB Journal, 2006, 20, A1461.	0.2	0
272	Homocysteine induces endothelialâ€myofibroblast differentiation through activation of focal adhesion kinase. FASEB Journal, 2006, 20, A1465.	0.2	0
273	Arterial hypertension and aortic remodeling in hyperhomocysteinemic mice are prevented by 3â€Deazaadenosine. FASEB Journal, 2006, 20, A306.	0.2	0
274	Pressure Overload Instigates Remodeling in Ailing to Failing Myocardium in Mice. FASEB Journal, 2006, 20, A1199.	0.2	0
275	Homocysteine in Microvascular Endothelial Cell Barrier Permeability. Cell Biochemistry and Biophysics, 2005, 43, 037-044.	0.9	47
276	Early induction of matrix metalloproteinase-9 transduces signaling in human heart end stage failure. Journal of Cellular and Molecular Medicine, 2005, 9, 704-713.	1.6	55
277	Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia. Journal of Cellular Biochemistry, 2005, 96, 665-671.	1.2	48
278	GABA receptors and nitric oxide ameliorate constrictive collagen remodeling in hyperhomocysteinemia. Journal of Cellular Physiology, 2005, 205, 422-427.	2.0	19
279	Mechanisms of homocysteine-induced oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2649-H2656.	1.5	327
280	Protease-activated receptor and endothelial-myocyte uncoupling in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2770-H2777.	1.5	37
281	Homocysteine-dependent cardiac remodeling and endothelial-myocyte coupling in a 2 kidney, 1 clip Goldblatt hypertension mouse model. Canadian Journal of Physiology and Pharmacology, 2005, 83, 583-594.	0.7	19
282	Hyperhomocysteinemic Diabetic Cardiomyopathy: Oxidative Stress, Remodeling, and Endothelial-Myocyte Uncoupling. Journal of Cardiovascular Pharmacology and Therapeutics, 2005, 10, 1-10.	1.0	47
283	Extracellular Matrix Remodeling in the Heart of the Homocysteinemic Obese Rabbit. American Journal of Hypertension, 2005, 18, 692-698.	1.0	63
284	Attenuation of Oxidative Stress and Remodeling by Cardiac Inhibitor of Metalloproteinase Protein Transfer. Circulation, 2004, 109, 2123-2128.	1.6	49
285	Expression of matrix metalloproteinase activity in idiopathic dilated cardiomyopathy: A marker of cardiac dilatation. Molecular and Cellular Biochemistry, 2004, 264, 183-191.	1.4	23
286	Homocysteine induces metalloproteinase and shedding of ?-1 integrin in microvessel endothelial cells. Journal of Cellular Biochemistry, 2004, 93, 207-213.	1.2	40
287	Peroxisome Proliferator Ameliorates Endocardial Endothelial and Muscarinic Dysfunction in Spontaneously Hypertensive Rats. Antioxidants and Redox Signaling, 2004, 6, 367-374.	2.5	6
288	Role of nitric oxide in matrix remodeling in diabetes and heart failure. Heart Failure Reviews, 2003, 8, 23-28.	1.7	27

#	Article	IF	CITATIONS
289	Peroxisome proliferator ameliorates endothelial dysfunction in a murine model of hyperhomocysteinemia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L333-L341.	1.3	25
290	Generation of Nitrotyrosine Precedes Activation of Metalloproteinase in Myocardium of Hyperhomocysteinemic Rats. Antioxidants and Redox Signaling, 2002, 4, 799-804.	2.5	33
291	Metalloproteinase in Myocardial Adaptation and Maladaptation. Journal of Cardiovascular Pharmacology and Therapeutics, 2002, 7, 241-246.	1.0	15
292	Peroxisome proliferators compete and ameliorate Hcy-mediated endocardial endothelial cell activation. American Journal of Physiology - Cell Physiology, 2002, 283, C1073-C1079.	2.1	46
293	Reversal of endocardial endothelial dysfunction by folic acid in homocysteinemic hypertensive rats. American Journal of Hypertension, 2002, 15, 157-163.	1.0	99
294	Mechanism of constrictive vascular remodeling by homocysteine: role of PPAR. American Journal of Physiology - Cell Physiology, 2002, 282, C1009-C1015.	2.1	74
295	Induction of oxidative stress and disintegrin metalloproteinase in human heart end-stage failure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L239-L245.	1.3	51
296	Apoptosis in the left ventricle of chronic volume overload causes endocardial endothelial dysfunction in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1197-H1205.	1.5	53
297	Activation of matrix metalloproteinase dilates and decreases cardiac tensile strength. International Journal of Cardiology, 2001, 79, 277-286.	0.8	77
298	Tissue inhibitor of metalloproteinase-4 instigates apoptosis in transformed cardiac fibroblasts. Journal of Cellular Biochemistry, 2001, 80, 512-521.	1.2	81
299	Induction of oxidative stress by homocyst(e)ine impairs endothelial function. Journal of Cellular Biochemistry, 2001, 82, 491-500.	1.2	158
300	Functional and Structural Changes in the Kidney in the Early Stages of Obesity. Journal of the American Society of Nephrology: JASN, 2001, 12, 1211-1217.	3.0	451
301	Remodeling of the Endocrine Pancreas. Southern Medical Journal, 2000, 93, 24-28.	0.3	5
302	Homocyst(e)ine induces calcium second messenger in vascular smooth muscle cells. Journal of Cellular Physiology, 2000, 183, 28-36.	2.0	71
303	Physiology and homeostasis of extracellular matrix: cardiovascular adaptation and remodeling. Pathophysiology, 2000, 7, 177-182.	1.0	20
304	Homocyst(E)Ine and Heart Disease: Pathophysiology of Extracellular Matrix. Clinical and Experimental Hypertension, 1999, 21, 181-198.	0.5	72
305	Responses of vascular smooth muscle cell to extracellular matrix degradation. , 1999, 75, 515-527.		34
306	Homocyst(e)ine impairs endocardial endothelial function. Canadian Journal of Physiology and Pharmacology, 1999, 77, 950-957.	0.7	32

#	ARTICLE	IF	CITATIONS
307	Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. Journal of Hypertension, 1999, 17, 261-270.	0.3	107
308	Responses of vascular smooth muscle cell to extracellular matrix degradation. , 1999, 75, 515.		3
309	Reduction-oxidation (Redox) and vascular tissue level of homocyst(e)ine in human coronary atherosclerotic lesions and role in extracellular matrix remodeling and vascular tone. Molecular and Cellular Biochemistry, 1998, 181, 107-116.	1.4	71
310	Extracellular matrix dynamics in heart failure: A prospect for gene therapy. Journal of Cellular Biochemistry, 1998, 68, 403-410.	1.2	21
311	Stretch-induced membrane type matrix metalloproteinase and tissue plasminogen activator in cardiac fibroblast cells. , 1998, 176, 374-382.		80
312	Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells. American Journal of Physiology - Cell Physiology, 1998, 274, C396-C405.	2.1	106
313	Proteinases and myocardial extracellular matrix turnover. , 1997, 168, 1-12.		66
314	Vasculogenesis and angiogenesis: Extracellular matrix remodeling in coronary collateral arteries and the ischemic heart. Journal of Cellular Biochemistry, 1997, 65, 388-394.	1.2	27
315	Role of oxidative mixed-disulfide formation in elastase–serine proteinase inhibitor (serpin) complex. Biochemistry and Cell Biology, 1996, 74, 391-401.	0.9	13
316	Extracellular matrix regulation of metalloproteinase and antiproteinase in human heart fibroblast cells. , 1996, 167, 137-147.		54
317	Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Molecular and Cellular Biochemistry, 1996, 155, 13-21.	1.4	143
318	Induction of tissue inhibitor and matrix metalloproteinase by serum in human heart-derived fibroblast and endomyocardial endothelial cells. Journal of Cellular Biochemistry, 1995, 58, 360-371.	1.2	74
319	Co-expression of tissue inhibitor and matrix metalloproteinase in myocardium. Journal of Molecular and Cellular Cardiology, 1995, 27, 2177-2189.	0.9	75
320	Proteinases and restenosis in the human coronary artery: extracellular matrix production exceeds the expression of proteolytic activity. Atherosclerosis, 1995, 116, 43-57.	0.4	81
321	Collagen Network of the Myocardium: Function, Structural Remodeling and Regulatory Mechanisms. Journal of Molecular and Cellular Cardiology, 1994, 26, 279-292.	0.9	466
322	Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clinical Biochemistry, 1993, 26, 191-198.	0.8	163
323	Myocardial matrix metalloproteinase(s): localization and activation. Molecular and Cellular Biochemistry, 1993, 126, 49-59.	1.4	143