Paul W Dyce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4585462/publications.pdf

Version: 2024-02-01

40 papers 1,484 citations

361296 20 h-index 315616 38 g-index

46 all docs

46 docs citations

46 times ranked

1486 citing authors

#	Article	IF	CITATIONS
1	In vitro germline potential of stem cells derived from fetal porcine skin. Nature Cell Biology, 2006, 8, 384-390.	4.6	231
2	Stem cells with multilineage potential derived from porcine skin. Biochemical and Biophysical Research Communications, 2004, 316, 651-658.	1.0	155
3	Leptin Enhances Oocyte Nuclear and Cytoplasmic Maturation via the Mitogen-Activated Protein Kinase Pathway. Endocrinology, 2004, 145, 5355-5363.	1.4	112
4	Primordial Germ Cell-Like Cells Differentiated In Vitro from Skin-Derived Stem Cells. PLoS ONE, 2009, 4, e8263.	1.1	73
5	Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro. Cell Death and Disease, 2017, 8, e2966-e2966.	2.7	71
6	Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biology, 2020, 18, e3001025.	2.6	71
7	Leptin enhances porcine preimplantation embryo development in vitro. Molecular and Cellular Endocrinology, 2005, 229, 141-147.	1.6	66
8	In Vitro and In Vivo Germ Line Potential of Stem Cells Derived from Newborn Mouse Skin. PLoS ONE, 2011, 6, e20339.	1.1	64
9	Cryobanking of viable biomaterials: implementation of new strategies for conservation purposes. Molecular Ecology, 2009, 18, 1030-1033.	2.0	55
10	Generation of epidermal growth factor–expressing Lactococcus lactis and its enhancement on intestinal development and growth of early-weaned mice. American Journal of Clinical Nutrition, 2009, 89, 871-879.	2.2	54
11	Analysis of Oocyte-Like Cells Differentiated from Porcine Fetal Skin-Derived Stem Cells. Stem Cells and Development, 2011, 20, 809-819.	1.1	49
12	Embryos Derived from Porcine Skin-Derived Stem Cells Exhibit Enhanced Preimplantation Development1. Biology of Reproduction, 2004, 71, 1890-1897.	1.2	47
13	Cutaneous applied nano-ZnO reduce the ability of hair follicle stem cells to differentiate. Nanotoxicology, 2017, 11, 465-474.	1.6	41
14	Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cellular and Molecular Life Sciences, 2021, 78, 695-713.	2.4	38
15	Complete in vitro oogenesis: retrospects and prospects. Cell Death and Differentiation, 2017, 24, 1845-1852.	5.0	35
16	Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration. Scientific Reports, 2015, 5, 13822.	1.6	31
17	Transcriptome profiles in peripheral white blood cells at the time of artificial insemination discriminate beef heifers with different fertility potential. BMC Genomics, 2018, 19, 129.	1.2	30
18	Porcine Skin-Derived Stem Cells Can Serve as Donor Cells for Nuclear Transfer. Cloning and Stem Cells, 2009, 11, 101-109.	2.6	27

#	Article	IF	CITATIONS
19	Neuro-Muscular Differentiation of Adult Porcine Skin Derived Stem Cell-Like Cells. PLoS ONE, 2010, 5, e8968.	1.1	25
20	Skin-derived stem cells as a source of primordial germ cell- and oocyte-like cells. Cell Death and Disease, 2016, 7, e2471-e2471.	2.7	23
21	From Skin Cells to Ovarian Follicles?. Cell Cycle, 2006, 5, 1371-1375.	1.3	21
22	The crucial role of Activin A on the formation of primordial germ cell-like cells from skin-derived stem cells in vitro. Cell Cycle, 2015, 14, 3016-3029.	1.3	20
23	Phosphorylation of Serine Residues in the C-terminal Cytoplasmic Tail of Connexin43 Regulates Proliferation of Ovarian Granulosa Cells. Journal of Membrane Biology, 2012, 245, 291-301.	1.0	17
24	Plasma metabolomic profiles differ at the time of artificial insemination based on pregnancy outcome, in Bos taurus beef heifers. Scientific Reports, 2018, 8, 13196.	1.6	17
25	Cloning of porcine signal transducer and activator of transcription 3 cDNA and its expression in reproductive tissues. Reproduction, 2006, 132, 511-518.	1.1	15
26	Epigenetic regulation during the differentiation of stem cells to germ cells. Oncotarget, 2017, 8, 57836-57844.	0.8	13
27	Connexin43 Is Required for the Maintenance of Multipotency in Skin-Derived Stem Cells. Stem Cells and Development, 2014, 23, 1636-1646.	1.1	12
28	Connexin 43 coupling in bovine cumulus cells, during the follicular growth phase, and its relationship to in vitro embryo outcomes. Molecular Reproduction and Development, 2018, 85, 579-589.	1.0	12
29	RA promotes proliferation of primordial germ cellâ€ike cells differentiated from porcine skinâ€derived stem cells. Journal of Cellular Physiology, 2019, 234, 18214-18229.	2.0	12
30	Retinoic acid enhances germ cell differentiation of mouse skin-derived stem cells. Journal of Ovarian Research, 2018, 11, 19.	1.3	10
31	Allâ€trans retinoic acid exposure increases connexin 43 expression in cumulus cells and improves embryo development in bovine oocytes. Molecular Reproduction and Development, 2019, 86, 1865-1873.	1.0	8
32	The impact of epidermal growth factor supernatant on pig performance and ileal microbiotal. Translational Animal Science, 2018, 2, 184-194.	0.4	7
33	The epigenetic modifications and the anterior to posterior characterization of meiotic entry during mouse oogenesis. Histochemistry and Cell Biology, 2017, 148, 61-72.	0.8	5
34	Oocyte-like cells induced from CD34-positive mouse hair follicle stem cells inÂvitro. Journal of Genetics and Genomics, 2017, 44, 405-407.	1.7	5
35	YAP regulates porcine skin-derived stem cells self-renewal partly by repressing Wnt \hat{I}^2 -catenin signaling pathway. Histochemistry and Cell Biology, 2022, 157, 39-50.	0.8	5
36	Inducible expression of green fluorescent protein in porcine tracheal epithelial cells by the bovine tracheal antimicrobial peptide promoter. Biotechnology and Bioengineering, 2003, 84, 374-381.	1.7	3

#	Article	IF	CITATIONS
37	Pannexin 1 inhibition delays maturation and improves development of Bos taurus oocytes. Journal of Ovarian Research, 2020, 13, 98.	1.3	3
38	Cryopreservation of porcine skin-derived stem cells using melatonin or trehalose maintains their ability to self-renew and differentiate. Cryobiology, 2022, 107, 23-34.	0.3	1
39	Somatic Stem Cells Derived from Non-Gonadal Tissues: Their Germ Line Potential. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 69-81.	0.1	O
40	Somatic Stem Cells Derived from Non-Gonadal Tissues: Their Germ Line Potential. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 69-81.	0.1	0