
Zeli Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/458550/publications.pdf Version: 2024-02-01

ΖΕΙΙ ΤΑΝ

#	Article	IF	CITATIONS
1	Representing Global Soil Erosion and Sediment Flux in Earth System Models. Journal of Advances in Modeling Earth Systems, 2022, 14, e2021MS002756.	3.8	9
2	Advances in hexagon mesh-based flow direction modeling. Advances in Water Resources, 2022, 160, 104099.	3.8	9
3	A new large-scale suspended sediment model and its application over the United States. Hydrology and Earth System Sciences, 2022, 26, 665-688.	4.9	14
4	Median bed-material sediment particle size across rivers in the contiguous US. Earth System Science Data, 2022, 14, 929-942.	9.9	9
5	Winter inverse lake stratification under historic and future climate change. Limnology and Oceanography Letters, 2022, 7, 302-311.	3.9	14
6	A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development, 2022, 15, 4597-4623.	3.6	37
7	Validation and Sensitivity Analysis of a 1â€D Lake Model Across Global Lakes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033417.	3.3	15
8	Phenological shifts in lake stratification under climate change. Nature Communications, 2021, 12, 2318.	12.8	118
9	Increased extreme rains intensify erosional nitrogen and phosphorus fluxes to the northern Gulf of Mexico in recent decades. Environmental Research Letters, 2021, 16, 054080.	5.2	12
10	Intercomparison of Thermal Regime Algorithms in 1â€Ð Lake Models. Water Resources Research, 2021, 57, e2020WR028776.	4.2	2
11	Attribution of global lake systems change to anthropogenic forcing. Nature Geoscience, 2021, 14, 849-854.	12.9	70
12	Tradeâ€offs of forest management scenarios on forest carbon exchange and threatened and endangered species habitat. Ecosphere, 2021, 12, e03779.	2.2	4
13	A substantial role of soil erosion in the land carbon sink and its future changes. Clobal Change Biology, 2020, 26, 2642-2655.	9.5	30
14	Multimodel simulation of vertical gas transfer in a temperate lake. Hydrology and Earth System Sciences, 2020, 24, 697-715.	4.9	20
15	Global Heat Uptake by Inland Waters. Geophysical Research Letters, 2020, 47, e2020GL087867.	4.0	31
16	Rising methane emissions from boreal lakes due to increasing ice-free days. Environmental Research Letters, 2020, 15, 064008.	5.2	25
17	Parameterizing Perennial Bioenergy Crops in Version 5 of the Community Land Model Based on Site‣evel Observations in the Central Midwestern United States. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001719.	3.8	15
18	Flood Inundation Generation Mechanisms and Their Changes in 1953–2004 in Global Major River Basins. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11672-11692.	3.3	18

Zeli Tan

#	Article	IF	CITATIONS
19	Modeling Sediment Yield in Land Surface and Earth System Models: Model Comparison, Development, and Evaluation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2192-2213.	3.8	30
20	Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Global Change Biology, 2018, 24, 5188-5204.	9.5	45
21	A Small Temperate Lake in the 21st Century: Dynamics of Water Temperature, Ice Phenology, Dissolved Oxygen, and Chlorophyll <i>a</i> . Water Resources Research, 2018, 54, 4681-4699.	4.2	33
22	Modeling <scp>CO</scp> ₂ emissions from <scp>A</scp> rctic lakes: Model development and siteâ€level study. Journal of Advances in Modeling Earth Systems, 2017, 9, 2190-2213.	3.8	38
23	A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models. Water Resources Research, 2017, 53, 10674-10700.	4.2	17
24	Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements. Atmospheric Chemistry and Physics, 2017, 17, 8371-8394.	4.9	20
25	Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biology, 2016, 22, 3112-3126.	9.5	63
26	Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?. Atmospheric Chemistry and Physics, 2016, 16, 12649-12666.	4.9	27
27	Modeling methane emissions from arctic lakes: Model development and siteâ€level study. Journal of Advances in Modeling Earth Systems, 2015, 7, 459-483.	3.8	71
28	Methane emissions from panâ€Arctic lakes during the 21st century: An analysis with processâ€based models of lake evolution and biogeochemistry. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2641-2653.	3.0	41
29	Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environmental Research Letters, 2015, 10, 054016.	5.2	66