Istvan Toth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4584517/publications.pdf

Version: 2024-02-01

465 papers

14,237 citations

24978 57 h-index

95 g-index

495 all docs 495
docs citations

495 times ranked 13812 citing authors

#	Article	IF	CITATIONS
1	Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology, 2011, 6, 39-44.	15.6	781
2	Peptide-based synthetic vaccines. Chemical Science, 2016, 7, 842-854.	3.7	450
3	Modern Subunit Vaccines: Development, Components, and Research Opportunities. ChemMedChem, 2013, 8, 360-376.	1.6	347
4	Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Advanced Drug Delivery Reviews, 2017, 110-111, 169-187.	6.6	281
5	Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chemical Science, 2016, 7, 2492-2500.	3.7	191
6	A Global Review on Short Peptides: Frontiers and Perspectives. Molecules, 2021, 26, 430.	1.7	190
7	Recent progress in adjuvant discovery for peptide-based subunit vaccines. Human Vaccines and Immunotherapeutics, 2014, 10, 778-796.	1.4	183
8	Molecular Interaction of Poly(acrylic acid) Gold Nanoparticles with Human Fibrinogen. ACS Nano, 2012, 6, 8962-8969.	7.3	175
9	Recent advances in peptide-based subunit nanovaccines. Nanomedicine, 2014, 9, 2657-2669.	1.7	172
10	Cellular Uptake of Densely Packed Polymer Coatings on Gold Nanoparticles. ACS Nano, 2010, 4, 403-413.	7. 3	171
11	Production of Cytolethal Distending Toxins by Pathogenic Escherichia coli Strains Isolated from Human and Animal Sources: Establishment of the Existence of a New cdt Variant (Type IV). Journal of Clinical Microbiology, 2003, 41, 4285-4291.	1.8	156
12	Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Therapy, 2005, 12, 1544-1550.	2.3	153
13	Polyacrylate Dendrimer Nanoparticles: A Selfâ€Adjuvanting Vaccine Delivery System. Angewandte Chemie - International Edition, 2010, 49, 5742-5745.	7.2	149
14	Chemical Methods for Peptide and Protein Production. Molecules, 2013, 18, 4373-4388.	1.7	145
15	Peptides As Therapeutics with Enhanced Bioactivity. Current Medicinal Chemistry, 2012, 19, 4451-4461.	1.2	143
16	DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. International Journal of Pharmaceutics, 2000, 208, 41-48.	2.6	142
17	Lipidic peptides, I. Synthesis, resolution and structural elucidation of lipidic amino acids and their homo- and hetero-oligomers. Liebigs Annalen Der Chemie, 1990, 1990, 1175-1183.	0.8	140
18	Self-Adjuvanting Lipopeptide Vaccines. Current Medicinal Chemistry, 2008, 15, 506-516.	1.2	135

#	Article	IF	CITATIONS
19	A Novel Chemical Approach to Drug Delivery: Lipidic Amino Acid Conjugates. Journal of Drug Targeting, 1994, 2, 217-239.	2.1	123
20	Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology, 2013, 7, 314-322.	1.6	122
21	Oral delivery of nanoparticle-based vaccines. Expert Review of Vaccines, 2014, 13, 1361-1376.	2.0	120
22	Nanovaccines and their mode of action. Methods, 2013, 60, 226-231.	1.9	117
23	Peptide-Based Subunit Nanovaccines. Current Drug Delivery, 2011, 8, 282-289.	0.8	112
24	Self-Adjuvanting Polymer–Peptide Conjugates As Therapeutic Vaccine Candidates against Cervical Cancer. Biomacromolecules, 2013, 14, 2798-2806.	2.6	112
25	Improved resistance to serum oxidation in Gilbert's syndrome: A mechanism for cardiovascular protection. Atherosclerosis, 2008, 199, 390-396.	0.4	108
26	Oral uptake and translocation of a polylysine dendrimer with a lipid surface. Journal of Controlled Release, 2000, 65, 253-259.	4.8	107
27	A New Principle for Tight Junction Modulation Based on Occludin Peptides. Molecular Pharmacology, 2003, 64, 1530-1540.	1.0	105
28	Lipid, Sugar and Liposaccharide Based Delivery Systems. Current Medicinal Chemistry, 2001, 8, 1123-1136.	1.2	103
28	Lipid, Sugar and Liposaccharide Based Delivery Systems. Current Medicinal Chemistry, 2001, 8, 1123-1136. Elevated plasma levels of human urotensin-Il immunoreactivity in congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1576-H1581.	1.2	103
	Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. American		
29	Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1576-H1581. Strategies for intranasal delivery of vaccines. Drug Delivery and Translational Research, 2013, 3,	1.5	100
30	Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1576-H1581. Strategies for intranasal delivery of vaccines. Drug Delivery and Translational Research, 2013, 3, 100-109. Liposome-based delivery system for vaccine candidates: constructing an effective formulation.	1.5 3.0	100 96
30 31	Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1576-H1581. Strategies for intranasal delivery of vaccines. Drug Delivery and Translational Research, 2013, 3, 100-109. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine, 2012, 7, 1877-1893.	1.5 3.0 1.7	100 96 92
29 30 31 32	Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1576-H1581. Strategies for intranasal delivery of vaccines. Drug Delivery and Translational Research, 2013, 3, 100-109. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine, 2012, 7, 1877-1893. Peptide Conjugation via CuAAC â€~Click' Chemistry. Molecules, 2013, 18, 13148-13174.	1.5 3.0 1.7	100 96 92 90
30 31 32 33	Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1576-H1581. Strategies for intranasal delivery of vaccines. Drug Delivery and Translational Research, 2013, 3, 100-109. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine, 2012, 7, 1877-1893. Peptide Conjugation via CuAAC †Click' Chemistry. Molecules, 2013, 18, 13148-13174. Inhibition of in vitro VEGF expression and choroidal neovascularization by synthetic dendrimer peptide mediated delivery of a sense oligonucleotide. Experimental Eye Research, 2004, 79, 525-535. A combined adjuvant and carrier system for enhancing synthetic peptides immunogenicity utilising	1.5 3.0 1.7 1.7	96 92 90 89

#	Article	IF	Citations
37	Cellular uptake of self-assembled cationic peptide–DNA complexes: Multifunctional role of the enhancer chloroquine. Journal of Controlled Release, 2009, 135, 159-165.	4.8	81
38	Permeability studies of alkylamides and caffeic acid conjugates from echinacea using a Caco-2 cell monolayer model. Journal of Clinical Pharmacy and Therapeutics, 2004, 29, 7-13.	0.7	79
39	Immunostimulation by Synthetic Lipopeptide-Based Vaccine Candidates: Structure-Activity Relationships. Frontiers in Immunology, 2013, 4, 318.	2.2	78
40	Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomaterialia, 2018, 80, 278-287.	4.1	75
41	Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 168-173.	1.7	73
42	Synthesis and Biological Evaluation of an Orally Active Glycosylated Endomorphin-1. Journal of Medicinal Chemistry, 2012, 55, 5859-5867.	2.9	72
43	Cell-penetrating Peptides: Efficient Vectors for Vaccine Delivery. Current Drug Delivery, 2019, 16, 430-443.	0.8	71
44	Synthesis, Structure Elucidation, in Vitro Biological Activity, Toxicity, and Caco-2 Cell Permeability of Lipophilic Analogues of α-Conotoxin MII. Journal of Medicinal Chemistry, 2003, 46, 1266-1272.	2.9	69
45	Transduction of Porcine Enteropathogenic Escherichia coli with a Derivative of a Shiga Toxin 2-EncodingBacteriophage in a Porcine Ligated Ileal LoopSystem. Applied and Environmental Microbiology, 2003, 69, 7242-7247.	1.4	68
46	Potential of Lipid Core Peptide Technology as a Novel Self-Adjuvanting Vaccine Delivery System for Multiple Different Synthetic Peptide Immunogens. Infection and Immunity, 2003, 71, 2373-2383.	1.0	68
47	Synthesis of C-Terminal Glycopeptides from Resin-Bound Glycosyl Azides via a Modified Staudinger Reaction. Journal of Organic Chemistry, 2000, 65, 5249-5252.	1.7	67
48	Structure–Activity Relationship of a Series of Synthetic Lipopeptide Self-Adjuvanting Group A Streptococcal Vaccine Candidates. Journal of Medicinal Chemistry, 2008, 51, 167-172.	2.9	65
49	A Lipid Core Peptide Construct Containing a Conserved Region Determinant of the Group A Streptococcal M Protein Elicits Heterologous Opsonic Antibodies. Infection and Immunity, 2002, 70, 2734-2738.	1.0	64
50	Polymers for subunit vaccine delivery. European Polymer Journal, 2019, 114, 397-410.	2.6	64
51	Versatile Peptide Dendrimers for Nucleic Acid Delivery. Journal of Pharmaceutical Sciences, 2005, 94, 446-457.	1.6	62
52	Particulate Systems as Adjuvants and Carriers for Peptide and Protein Antigens. Current Drug Delivery, 2006, 3, 379-388.	0.8	62
53	Toll-like receptor agonists: a patent review (2011 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 453-470.	2.4	62
54	Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus. Acta Biomaterialia, 2016, 41, 161-168.	4.1	62

#	Article	IF	Citations
55	Intranasal delivery of nanoparticle-based vaccines. Therapeutic Delivery, 2017, 8, 151-167.	1.2	62
56	Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A <i>Streptococcus</i> . Nanomedicine, 2016, 11, 1223-1236.	1.7	60
57	Mucosal Immunisation: Adjuvants and Delivery Systems. Current Drug Delivery, 2004, 1, 385-396.	0.8	59
58	Polyelectrolyte-Based Platforms for the Delivery of Peptides and Proteins. ACS Biomaterials Science and Engineering, 2019, 5, 4937-4950.	2.6	59
59	The application of self-assembled nanostructures in peptide-based subunit vaccine development. European Polymer Journal, 2017, 93, 670-681.	2.6	57
60	An Experimental Group A $\langle i \rangle$ Streptococcus $\langle i \rangle$ Vaccine That Reduces Pharyngitis and Tonsillitis in a Nonhuman Primate Model. MBio, 2019, 10, .	1.8	57
61	Interaction of Densely Polymer-Coated Gold Nanoparticles with Epithelial Caco-2 Monolayers. Biomacromolecules, 2011, 12, 1339-1348.	2.6	56
62	Polyacrylate-Based Delivery System for Self-adjuvanting Anticancer Peptide Vaccine. Journal of Medicinal Chemistry, 2015, 58, 888-896.	2.9	56
63	Lipidic conjugates of luteinizing hormone releasing hormone (LHRH)+ and thyrotropin releasing hormone (TRH)+ that release and protect the native hormones in homogenates of human intestinal epithelial (Caco-2) cells. International Journal of Pharmaceutics, 1994, 105, 241-247.	2.6	53
64	Lipid Core Peptide System for Gene, Drug, and Vaccine Delivery. Australian Journal of Chemistry, 2009, 62, 956.	0.5	53
65	Syntheses of Polycationic Dendrimers on Lipophilic Peptide Core for Complexation and Transport of Oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2635-2637.	1.0	52
66	Synthesis and in vitro evaluation of a library of modified endomorphin 1 peptides. Bioorganic and Medicinal Chemistry, 2008, 16, 6286-6296.	1.4	52
67	Advances in Peptide-based Human Papillomavirus Therapeutic Vaccines. Current Topics in Medicinal Chemistry, 2012, 12, 1581-1592.	1.0	52
68	Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. MBio, 2016, 7, .	1.8	51
69	Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines, 2019, 7, 58.	2.1	50
70	Design of bioavailable derivatives of 12-(3-adamantan-1-yl-ureido)dodecanoic acid, a potent inhibitor of the soluble epoxide hydrolase. Bioorganic and Medicinal Chemistry, 2007, 15, 312-323.	1.4	49
71	Double adjuvanting strategy for peptide-based vaccines: trimethyl chitosan nanoparticles for lipopeptide delivery. Nanomedicine, 2016, 11, 3223-3235.	1.7	49
72	Synthesis and physicochemical properties of lipophilic polyamide dendrimers. Pharmaceutical Research, 1998, 15, 776-782.	1.7	48

#	Article	IF	Citations
73	Intranasal Administration Is an Effective Mucosal Vaccine Delivery Route for Selfâ€Adjuvanting Lipid Core Peptides Targeting the Group A Streptococcal M Protein. Journal of Infectious Diseases, 2006, 194, 316-324.	1.9	48
74	Modern lipidâ€, carbohydrateâ€, and peptideâ€based delivery systems for peptide, vaccine, and gene products. Medicinal Research Reviews, 2011, 31, 520-547.	5.0	47
75	Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines. Vaccines, 2021, 9, 563.	2.1	47
76	Immunological Evaluation of Lipopeptide Group A Streptococcus (GAS) Vaccine: Structure-Activity Relationship. PLoS ONE, 2012, 7, e30146.	1.1	46
77	Cellular transport pathways of polymer coated gold nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 8-11.	1.7	46
78	Site-Specific Incorporation of Three Toll-Like Receptor 2 Targeting Adjuvants into Semisynthetic, Molecularly Defined Nanoparticles: Application to Group A Streptococcal Vaccines. Bioconjugate Chemistry, 2014, 25, 965-978.	1.8	46
79	Encapsulation of lipopeptides within liposomes: Effect of number of lipid chains, chain length and method of liposome preparation. International Journal of Pharmaceutics, 2005, 301, 247-254.	2.6	45
80	Gastrointestinal Absorption of Heparin by Lipidization or Coadministration with Penetration Enhancers. Current Drug Delivery, 2005, 2, 277-287.	0.8	45
81	Toward the Development of Prophylactic and Therapeutic Human Papillomavirus Type-16 Lipopeptide Vaccines. Journal of Medicinal Chemistry, 2007, 50, 4721-4727.	2.9	45
82	Virulence Genes and Molecular Typing of Different Groups of <i>Escherichia coli</i> O157 Strains in Cattle. Applied and Environmental Microbiology, 2009, 75, 6282-6291.	1.4	45
83	Non-invasive mucosal vaccine delivery: advantages, challenges and the future. Expert Opinion on Drug Delivery, 2020, 17, 435-437.	2.4	45
84	Cytolethal Distending Toxin Type I and Type IV Genes Are Framed with Lambdoid Prophage Genes in Extraintestinal Pathogenic <i>Escherichia coli</i> Infection and Immunity, 2009, 77, 492-500.	1.0	44
85	Polymer–peptide hybrids as a highly immunogenic single-dose nanovaccine. Nanomedicine, 2014, 9, 35-43.	1.7	44
86	Synthesis and in vitro evaluation of lipoamino acid and carbohydrate-modified enkephalins as potential antinociceptive agents. International Journal of Pharmaceutics, 1998, 161, 55-64.	2.6	43
87	Novel Lipoamino Acid- and Liposaccharide-Based System for Peptide Delivery:Â Application for Oral Administration of Tumor-Selective Somatostatin Analogues. Journal of Medicinal Chemistry, 1999, 42, 4010-4013.	2.9	43
88	Lipophilic methotrexate conjugates with antitumor activity. European Journal of Pharmaceutical Sciences, 2000, 10, 237-245.	1.9	43
89	Structure–activity relationship of lipopeptide Group A streptococcus (GAS) vaccine candidates on toll-like receptor 2. Vaccine, 2010, 28, 2243-2248.	1.7	43
90	An Overview of Structural Features of Antibacterial Glycoconjugate Vaccines That Influence Their Immunogenicity. Chemistry - A European Journal, 2017, 23, 4233-4254.	1.7	43

#	Article	IF	CITATIONS
91	Micellar Aggregation and Membrane Partitioning of Bile Salts, Fatty Acids, Sodium Dodecyl Sulfate, and Sugar-Conjugated Fatty Acids:Â Correlation with Hemolytic Potency and Implications for Drug Delivery. Molecular Pharmaceutics, 2004, 1, 233-245.	2.3	42
92	Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules, 2021, 11, 1515.	1.8	42
93	Solid phase synthesis of C-terminal carbohydrate modified enkephalins. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2247-2250.	1.0	41
94	Distribution of a lipidic 2.5 nm diameter dendrimer carrier after oral administration. International Journal of Pharmaceutics, 1999, 183, 51-55.	2.6	41
95	Self-adjuvanting vaccine against group A streptococcus: Application of fibrillized peptide and immunostimulatory lipid as adjuvant. Bioorganic and Medicinal Chemistry, 2014, 22, 6401-6408.	1.4	41
96	Lipid-Core-Peptide System for Self-Adjuvanting Synthetic Vaccine Delivery. Methods in Molecular Biology, 2011, 751, 297-308.	0.4	41
97	Endosome Escape Strategies for Improving the Efficacy of Oligonucleotide Delivery Systems. Current Medicinal Chemistry, 2015, 22, 3326-3346.	1.2	41
98	Berbanes: a new class of selective .alpha.2-adrenoceptor antagonists. Journal of Medicinal Chemistry, 1987, 30, 1355-1359.	2.9	40
99	Enhanced protection against Streptococcus pyogenes infection by intranasal vaccination with a dual antigen component M protein/Sfbl lipid core peptide vaccine formulation. Vaccine, 2007, 25, 1789-1797.	1.7	40
100	Structure–Activity Relationship for the Development of a Self-Adjuvanting Mucosally Active Lipopeptide Vaccine against Streptococcus pyogenes. Journal of Medicinal Chemistry, 2012, 55, 8515-8523.	2.9	40
101	Lipid- and sugar-modified endomorphins: novel targets for the treatment of neuropathic pain. Frontiers in Pharmacology, 2013, 4, 155.	1.6	40
102	Lipid, Sugar and Liposaccharide Based Delivery Systems 2. Current Medicinal Chemistry, 2004, 11, 2375-2382.	1.2	39
103	Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomaterialia, 2017, 59, 257-268.	4.1	39
104	Identification and Characterization of T5-Like Bacteriophages Representing Two Novel Subgroups from Food Products. Frontiers in Microbiology, 2018, 9, 202.	1.5	39
105	Technological Advances in Antigen Delivery and Synthetic Peptide Vaccine Developmental Strategies. Mini-Reviews in Medicinal Chemistry, 2001, 1, 429-438.	1.1	38
106	Enhancing the immunogenicity and modulating the fine epitope recognition of antisera to a helical group A streptococcal peptide vaccine candidate from the M protein using lipidâ€core peptide technology. Immunology and Cell Biology, 2002, 80, 178-187.	1.0	38
107	Synthesis of a Highly Pure Lipid Core Peptide Based Self-Adjuvanting Triepitopic Group A Streptococcal Vaccine, and Subsequent Immunological Evaluation. Journal of Medicinal Chemistry, 2006, 49, 6364-6370.	2.9	38
108	Immunization with a Tetraepitopic Lipid Core Peptide Vaccine Construct Induces Broadly Protective Immune Responses against Group A Streptococcus. Journal of Infectious Diseases, 2006, 193, 1666-1676.	1.9	38

#	Article	IF	CITATIONS
109	Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity. Nanomedicine, 2014, 9, 2613-2624.	1.7	38
110	Peptide-Based Subunit Vaccine against Hookworm Infection. PLoS ONE, 2012, 7, e46870.	1.1	38
111	Levofloxacin and Indolicidin for Combination Antimicrobial Therapy. Current Drug Delivery, 2015, 12, 108-114.	0.8	37
112	Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics, 2022, 11, 412.	1.5	37
113	Polycationic lipophilic-core dendrons as penetration enhancers for the oral administration of low molecular weight heparin. Bioorganic and Medicinal Chemistry, 2006, 14, 143-152.	1.4	36
114	Specific Modulation of Airway Epithelial Tight Junctions by Apical Application of an Occludin Peptide. Molecular Pharmacology, 2006, 69, 492-500.	1.0	36
115	Oral Vaccine Delivery – New Strategies and Technologies. Current Drug Delivery, 2009, 6, 347-358.	0.8	36
116	Bile pigment pharmacokinetics and absorption in the rat: therapeutic potential for enteral administration. British Journal of Pharmacology, 2011, 164, 1857-1870.	2.7	36
117	Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus. International Journal of Pharmaceutics, 2016, 513, 410-420.	2.6	36
118	Lipopeptide-Based Oral Vaccine Against Hookworm Infection. Journal of Infectious Diseases, 2020, 221, 934-942.	1.9	36
119	Lipidation and glycosylation of a T cell antigen receptor (TCR) transmembrane hydrophobic peptide dramatically enhances in vitro and in vivo function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 879-888.	1.9	35
120	Design of Fully Synthetic, Self-Adjuvanting Vaccine Incorporating the Tumor-Associated Carbohydrate Tn Antigen and Lipoamino Acid-Based Toll-like Receptor 2 Ligand. Journal of Medicinal Chemistry, 2012, 55, 6968-6974.	2.9	35
121	Efficient synthesis of thioglycosides via a Mitsunobu condensation. Tetrahedron Letters, 1999, 40, 8663-8666.	0.7	34
122	Synthesis of a library of polycationic lipid core dendrimers and their evaluation in the delivery of an oligonucleotide with hVEGF inhibition. Bioorganic and Medicinal Chemistry, 2006, 14, 4775-4780.	1.4	34
123	Development of a Liposaccharide-Based Delivery System and Its Application to the Design of Group A Streptococcal Vaccines. Journal of Medicinal Chemistry, 2008, 51, 1447-1452.	2.9	34
124	Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorganic and Medicinal Chemistry, 2016, 24, 4372-4380.	1.4	34
125	Liposomes as a Vaccine Delivery System. , 2017, , 221-239.		33
126	Carbohydrate-based templates for synthetic vaccines and drug delivery. Tetrahedron, 2001, 57, 8733-8742.	1.0	32

#	Article	IF	Citations
127	Design, Synthesis, and Evaluation of a Liposaccharide Drug Delivery Agent:Â Application to the Gastrointestinal Absorption of Gentamicin. Journal of Medicinal Chemistry, 2004, 47, 1251-1258.	2.9	32
128	Design of Three-Component Vaccines against Group A Streptococcal Infections: Importance of Spatial Arrangement of Vaccine Components. Journal of Medicinal Chemistry, 2010, 53, 8041-8046.	2.9	32
129	An efficient, chemically-defined semisynthetic lipid-adjuvanted nanoparticulate vaccine development system. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 935-944.	1.7	32
130	Poly(hydrophobic amino acid)-Based Self-Adjuvanting Nanoparticles for Group A <i>Streptococcus</i> Vaccine Delivery. Journal of Medicinal Chemistry, 2021, 64, 2648-2658.	2.9	32
131	Lipids as Activators of Innate Immunity in Peptide Vaccine Delivery. Current Medicinal Chemistry, 2020, 27, 2887-2901.	1.2	32
132	Developments in Vaccine Adjuvants. Methods in Molecular Biology, 2022, 2412, 145-178.	0.4	32
133	Advances in Infectious Disease Vaccine Adjuvants. Vaccines, 2022, 10, 1120.	2.1	32
134	Method for the synthesis of highly pure vaccines using the lipid core peptide system. Journal of Peptide Science, 2006, 12, 800-807.	0.8	31
135	The anti-mutagenic and antioxidant effects of bile pigments in the Ames Salmonella test. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 629, 122-132.	0.9	31
136	A novel synthetic adjuvant enhances dendritic cell function. Immunology, 2009, 128, e582-8.	2.0	31
137	Comparative analysis of the Shiga toxin converting bacteriophage first detected in Shigella sonnei. Infection, Genetics and Evolution, 2016, 37, 150-157.	1.0	31
138	Self-assembly of trimethyl chitosan and poly(anionic amino acid)-peptide antigen conjugate to produce a potent self-adjuvanting nanovaccine delivery system. Bioorganic and Medicinal Chemistry, 2019, 27, 3082-3088.	1.4	30
139	Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials, 2022, 280, 121303.	5.7	30
140	Lipo-Endomorphin-1 Derivatives with Systemic Activity against Neuropathic Pain without Producing Constipation. PLoS ONE, 2012, 7, e41909.	1.1	29
141	Intravitreal injection of lipoamino acid-modified connexin43 mimetic peptide enhances neuroprotection after retinal ischemia. Drug Delivery and Translational Research, 2015, 5, 480-488.	3.0	29
142	Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. Nanomaterials, 2020, 10, 823.	1.9	29
143	Lipoamino Acid-Based Adjuvant Carrier System:  Enhanced Immunogenicity of Group A Streptococcal Peptide Epitopes. Journal of Medicinal Chemistry, 2002, 45, 1387-1390.	2.9	28
144	Immunogenicity of Liposomes Containing Lipid Core Peptides and the Adjuvant Quil A. Pharmaceutical Research, 2006, 23, 1473-1481.	1.7	28

#	Article	IF	Citations
145	Oral absorption and in vivo biodistribution of \hat{l} ±-conotoxin MII and a lipidic analogue. Biochemical and Biophysical Research Communications, 2007, 361, 97-102.	1.0	28
146	Design, synthesis and biological evaluation of novel lipoamino acid-based glycolipids for oral drug delivery. Bioorganic and Medicinal Chemistry, 2007, 15, 7012-7020.	1.4	28
147	Lipid Peptide Core Nanoparticles as Multivalent Vaccine Candidates against Streptococcus pyogenes. Australian Journal of Chemistry, 2012, 65, 35.	0.5	28
148	Peptide-based vaccines., 2018,, 327-358.		28
149	Novel Liposaccharide Conjugates for Drug and Peptide Delivery. Journal of Pharmaceutical Sciences, 1998, 87, 25-30.	1.6	27
150	Lipopeptide Nanoparticles: Development of Vaccines against Hookworm Parasite. ChemMedChem, 2015, 10, 1647-1654.	1.6	27
151	The use of a conformational cathepsin D-derived epitope for vaccine development against Schistosoma mansoni. Bioorganic and Medicinal Chemistry, 2015, 23, 1307-1312.	1.4	27
152	Structure-activity relationship of group A streptococcus lipopeptide vaccine candidates in trimethyl chitosan-based self-adjuvanting delivery system. European Journal of Medicinal Chemistry, 2019, 179, 100-108.	2.6	27
153	Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics, 2020, 12, 965.	2.0	27
154	Enhancement of drug affinity for cell membranes by conjugation with lipoamino acids. International Journal of Pharmaceutics, 2006, 310, 53-63.	2.6	26
155	Protein transduction by lipidic peptide dendrimers. Journal of Pharmaceutical Sciences, 2006, 95, 1227-1237.	1.6	26
156	Schistosome Vaccine Adjuvants in Preclinical and Clinical Research. Vaccines, 2014, 2, 654-685.	2.1	26
157	Novel platform technology for modular mucosal vaccine that protects against streptococcus. Scientific Reports, 2016, 6, 39274.	1.6	26
158	Recent advances in the development of subunit-based RSV vaccines. Expert Review of Vaccines, 2016, 15, 53-68.	2.0	26
159	The contribution of non-human primate models to the development of human vaccines. Discovery Medicine, 2014, 18, 313-22.	0.5	26
160	Hydride abstraction in fast atom bombardment. Organic Mass Spectrometry, 1988, 23, 697-699.	1.3	25
161	Co-polymerised peptide particles II: Oral uptake of a novel co-polymeric nanoparticulate delivery system for peptides. Journal of Controlled Release, 1996, 42, 65-73.	4.8	25
162	The synthesis and characterisation of a novel dendritic system for gene delivery. Tetrahedron, 2007, 63, 12207-12214.	1.0	25

#	Article	IF	Citations
163	Structure–activity relationship of lipid core peptide-based Group A Streptococcus vaccine candidates. Bioorganic and Medicinal Chemistry, 2016, 24, 3095-3101.	1.4	25
164	Polyacrylate–Peptide Antigen Conjugate as a Single-Dose Oral Vaccine against Group A Streptococcus. Vaccines, 2020, 8, 23.	2.1	25
165	Lipoamino Acid Conjugates of Methotrexate with Antitumor Activity. Journal of Pharmaceutical Sciences, 1998, 87, 367-371.	1.6	24
166	Toward the Development of a Synthetic Group A Streptococcal Vaccine of High Purity and Broad Protective Coverage. Journal of Medicinal Chemistry, 2004, 47, 4100-4104.	2.9	24
167	Self-Adjuvanting Therapeutic Peptide-Based Vaccine Induce CD8 ⁺ Cytotoxic T Lymphocyte Responses in a Murine Human Papillomavirus Tumor Model. Current Drug Delivery, 2015, 12, 3-8.	0.8	24
168	Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation. Bioorganic and Medicinal Chemistry, 2016, 24, 2235-2241.	1.4	24
169	Investigation of bombesin peptide as a targeting ligand for the gastrin releasing peptide (GRP) receptor. Bioorganic and Medicinal Chemistry, 2016, 24, 5834-5841.	1.4	24
170	A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria. Acta Biomaterialia, 2016, 44, 295-303.	4.1	24
171	Double conjugation strategy to incorporate lipid adjuvants into multiantigenic vaccines. Chemical Science, 2016, 7, 2308-2321.	3.7	24
172	Co-polymerised peptide particles (CPP) I: synthesis, characterisation and in vitro studies on a novel oral nanoparticulate delivery system. Journal of Controlled Release, 1996, 41, 271-281.	4.8	23
173	Conversion of Glucosamine to Galactosamine and Allosamine Derivatives:Â Control of Inversions of Stereochemistry at C-3 and C-4. Journal of Organic Chemistry, 2001, 66, 5102-5105.	1.7	23
174	Biological Properties and Therapeutic Potential of Bilirubin. Mini-Reviews in Medicinal Chemistry, 2003, 3, 253-256.	1.1	23
175	Method for the Synthesis of Multi-EpitopicStreptococcuspyogenesLipopeptide Vaccines Using Native Chemical Ligation. Journal of Organic Chemistry, 2006, 71, 6846-6850.	1.7	23
176	Simple synthetic toll-like receptor 2 ligands. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5863-5865.	1.0	23
177	Lipid core peptide targeting the cathepsin D hemoglobinase of <i>Schistosoma mansoni </i> li>as a component of a schistosomiasis vaccine. Human Vaccines and Immunotherapeutics, 2014, 10, 399-409.	1.4	23
178	Cholic Acid-based Delivery System for Vaccine Candidates against Group A Streptococcus. ACS Medicinal Chemistry Letters, 2019, 10, 1253-1259.	1.3	23
179	Cell-penetrating peptides in vaccine delivery: facts, challenges and perspectives. Therapeutic Delivery, 2019, 10, 465-467.	1.2	23
180	Oral absorption of lipidic amino acid conjugates. International Journal of Pharmaceutics, 1994, 102, 223-230.	2.6	22

#	Article	IF	CITATIONS
181	Determination of transport in the Caco-2 cell assay of compounds varying in lipophilicity using LC–MS: enhanced transport of Leu-enkephalin analogues. European Journal of Pharmaceutical Sciences, 2002, 16, 113-118.	1.9	22
182	Circular dichroism, molecular modeling, and serology indicate that the structural basis of antigenic variation in foot-and-mouth disease virus is alpha-helix formation Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8442-8446.	3.3	21
183	Structural effects of lipophilic methotrexate conjugates on model phospholipid biomembranes. Thermochimica Acta, 2001, 380, 255-264.	1.2	21
184	Lipid core peptide technology and group A streptococcal vaccine delivery. Expert Review of Vaccines, 2004, 3, 43-58.	2.0	21
185	In vitro stability and permeability studies of liposomal delivery systems for a novel lipophilic endomorphin 1 analogue. International Journal of Pharmaceutics, 2008, 356, 37-43.	2.6	21
186	N-1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl (N-Dde) Lipoamino Acids. MolBank, 2008, 2008, M566.	0.2	21
187	Development of highly pure α-helical lipoglycopeptides as self-adjuvanting vaccines. Tetrahedron, 2009, 65, 3459-3464.	1.0	21
188	Design and Synthesis of Lipopeptide - Carbohydrate Assembled Multivalent Vaccine Candidates Using Native Chemical Ligation. Australian Journal of Chemistry, 2009, 62, 993.	0.5	21
189	Cytotoxicity and Vitreous Stability of Chemically Modified Connexin43 Mimetic Peptides for the Treatment of Optic Neuropathy. Journal of Pharmaceutical Sciences, 2013, 102, 2322-2331.	1.6	21
190	Linear and branched polyacrylates as a delivery platform for peptide-based vaccines. Therapeutic Delivery, 2016, 7, 601-609.	1,2	21
191	Peptide-based targeted polymeric nanoparticles for siRNA delivery. Nanotechnology, 2019, 30, 415604.	1.3	21
192	Polyethylenimine: An Intranasal Adjuvant for Liposomal Peptide-Based Subunit Vaccine against Group A <i>Streptococcus</i> . ACS Infectious Diseases, 2020, 6, 2502-2512.	1.8	21
193	Immunology of carbohydrate-based vaccines. Advanced Drug Delivery Reviews, 2020, 165-166, 117-126.	6.6	21
194	Targeting the Mannose Receptor with Mannosylated Subunit Vaccines. Current Medicinal Chemistry, 2014, 21, 3405-3418.	1,2	21
195	Highly Immunogenic Trimethyl Chitosan-based Delivery System for Intranasal Lipopeptide Vaccines against Group A Streptococcus. Current Drug Delivery, 2017, 14, 701-708.	0.8	21
196	The Role of Size in Development of Mucosal Liposome-Lipopeptide Vaccine Candidates Against Group A Streptococcus. Medicinal Chemistry, 2016, 13, 22-27.	0.7	21
197	Oral absorption studies of lipidic conjugates of thyrotropin releasing hormone (TRH)1 and luteinizing hormone-releasing hormone (LHRH). International Journal of Pharmaceutics, 1996, 137, 33-39.	2.6	20
198	Increasing entrapment of peptides within poly(alkyl cyanoacrylate) nanoparticles prepared from water-in-oil microemulsions by copolymerization. International Journal of Pharmaceutics, 2008, 362, 141-146.	2.6	20

#	Article	IF	Citations
199	Synthetic Polyacrylate Polymers as Particulate Intranasal Vaccine Delivery Systems for the Induction of Mucosal Immune Response. Current Drug Delivery, 2010, 7, 118-124.	0.8	20
200	Lipophilic derivatives of leu-enkephalinamide: In vitro permeability, stability and in vivo nasal delivery. Bioorganic and Medicinal Chemistry, 2011, 19, 1528-1534.	1.4	20
201	Vaccination with Lipid Core Peptides Fails to Induce Epitope-Specific T Cell Responses but Confers Non-Specific Protective Immunity in a Malaria Model. PLoS ONE, 2012, 7, e40928.	1.1	20
202	Antimicrobial resistance and genetic characteristics of integron-carrier shigellae isolated in Hungary (1998–2008). Journal of Medical Microbiology, 2013, 62, 1545-1551.	0.7	20
203	Induction of high titred, non-neutralising antibodies by self-adjuvanting peptide epitopes derived from the respiratory syncytial virus fusion protein. Scientific Reports, 2017, 7, 11130.	1.6	20
204	Endomorphin Derivatives with Improved Pharmacological Properties. Current Medicinal Chemistry, 2013, 20, 2741-2758.	1.2	20
205	A novel method for solid-phase synthesis of oligosaccharides using the N -1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde) linker. Tetrahedron Letters, 2001, 42, 1159-1162.	0.7	19
206	Urotensin-Il-Converting Enzyme Activity of Furin and Trypsin in Human Cells in Vitro. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 209-214.	1.3	19
207	Synthesis and in vitro evaluation of glycosyl derivatives of luteinizing hormone-releasing hormone (LHRH). Bioorganic and Medicinal Chemistry, 2013, 21, 4259-4265.	1.4	19
208	Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2463-2474.	1.7	19
209	Cell-Penetrating Peptides-Based Liposomal Delivery System Enhanced Immunogenicity of Peptide-Based Vaccine against Group A Streptococcus. Vaccines, 2021, 9, 499.	2.1	19
210	Lipidic peptides. II. Synthesis, activity and transport of anti-inflammatory benzoquinolizine-lipidic peptide conjugates. International Journal of Pharmaceutics, 1991, 68, 191-198.	2.6	18
211	Nucleophilic Substitution Reactions of Pyranose Polytosylates. Journal of Organic Chemistry, 2004, 69, 2727-2730.	1.7	18
212	In vitro permeability and metabolic stability of bile pigments and the effects of hydrophilic and lipophilic modification of biliverdin. Bioorganic and Medicinal Chemistry, 2008, 16, 3616-3625.	1.4	18
213	Pro-apoptotic activity of lipidic \hat{l}_{\pm} -amino acids isolated from Protopalythoa variabilis. Bioorganic and Medicinal Chemistry, 2010, 18, 7997-8004.	1.4	18
214	Lipoamino Acids as Major Components of Absorption Promoters in Drug Delivery. Current Topics in Medicinal Chemistry, 2012, 12, 1562-1580.	1.0	18
215	Microwave-assisted synthesis of difficult sequence-containing peptides using the isopeptide method. Organic and Biomolecular Chemistry, 2013, 11, 2370.	1.5	18
216	M-Protein-derived Conformational Peptide Epitope Vaccine Candidate against Group A Streptococcus. Current Drug Delivery, 2013, 10, 39-45.	0.8	18

#	Article	IF	Citations
217	Recent advances in oral delivery of peptide hormones. Expert Opinion on Drug Delivery, 2016, 13, 507-522.	2.4	18
218	Lipidic Peptides, XIV. Conversion of Racemic Lipidic Amino Acids into Sphingosine and Ceramide Analogues and 1,2-Diamines. Liebigs Annalen Der Chemie, 1992, 1992, 961-964.	0.8	17
219	The Intersubunit Region of the Influenza Virus Haemagglutinin is Recognized by Antibodies During Infection. Scandinavian Journal of Immunology, 1994, 40, 281-291.	1.3	17
220	Lipid and carbohydrate based adjuvant/carriers in immunology. Journal of Peptide Science, 2003, 9, 405-418.	0.8	17
221	Synthesis and in vivo studies of carbohydrateâ€based vaccines against group A Streptococcus. Biopolymers, 2008, 90, 611-616.	1.2	17
222	Synthesis and immunological evaluation of self-adjuvanting glycolipopeptide vaccine candidates. Bioorganic and Medicinal Chemistry, 2008, 16, 8907-8913.	1.4	17
223	Effect of polymer grafting density on silica nanoparticle toxicity. Bioorganic and Medicinal Chemistry, 2012, 20, 6862-6869.	1.4	17
224	Peripherally acting novel lipo-endomorphin-1 peptides in neuropathic pain without producing constipation. Bioorganic and Medicinal Chemistry, 2013, 21, 1898-1904.	1.4	17
225	Induction of Plasmodium-Specific Immune Responses Using Liposome-Based Vaccines. Frontiers in Immunology, 2019, 10, 135.	2.2	17
226	Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides. Current Medicinal Chemistry, 2016, 23, 4610-4624.	1.2	17
227	Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. International Journal of Nanomedicine, 2022, Volume 17, 869-900.	3.3	17
228	Lipidic Peptides. Ill: Lipidic Amino Acid and Oligomer Conjugates of Morphine. Journal of Pharmaceutical Sciences, 1991, 80, 1103-1105.	1.6	16
229	Modified Influenza Virosomes: Recent Advances and Potential in Gene Delivery. Current Medicinal Chemistry, 2007, 14, 3152-3156.	1.2	16
230	Recent Advances in Design and Synthesis of Self-Adjuvanting Lipopeptide Vaccines. International Journal of Peptide Research and Therapeutics, 2008, 14, 333-340.	0.9	16
231	Oral absorption enhancement of dipeptide L-Glu-L-Trp-OH by lipid and glycosyl conjugation. Biopolymers, 2008, 90, 633-643.	1.2	16
232	The characterization of a novel dendritic system for gene delivery by isothermal titration calorimetry. Biopolymers, 2008, 90, 651-654.	1.2	16
233	Lipo-Peptides/Saccharides for Peptide Vaccine Delivery. , 2013, , 571-579.		16
234	The Use of Microwave-Assisted Solid-Phase Peptide Synthesis and Click Chemistry for the Synthesis of Vaccine Candidates Against Hookworm Infection. Methods in Molecular Biology, 2016, 1403, 639-653.	0.4	16

#	Article	IF	Citations
235	Key Considerations for the Development of Safe and Effective SARSâ€CoVâ€2 Subunit Vaccine: A Peptideâ€Based Vaccine Alternative. Advanced Science, 2021, 8, e2100985.	5.6	16
236	Development of natural and unnatural amino acid delivery systems against hookworm infection. Precision Nanomedicine, 2020, 3, 471-482.	0.4	16
237	Design of potent lipophilic-peptide inhibitors of human neutrophil elastase: In vitro and in vivo studies. International Journal of Pharmaceutics, 1995, 125, 117-122.	2.6	15
238	Synthesis of Sialyl Lewis X Analogues. Journal of Carbohydrate Chemistry, 1996, 15, 383-398.	0.4	15
239	Characterization of intestinal cnf1+ Escherichia coli from weaned pigs. International Journal of Medical Microbiology, 2000, 290, 539-542.	1.5	15
240	The stability of lipidic analogues of GnRH in plasma and kidney preparations: the stereoselective release of the parent peptide. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1609-1612.	1.0	15
241	A technique for the synthesis of highly-pure, mono-epitopic, multi-valent lipid core peptide vaccines. Tetrahedron Letters, 2007, 48, 4965-4967.	0.7	15
242	Ovalbumin lipid core peptide vaccines and their CD4+ and CD8+ T cell responses. Vaccine, 2014, 32, 4743-4750.	1.7	15
243	Active immunisation of mice with GnRH lipopeptide vaccine candidates: Importance of T helper or multi-dimer GnRH epitope. Bioorganic and Medicinal Chemistry, 2014, 22, 4848-4854.	1.4	15
244	Progress in the Development of Subunit Vaccines against Malaria. Vaccines, 2020, 8, 373.	2.1	15
245	A Drug Delivery Strategy: Binding Enkephalin to Asialoglycoprotein Receptor by Enzymatic Galactosylation. PLoS ONE, 2014, 9, e95024.	1.1	15
246	Advances in Targeted Gene Delivery. Current Drug Delivery, 2019, 16, 588-608.	0.8	15
247	Lipidic peptides X. Synthesis, structural and physico-chemical elucidation of lipidic amino acid conjugates with hydrophilic compounds. Tetrahedron, 1992, 48, 923-930.	1.0	14
248	Dde as a Protecting Group for Carbohydrate Synthesis. Journal of Carbohydrate Chemistry, 2006, 25, 1-18.	0.4	14
249	Investigation of the Route of Absorption of Lipid and Sugar Modified Leu- Enkephalin Analogues and Their Enzymatic Stability Using the Caco-2 Cell Monolayer System. Medicinal Chemistry, 2006, 2, 203-211.	0.7	14
250	Investigation toward multiâ€epitope vaccine candidates using native chemical ligation. Biopolymers, 2008, 90, 624-632.	1.2	14
251	Nanosized, peptide-based multicomponent DNA delivery systems: optimization of endosome escape activity. Nanomedicine, 2016, 11, 907-919.	1.7	14
252	Bombesin/oligoarginine fusion peptides for gastrin releasing peptide receptor (GRPR) targeted gene delivery. Bioorganic and Medicinal Chemistry, 2018, 26, 516-526.	1.4	14

#	Article	IF	Citations
253	Identification and characterization of new broad host-range rV5-like coliphages C203 and P206 directed against enterobacteria. Infection, Genetics and Evolution, 2018, 64, 254-261.	1.0	14
254	Pre-clinical evaluation of a whole-parasite vaccine to control human babesiosis. Cell Host and Microbe, 2021, 29, 894-903.e5.	5.1	14
255	Oral Peptide Vaccine against Hookworm Infection: Correlation of Antibody Titers with Protective Efficacy. Vaccines, 2021, 9, 1034.	2.1	14
256	Functional implications of modifying RyR-activating peptides for membrane permeability. British Journal of Pharmacology, 2005, 144, 743-754.	2.7	13
257	Towards the Development of a Broadly Protective Group A Streptococcal Vaccine Based on the Lipid-Core Peptide System. Current Medicinal Chemistry, 2007, 14, 2976-2988.	1.2	13
258	Thymine, adenine and lipoamino acid based gene delivery systems. Chemical Communications, 2010, 46, 3140.	2.2	13
259	Enhanced Transdermal Peptide Delivery and Stability by Lipid Conjugation: Epidermal Permeation, Stereoselectivity and Mechanistic Insights. Pharmaceutical Research, 2014, 31, 3304-3312.	1.7	13
260	Antibodies to neutralising epitopes synergistically block the interaction of the receptorâ€binding domain of SARSâ€CoVâ€2 to ACE 2. Clinical and Translational Immunology, 2021, 10, e1260.	1.7	13
261	Increased adjuvant activity of minimal CD8 T cell peptides incorporated into lipidâ€coreâ€peptides. Immunology and Cell Biology, 2004, 82, 517-522.	1.0	12
262	Anti-Proliferative Effects of Novel Glyco-Lipid-Arsenicals (III) on MCF-7 Human Breast Cancer Cells. Medicinal Chemistry, 2006, 2, 79-87.	0.7	12
263	Epidermal Penetration of a Therapeutic Peptide by Lipid Conjugation; Stereo-Selective Peptide Availability of a Topical Diastereomeric Lipopeptide. International Journal of Peptide Research and Therapeutics, 2006, 12, 327-333.	0.9	12
264	Design and synthesis of a series of novel, cationic liposaccharide derivatives as potential penetration enhancers for oral drug delivery. Tetrahedron, 2009, 65, 9436-9442.	1.0	12
265	The synthesis and characterization of lipophilic peptide-based carriers for gene delivery. Tetrahedron, 2010, 66, 5435-5441.	1.0	12
266	Stability, Permeability and Growth-Inhibitory Properties of Gonadotropin-Releasing Hormone Liposaccharides. Pharmaceutical Research, 2015, 32, 1570-1584.	1.7	12
267	A novel transducible chimeric phage from Escherichia coli O157:H7 Sakai strain encoding Stx1 production. Infection, Genetics and Evolution, 2015, 29, 42-47.	1.0	12
268	Synthesis of Mannosylated Lipopeptides with Receptor Targeting Properties. Bioconjugate Chemistry, 2016, 27, 533-548.	1.8	12
269	Systematic evaluation of self-adjuvanting lipopeptide nano-vaccine platforms for the induction of potent CD8+T-cell responses. Nanomedicine, 2016, 11, 137-152.	1.7	12
270	Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery. Nanomedicine, 2017, 12, 281-293.	1.7	12

#	Article	IF	Citations
271	Comparison of Fluorinated and Nonfluorinated Lipids in Self-Adjuvanting Delivery Systems for Peptide-Based Vaccines. ACS Medicinal Chemistry Letters, 2017, 8, 227-232.	1.3	12
272	Group A Streptococcal Vaccine Candidates based on the Conserved Conformational Epitope from M Protein. Drug Delivery Letters, 2011, 1, 2-8.	0.2	12
273	Lipidic Peptides. V: Penicillin and Cephalosporin Acid Conjugates with Increased Lipophilic Character. Journal of Pharmaceutical Sciences, 1992, 81, 845-848.	1.6	11
274	An Economical Synthesis of Lewis X, Sialyl Lewis X and Their \hat{l} ±-Galactosyl Analogues. Journal of Carbohydrate Chemistry, 1997, 16, 983-999.	0.4	11
275	Lipophilic methotrexate conjugates with glucose-lipoamino acid moieties: Synthesis and in vitro antitumor activity. Drug Development Research, 2001, 52, 454-461.	1.4	11
276	Permeability studies of Kavalactones using a Caco-2 cell monolayer model. Journal of Clinical Pharmacy and Therapeutics, 2007, 32, 233-239.	0.7	11
277	Synthesis, biological activity and structure–activity relationship of endomorphin-1/substance P derivatives. Bioorganic and Medicinal Chemistry, 2012, 20, 6335-6343.	1.4	11
278	Biophysical characterization of lectin–glycan interactions for therapeutics, vaccines and targeted drug-delivery. Future Medicinal Chemistry, 2014, 6, 2113-2129.	1,1	11
279	Structure–Activity Analysis of Cyclic Multicomponent Lipopeptide Self-Adjuvanting Vaccine Candidates Presenting Group A <i>Streptococcus</i> Antigens. Journal of Medicinal Chemistry, 2020, 63, 5387-5397.	2.9	11
280	Development and Evaluation of a Cryopreserved Whole-Parasite Vaccine in a Rodent Model of Blood-Stage Malaria. MBio, 2021, 12, e0265721.	1.8	11
281	Lipidic peptides. IV. Penicillin and cephalosporin amide conjugates with lipidic amino acids and their oligomers. International Journal of Pharmaceutics, 1991, 73, 259-266.	2.6	10
282	In vitro antimalarial and cytotoxic activities of semisynthetic derivatives of brusatol. European Journal of Medicinal Chemistry, 1993, 28, 265-269.	2.6	10
283	Modification of Peptides and Other Drugs Using Lipoamino Acids and Sugars. , 2005, 298, 45-61.		10
284	Enhancement of oral drug absorptionâ€"Effect of lipid conjugation on the enzymatic stability and intestinal permeability of l-Glu-l-Trp-NH2. Bioorganic and Medicinal Chemistry, 2007, 15, 7048-7057.	1.4	10
285	Comparison of the in vitro apparent permeability and stability of opioid mimetic compounds with that of the native peptide. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2043-2046.	1.0	10
286	The immune system likes nanotechnology. Nanomedicine, 2014, 9, 2607-2609.	1.7	10
287	The Transport and Efflux of Glycosylated Luteinising Hormone-Releasing Hormone Analogues in Caco-2 Cell Model: Contributions of Glucose Transporters and Efflux Systems. Journal of Pharmaceutical Sciences, 2014, 103, 3217-3224.	1.6	10
288	Evaluation of the Biological Properties and the Enzymatic Stability of Glycosylated Luteinizing Hormone-Releasing Hormone Analogs. AAPS Journal, 2015, 17, 1135-1143.	2.2	10

#	Article	IF	CITATIONS
289	Synthesis and Characterisation of Selfâ€Assembled and Selfâ€Adjuvanting Asymmetric Multiâ€Epitope Lipopeptides of Ovalbumin. Chemistry - A European Journal, 2015, 21, 1251-1261.	1.7	10
290	Synthesis, Characterization and Immunological Evaluation of Selfâ€Adjuvanting Groupâ€A Streptococcal Vaccine Candidates Bearing Various Lipidic Adjuvanting Moieties. ChemBioChem, 2017, 18, 545-553.	1.3	10
291	Investigations on the chemistry of berbanes. 10. Synthesis of raunescinone analogs with hypotensive and antihypertensive activity. Journal of Medicinal Chemistry, 1984, 27, 1411-1415.	2.9	9
292	Lipidic peptides. VIII. Cellular uptake studies of lipidic amino acid, its oligomers and highly lipophilic drug conjugates. International Journal of Pharmaceutics, 1992, 79, 39-45.	2.6	9
293	Development of lipid-core-peptide (LCP) based vaccines for the prevention of group A streptococcal (GAS) infection. International Journal of Peptide Research and Therapeutics, 2003, 10, 605-613.	0.1	9
294	Chemo-Enzymatic Synthesis of a Trisaccharide-Linked Peptide Aimed at Improved Drug-Delivery. Current Drug Delivery, 2005, 2, 215-222.	0.8	9
295	Predominance of afr2 and ral Fimbrial Genes Related to Those Encoding the K88 and CS31A Fimbrial Adhesins in Enteropathogenic Escherichia coli Isolates from Rabbits with Postweaning Diarrhea in Central Europe. Journal of Clinical Microbiology, 2005, 43, 1366-1371.	1.8	9
296	Synthesis and Immunological Evaluation of M Protein Targeted Tetra-Valent and Tri-Valent Group A Streptococcal Vaccine Candidates Based on the Lipid-Core Peptide System. International Journal of Peptide Research and Therapeutics, 2006, 12, 317-326.	0.9	9
297	Optimized LC–MS/MS quantification method for the detection of piperacillin and application to the development of charged liposaccharides as oral penetration enhancers. International Journal of Pharmaceutics, 2008, 351, 152-157.	2.6	9
298	Dendritic Peptide-Based Carriers for Gene Delivery. Current Drug Delivery, 2009, 6, 338-342.	0.8	9
299	Genetic and phylogenetic analysis of avian extraintestinal and intestinal Escherichia coli. Acta Microbiologica Et Immunologica Hungarica, 2012, 59, 393-409.	0.4	9
300	Convergent synthetic methodology for the construction of self-adjuvanting lipopeptide vaccines using a novel carbohydrate scaffold. Beilstein Journal of Organic Chemistry, 2014, 10, 1741-1748.	1.3	9
301	Self-assembling lipopeptides with a potent activity against Gram-positive bacteria, including multidrug resistant strains. Nanomedicine, 2015, 10, 3359-3371.	1.7	9
302	Influence of Physicochemical Properties of Lipopeptide Adjuvants on the Immune Response: A Rationale for Engineering a Potent Vaccine. Chemistry - A European Journal, 2018, 24, 9892-9902.	1.7	9
303	Opsonic Activity of Conservative Versus Variable Regions of the Group A Streptococcus M Protein. Vaccines, 2020, 8, 210.	2.1	9
304	Immunogenicity Assessment of Cell Wall Carbohydrates of Group A <i>Streptococcus</i> via Self-Adjuvanted Glyco-lipopeptides. ACS Infectious Diseases, 2021, 7, 390-405.	1.8	9
305	Polyethylenimine quantity and molecular weight influence its adjuvanting properties in liposomal peptide vaccines. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127920.	1.0	9
306	Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors. PLoS ONE, 2016, 11, e0159704.	1.1	9

#	Article	IF	CITATIONS
307	A novel method for preparing immune stimulating complexes (ISCOMs) by hydration of freeze-dried lipid matrix. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 68, 840-5.	2.0	8
308	Caco-2 cell permeability and stability of two d-glucopyranuronamide conjugates of thyrotropin-releasing hormone. Bioorganic and Medicinal Chemistry, 2007, 15, 4946-4950.	1.4	8
309	Synthesis of a Streptococcus pyogenes vaccine candidate based on the M protein PL1 epitope. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 821-824.	1.0	8
310	Synthesis of glycolipopeptidic building blocks for carbohydrate receptor discovery. Carbohydrate Research, 2011, 346, 1439-1444.	1.1	8
311	Formulation, characterization and permeability study of nano particles of lipo-endomorphin-1 for oral delivery. Journal of Liposome Research, 2013, 23, 311-317.	1.5	8
312	Investigation of Structure–Activity Relationships of Synthetic Antiâ€Gonadotropin Releasing Hormone Vaccine Candidates. ChemMedChem, 2015, 10, 901-910.	1.6	8
313	A study on the encapsulation of an occludin lipophilic derivative in liposomal carriers. Journal of Liposome Research, 2015, 25, 287-293.	1.5	8
314	Peptide based DNA nanocarriers incorporating a cell-penetrating peptide derived from neurturin protein and poly-l-lysine dendrons. Bioorganic and Medicinal Chemistry, 2015, 23, 2470-2479.	1.4	8
315	Gastrin-releasing peptide receptor-targeted hybrid peptide/phospholipid pDNA/siRNA delivery systems. Nanomedicine, 2019, 14, 1153-1171.	1.7	8
316	Mannosylated liposomes formulated with whole parasite P. falciparum blood-stage antigens are highly immunogenic in mice. Vaccine, 2020, 38, 1494-1504.	1.7	8
317	Polyacrylate-GnRH Peptide Conjugate as an Oral Contraceptive Vaccine Candidate. Pharmaceutics, 2021, 13, 1081.	2.0	8
318	Poly(hydrophobic amino acid) Conjugates for the Delivery of Multiepitope Vaccine against Group A Streptococcus. Bioconjugate Chemistry, 2021, 32, 2307-2317.	1.8	8
319	Liposomal formulation of polyacrylate-peptide conjugate as a new vaccine candidate against cervical cancer. Precision Nanomedicine, 2018, 1, 183-193.	0.4	8
320	Liposomes for the Delivery of Lipopeptide Vaccines. Methods in Molecular Biology, 2022, 2412, 295-307.	0.4	8
321	Lipidic peptides, VII. Synthesis and structure elucidation of \hat{I}^3 -aminobutyric acid conjugates with lipidic acids, lipidic amino acids and lipidic peptides. Liebigs Annalen Der Chemie, 1991, 1991, 963-966.	0.8	7
322	Synthesis and Oral Uptake Studies of Lipidic and Glyco-Lipidic Conjugates of \hat{l}^2 -Lactam Antibiotics. Liebigs Annalen Der Chemie, 1994, 1994, 685-688.	0.8	7
323	A lipophilic adjuvant carrier system for antigenic peptides. International Journal of Peptide Research and Therapeutics, 2001, 8, 285-288.	0.1	7
324	The synthesis and structure of an n-terminal dodecanoic acid conjugate of $\hat{l}\pm$ -conotoxin MII. International Journal of Peptide Research and Therapeutics, 2001, 8, 235-239.	0.1	7

#	Article	IF	CITATIONS
325	Novel cationic lipophilic peptides for oligodeoxynucleotide delivery. Bioorganic and Medicinal Chemistry, 2007, 15, 4091-4097.	1.4	7
326	Expression of maturation markers on murine dendritic cells in response to group A streptococcal lipopeptide vaccines. Vaccine, 2009, 27, 3313-3318.	1.7	7
327	In vitro and In vivo evaluation of positively charged liposaccharide derivatives as oral absorption enhancers for the delivery of anionic drugs. Journal of Pharmaceutical Sciences, 2010, 99, 2333-2342.	1.6	7
328	Effect of lipidated gonadotropin-releasing hormone peptides on receptor mediated binding and uptake into prostate cancer cells in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1799-1808.	1.7	7
329	Development of New Gonadotropin-Releasing Hormone-Modified Dendrimer Platforms with Direct Antiproliferative and Gonadotropin Releasing Activity. Journal of Medicinal Chemistry, 2017, 60, 8309-8320.	2.9	7
330	Brain Delivery of Thyrotropin-Releasing Hormone via a Novel Prodrug Approach. Pharmaceutics, 2019, 11, 349.	2.0	7
331	Development of Conformational Mimetics of Conserved Streptococcus Pyogenes Minimal Epitope as Vaccine Candidates. Current Drug Delivery, 2009, 6, 520-527.	0.8	7
332	pH-triggered peptide self-assembly into fibrils: a potential peptide-based subunit vaccine delivery platform. Biochemical Compounds, 2013, 1, 2.	0.7	7
333	Development of a hyperbranched polymer-based methotrexate nanomedicine for rheumatoid arthritis. Acta Biomaterialia, 2022, 142, 298-307.	4.1	7
334	Untersuchungen über Verbindungen mit Berbanâ€Gerüst, VI. Neue Synthese von 10â€Methoxy(despyrrolo)reserpin und seinen Stereoisomeren. Justus Liebigs Annalen Der Chemie, 1977, 1977, 642-663.	0.5	6
335	Lipidic peptides. XIII: Synthesis, structure elucidation and in vitro toxicity assessment of chlorambucil conjugates with lipidic acids, lipidic amino acids and their oligomers. International Journal of Pharmaceutics, 1992, 87, 141-147.	2.6	6
336	Synthesis and spectroscopy of membrane receptor proteins. The gamma subunit of the IgE receptor. FEBS Journal, 1992, 207, 51-54.	0.2	6
337	Lipidic Peptides, IX. Synthesis and Structural Elucidation of Lipophilic Azidothymidine Conjugates. Liebigs Annalen Der Chemie, 1992, 1992, 169-171.	0.8	6
338	The influence of incorporating lipids or liposaccharides on the particle size of peptide therapeutics. Biopolymers, 2011, 96, 172-176.	1.2	6
339	Lipidated analogues of luteinizing hormone-releasing hormone (LHRH) reduce serum levels of follicle-stimulating hormone (FSH) after oral administration. International Journal of Pharmaceutics, 2012, 439, 216-222.	2.6	6
340	Development and characterization of anionic liposaccharides for enhanced oral drug delivery. International Journal of Pharmaceutics, 2012, 430, 120-128.	2.6	6
341	Use of Mixed Micelles for Presentation of Building Blocks in a New Combinatorial Discovery Methodology: Proof-of-Concept Studies. Molecules, 2013, 18, 3427-3441.	1.7	6
342	Calorimetry and Langmuir–Blodgett studies on the interaction of a lipophilic prodrug of LHRH with biomembrane models. Journal of Colloid and Interface Science, 2014, 421, 122-131.	5.0	6

#	Article	IF	CITATIONS
343	Design, synthesis and evaluation of a gonadotropin releasing hormone-based subunit vaccine in rams (Ovis aries). Vaccine, 2015, 33, 1453-1458.	1.7	6
344	Combined synthetic and recombinant techniques for the development of lipoprotein-based, self-adjuvanting vaccines targeting human papillomavirus type-16 associated tumors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5570-5575.	1.0	6
345	Synthesis, characterization and inÂvitro evaluation of amphiphilic ion pairs of erythromycin and kanamycin antibiotics with liposaccharides. European Journal of Medicinal Chemistry, 2016, 120, 329-337.	2.6	6
346	Peptide-Based Multicomponent Oligonucleotide Delivery Systems: Optimisation of Poly-l-lysine Dendrons for Plasmid DNA Delivery. International Journal of Peptide Research and Therapeutics, 2017, 23, 119-134.	0.9	6
347	A dual-adjuvanting strategy for peptide-based subunit vaccines against group A Streptococcus: Lipidation and polyelectrolyte complexes. Bioorganic and Medicinal Chemistry, 2020, 28, 115823.	1.4	6
348	Application of Fmoc-SPPS, Thiol-Maleimide Conjugation, and Copper(I)-Catalyzed Alkyne-Azide Cycloaddition "Click―Reaction in the Synthesis of a Complex Peptide-Based Vaccine Candidate Against Group A Streptococcus. Methods in Molecular Biology, 2020, 2103, 13-27.	0.4	6
349	Evaluation of Lipopeptides as Toll-like Receptor 2 Ligands. Current Drug Delivery, 2017, 14, 935-943.	0.8	6
350	Investigating the affinity of poly tert -butyl acrylate toward Toll-Like Receptor 2. AIMS Allergy and Immunology, 2018, 2, 141-147.	0.3	6
351	Poly-L-lysine-coated nanoparticles are ineffective in inducing mucosal immunity against group a streptococcus. Biochemical Compounds, 2017, 5, 1.	0.7	6
352	Current Prospects in Peptide-Based Subunit Nanovaccines. Methods in Molecular Biology, 2022, 2412, 309-338.	0.4	6
353	Investigation on the chemistry of berbans—VII. Tetrahedron, 1978, 34, 2113-2122.	1.0	5
354	Investigations on the Chemistry of Berbanes, XII. Synthesis of Pseudoâ€Depyrroloyohimbine Analogues. Liebigs Annalen Der Chemie, 1987, 1987, 243-247.	0.8	5
355	Synthesis of Sialyl Lewis x Analogues 2. Journal of Carbohydrate Chemistry, 1997, 16, 11-24.	0.4	5
356	Effect of variation in the chain length and number in modulating the interaction of an immunogenic lipopeptide with biomembrane models. Thermochimica Acta, 2008, 471, 14-19.	1.2	5
357	α-1,4-Galactosyltransferase-catalyzed glycosylation of sugar and lipid modified Leu-enkephalins. Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 196-202.	1.8	5
358	Synthesis and Characterization of Luteinizing Hormone-Releasing Hormone (LHRH)-Functionalized Mini-Dendrimers. International Journal of Organic Chemistry, 2013, 03, 51-57.	0.3	5
359	Liposomes for Improved Enzymatic Glycosylation of Lipidâ€Modified Lactose Enkephalin. ChemPlusChem, 2013, 78, 793-796.	1.3	5
360	Design, synthesis and characterisation of mannosylated ovalbumin lipid core peptide self-adjuvanting vaccine delivery system. Drug Delivery and Translational Research, 2014, 4, 246-255.	3.0	5

#	Article	IF	Citations
361	A study on liposomal encapsulation of a lipophilic prodrug of LHRH. Pharmaceutical Development and Technology, 2015, 21, 1-8.	1.1	5
362	In vivo pharmacological evaluation of a lactose-conjugated luteinizing hormone releasing hormone analogue. International Journal of Pharmaceutics, 2015, 495, 106-111.	2.6	5
363	Complete genome sequence of C130_2, a novel myovirus infecting pathogenic Escherichia coli and Shigella strains. Archives of Virology, 2019, 164, 321-324.	0.9	5
364	Physical mixture of a cyclic lipopeptide vaccine induced high titres of opsonic IgG antibodies against group A streptococcus. Biomaterials Science, 2021, 10, 281-293.	2.6	5
365	Development of a peptide vaccine against hookworm infection: Immunogenicity, efficacy, and immune correlates of protection. Journal of Allergy and Clinical Immunology, 2022, 150, 157-169.e10.	1.5	5
366	Detection and Quantification of SARS-CoV-2 Receptor Binding Domain Neutralization by a Sensitive Competitive ELISA Assay. Vaccines, 2021, 9, 1493.	2.1	5
367	Untersuchungen über Verbindungen mit Berbanâ€Gerüst, V. Über die Synthese von 18â€Acyloxyâ€10,11â€dimethoxy(despyrrolo)â€alloyohimbinone. Justus Liebigs Annalen Der Chemie, 1977, 1977 634-641.	,0.5	4
368	Lipidic peptides. XI. Quantitative structure-activity relationships of a series of lipidic amino acid conjugates of \hat{l}^2 -lactam antibiotics. International Journal of Pharmaceutics, 1992, 83, 123-130.	2.6	4
369	N.m.r. studies of the cytoplasmic C-terminal \hat{l}^2 -subunit domain of the high-affinity lgE receptor. Biochemical Society Transactions, 1994, 22, 1027-1029.	1.6	4
370	A lipidic \hat{l}_{\pm} -amino acid based synthetic adjuvant peptide complex for increasing immunogenicity of vaccines. Biochemical Society Transactions, 1994, 22, 1055-1058.	1.6	4
371	Transdermal delivery of a tetrapeptide: Evaluation of passive diffusion. International Journal of Peptide Research and Therapeutics, 2003, 10, 615-620.	0.1	4
372	Internalisation of the $\hat{1}$ /4-opioid receptor by endomorphin-1 and leu-enkephalin is dependant on aromatic amino acid residues. Bioorganic and Medicinal Chemistry, 2008, 16, 4341-4346.	1.4	4
373	Group A Streptococcal Vaccine Candidates based on the Conserved Conformational Epitope from M Protein. Drug Delivery Letters, 2011, 1, 2-8.	0.2	4
374	R18C is a new viable P2-like bacteriophage of rabbit origin infecting Citrobacter rodentium and Shigella sonnei strains. Archives of Virology, 2019, 164, 3157-3160.	0.9	4
375	Lipopeptides for the Fragment-Based Pharmaceutics Design. International Journal of Organic Chemistry, 2012, 02, 75-81.	0.3	4
376	Developing an Effective Glycanâ€Based Vaccine for <i>Streptococcus Pyogenes</i> . Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
377	Group A streptococcal vaccine delivery by immunization with a self-adjuvanting M protein-based lipid core peptide construct. Indian Journal of Medical Research, 2004, 119 Suppl, 88-94.	0.4	4
378	Peptide-Based Vaccine against SARS-CoV-2: Peptide Antigen Discovery and Screening of Adjuvant Systems. Pharmaceutics, 2022, 14, 856.	2.0	4

#	Article	IF	Citations
379	Approaches to triterpene synthesis. Methyl group migration during catalytic hydrogenation of some precursors. Journal of the Chemical Society Chemical Communications, 1979, , 67.	2.0	3
380	Semisynthetic derivatives of quassin. Tetrahedron, 1998, 54, 6841-6856.	1.0	3
381	A lipophilic adjuvant carrier system for antigenic peptides. International Journal of Peptide Research and Therapeutics, 2001, 8, 285-288.	0.1	3
382	Liposaccharide-based nanoparticulate drug delivery system. Tetrahedron, 2012, 68, 4967-4975.	1.0	3
383	Cytolethal distending toxin producing Escherichia coli O157:H43 strain T22 represents a novel evolutionary lineage within the O157 serogroup. Infection, Genetics and Evolution, 2016, 46, 110-117.	1.0	3
384	New gonadotropin-releasing hormone glycolipids with direct antiproliferative activity and gonadotropin-releasing potency. International Journal of Pharmaceutics, 2017, 521, 327-336.	2.6	3
385	Synthesis of Multicomponent Peptide-Based Vaccine Candidates against Group A Streptococcus. Australian Journal of Chemistry, 2017, 70, 184.	0.5	3
386	Carbohydrates in Vaccine Development. Current Drug Delivery, 2019, 16, 609-617.	0.8	3
387	Synthesis and immunological evaluation of peptide-based vaccine candidates against malaria. Biochemical Compounds, 2016, 4, 1.	0.7	3
388	Investigations on the Chemistry of Berbanes, XIII. Selective Reduction of <i>Normal</i> â€; <i>Allo</i> â€; <i>Pseudo</i> â€, and <i>Epiallo</i> â€Depyrroloâ€Yohimbone Analogues. Liebigs Annalen Der Chemie, 1987, 1987, 1021-1024.	0.8	2
389	Lipidic peptides. XII. Cellular uptake studies of a lipidic amino acid, its oligomers and highly lipophilic drug conjugates on Ehrlich ascites tumour cells. International Journal of Pharmaceutics, 1992, 83, 131-138.	2.6	2
390	Spectroscopic and conformational studies of the C-terminal cytoplasmic beta subunit 46-peptide of the high affinity IgE receptor. Biochemical Society Transactions, 1994, 22, 450S-450S.	1.6	2
391	Oral absorption studies of lipid-polylysine conjugates of thyrotropin releasing hormone (TRH1) and luteinizing hormone releasing hormone (LHRH1). International Journal of Pharmaceutics, 1996, 143, 127-134.	2.6	2
392	Synthetic bicyclic analogues of quassinoids. Tetrahedron, 1998, 54, 6857-6866.	1.0	2
393	Towards synthetic vaccines built on carbohydrate cores. International Journal of Peptide Research and Therapeutics, 2001, 8, 273-276.	0.1	2
394	Delivery of a lactose derivative of endomorphin 1 to the brain via the olfactory epithelial pathway. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1373-1375.	1.0	2
395	Nanocarrier-based vaccine delivery systems for synthetic peptide vaccines. , 2021, , 509-535.		2
396	A Potent Vaccine Delivery System. Bio-protocol, 2021, 11, e3973.	0.2	2

#	Article	IF	Citations
397	Lipoamino acid-modified GnRH analogs with receptor-mediated antiproliferative activity in prostate and ovarian cancer cells. Medicinal Chemistry Research, 2021, 30, 1577-1587.	1.1	2
398	Preface. Current Drug Delivery, 2014, 11, 1-1.	0.8	2
399	An Isodipeptide Building Block for Microwave-Assisted Solid-Phase Synthesis of Difficult Sequence-Containing Peptides. Methods in Molecular Biology, 2020, 2103, 139-150.	0.4	2
400	Preparation of Trimethyl Chitosan-Based Polyelectrolyte Complexes for Peptide Subunit Vaccine Delivery. Methods in Molecular Biology, 2022, 2414, 141-149.	0.4	2
401	Hookworm infection: Toward development of safe and effective peptide vaccines. Journal of Allergy and Clinical Immunology, 2021, 148, 1394-1419.e6.	1.5	2
402	Multiplex polymerase chain reaction typing scheme based on Escherichia coli O157:H7 Sakai prophage (Sp)-associated genes. International Journal of Infectious Diseases, 2022, 120, 68-76.	1.5	2
403	The potential of developing a protective peptideâ€based vaccines against SARSâ€CoVâ€2. Drug Development Research, 0, , .	1.4	2
404	Investigation on the chemistry of berbansâ€"VIII. Tetrahedron, 1979, 35, 2043-2047.	1.0	1
405	Sequence-specific anti-peptide antibodies that recognize different subunits of the high-affinity IgE receptor. Biochemical Society Transactions, 1993, 21, 302-304.	1.6	1
406	Lipophilic peptide inhibitors of ribonucleotide reductase enzyme of herpes simplex virus. International Journal of Pharmaceutics, 1994, 106, 85-88.	2.6	1
407	Synthesis of Fully and Partially Protected Alkyl 1-Thio- \hat{l}^2 -l-fucopyranosides. Journal of Carbohydrate Chemistry, 1995, 14, 227-236.	0.4	1
408	The synthesis and structure of an n-terminal dodecanoic acid conjugate of \hat{l}_{\pm} -conotoxin MII. International Journal of Peptide Research and Therapeutics, 2001, 8, 235-239.	0.1	1
409	Development of lipid-core-peptide (LCP) based vaccines for the prevention of group A streptococcal (GAS) infection. International Journal of Peptide Research and Therapeutics, 2003, 10, 605-613.	0.9	1
410	Transdermal Delivery of a Tetrapeptide: Evaluation of Passive Diffusion. International Journal of Peptide Research and Therapeutics, 2003, 10, 615-620.	0.9	1
411	Towards the synthesis of a highly pure, multiepitopic, mucosal group A streptococcal lipopeptide vaccine. International Congress Series, 2006, 1289, 324-328.	0.2	1
412	The Fourth International Peptide Symposium: Discovery to Drugs: The Peptide Pipeline. Biopolymers, 2008, 90, 588-588.	1.2	1
413	Editorial (Thematic Issue: Nanotechnology for Drug Delivery Applications). Current Drug Delivery, 2014, 11, 665-665.	0.8	1
414	The cytolethal distending toxin-IV cdt coding region in an avian pathogenic Escherichia coli (APEC) strain shows instability and irregular excision pattern. Acta Microbiologica Et Immunologica Hungarica, 2015, 62, 423-433.	0.4	1

#	Article	IF	CITATIONS
415	Genome Analysis of a Historical Shigella dysenteriae Serotype 1 Strain Carrying a Conserved Stx Prophage Region. Frontiers in Microbiology, 2020, 11, 614793.	1.5	1
416	Peptide-Polymer Conjugation Via Copper-Catalyzed Alkyne-Azide 1,3-Dipolar Cycloaddition. Methods in Molecular Biology, 2021, 2355, 1-7.	0.4	1
417	Liposaccharides for Improved Oral Delivery of Tobramycin. Drug Delivery Letters, 2012, 2, 92-97.	0.2	1
418	Lipidic amino acid based synthetic peptide vaccine adjuvant., 1993,, 823-824.		1
419	Structure-activity relationship of lipid, cyclic peptide and antigen rearrangement of physically mixed vaccines. International Journal of Pharmaceutics, 2022, 617, 121614.	2.6	1
420	Polymer–Peptide Conjugate Vaccine for Oral Immunization. Methods in Molecular Biology, 2022, 2412, 35-44.	0.4	1
421	Synthetic and conformational studies of the alpha subunit cytoplasmic domain of the immunoglobulin E receptor. Biochemical Society Transactions, 1992, 20, 840-841.	1.6	0
422	Lipid methyl transferase inhibitory activity of novel \hat{l}_{\pm} -amino alkylic acid derivatives. International Journal of Pharmaceutics, 1992, 81, 267-269.	2.6	0
423	Structure-retention relationships of diastereomeric mixtures of lipidic amino acid conjugates on reversed-phase stationary phases. Journal of Chromatography A, 1994, 659, 307-315.	1.8	0
424	Peptide substrates for AMP-activated protein kinase. Biochemical Society Transactions, 1995, 23, 141S-141S.	1.6	0
425	Erratum to "Oral absorption studies of lipid-polylysine conjugates of thyrotropin releasing hormone (TRH1) and luteinizing hormone releasing hormone (LHRH1)―[Int. J. Pharm. 138 (1996) 167]1. International Journal of Pharmaceutics, 1996, 143, 125.	2.6	0
426	Towards synthetic vaccines built on carbohydrate cores. International Journal of Peptide Research and Therapeutics, 2001, 8, 273-276.	0.1	0
427	Preface [Hot topic: Carbohydrates (Executive Editor: Istvan Toth)]. Mini-Reviews in Medicinal Chemistry, 2003, 3, i-i.	1.1	0
428	Synthetic lipopeptides formulated in liposomes: effect on their immune stimulatory capacity in vitro. , 2006, , .		0
429	The lipid core peptide system in vaccine delivery. International Congress Series, 2006, 1289, 307-310.	0.2	0
430	Novel Glyco-lipid-arsenicals (III) with Anti-proliferative Effects on MCF-7 Human Breast Cancer Cells., 2006,, 365-366.		0
431	The Chemo-enzymatic Synthesis of Oligosaccharide-linked Peptides Aimed at Improved Drug Delivery. , 2006, , 511-512.		0
432	Development of Peptide Vaccines against HPV-16 Associated Cervical Cancer and Group A Streptococci., 2006, , 407-408.		0

#	Article	IF	CITATIONS
433	Vaccine Delivery: Synthesis and Investigation of a Highly Pure, Multi-Epitopic Lipopeptide Vaccine Candidate. Advances in Experimental Medicine and Biology, 2009, 611, 347-349.	0.8	0
434	Strategies in Oral Immunization. , 2009, , 195-222.		O
435	2nd Annual Meeting of the Australian Chapter of the Controlled Release Society, Canberra 2009. Current Drug Delivery, 2009, 6, 321-321.	0.8	0
436	Preparation and characterization of an IgG-dehydroepiandrosterone conjugate. Journal of Pharmacy and Pharmacology, 2011, 50, 243-243.	1.2	0
437	Luteinizing Hormone Releasing Hormone/Galactose Core/Lipopeptide. MolBank, 2015, 2015, M881.	0.2	0
438	Editorial (Thematic Issue: Drug Delivery Australia). Current Drug Delivery, 2015, 12, 2-2.	0.8	0
439	Synthesis of Glycolipid-based Drug Delivery Systems for Oral Administration. Drug Delivery Letters, 2016, 6, 38-45.	0.2	0
440	Preface. Current Drug Delivery, 2016, 13, 3-3.	0.8	0
441	Frontispiece: An Overview of Structural Features of Antibacterial Glycoconjugate Vaccines That Influence Their Immunogenicity. Chemistry - A European Journal, 2017, 23, .	1.7	0
442	Peptide-Pegylated Lipid Conjugation Via Copper-Catalyzed Alkyne-Azide 1,3-Dipolar Cycloaddition. Methods in Molecular Biology, 2021, 2355, 57-64.	0.4	0
443	Double Conjugation Using Mercapto-Acryloyl and Alkyne-Azide Reactions for the Synthesis of Branched Multiantigenic Vaccine Candidates. Methods in Molecular Biology, 2021, 2355, 141-150.	0.4	O
444	Liposaccharides: Utilisation for Peptide Delivery and for Enhancing Synthetic Peptide Immunogenicity. , 2001, , 937-939.		0
445	Lipoamino Acid and Liposaccharide Conjugated Peptides: Enhancement of Bioavailability. , 2001, , 955-956.		O
446	Drug delivery systems utilizing lipids and sugars. , 2002, , 599-612.		0
447	Vaccine delivery utilizing liposaccharides. Advances in Experimental Medicine and Biology, 2009, 611, 345-346.	0.8	O
448	Liposaccharides for Improved Oral Delivery of Tobramycin. Drug Delivery Letters, 2012, 2, 92-97.	0.2	0
449	Modified connexin43 mimetic peptide shows higher efficacy in reducing retinal ganglion cell loss and vessel leak after retinal ischemia. Acta Ophthalmologica, 2013, 91, 0-0.	0.6	0
450	Penicillin and cephalosporin conjugates with lipidic amino acids and oligomers., 1992,, 448-449.		0

#	Article	IF	Citations
451	Synthesis and biological activity of heteroalkyl lipidic amino acids. , 1992, , 452-453.		O
452	Synthesis of lipidic peptide conjugates of nucleoside antiviral and cytostatic agents., 1992,, 450-451.		0
453	Synthesis, structure elucidation and in vitro toxicity assessment of chlorambucil conjugates with lipidic acids, lipidic amino acids and their oligomers., 1993,, 330-331.		O
454	Synthesis of lipidic phospho-ester conjugates of AZT., 1993, , 328-329.		0
455	Lipidic amino acid and oligomer conjugates with saccharides and other highly hydrophilic compounds., 1993,, 326-327.		O
456	Meet Our Editor. Medicinal Chemistry, 2015, 11, 415-415.	0.7	0
457	Polyelectrolyte coated liposome delivery systems against Group A Streptococcus (GAS) infection. Journal of Nanomedicine & Nanotechnology, 2017, 08, .	1.1	0
458	Novel Dde-protected glycoamino acids and glycoazido acids in saccharopeptide synthesis. , 2002, , 719-720.		0
459	A novel lipoamino acid based system for delivery of Leu-enkephalinamide derivatives through the blood-brain barrier. , 2002, , 837-838.		0
460	A novel lipoamino acid based system for peptide delivery: Application for administering tumor selective somatostatin analogues. , 2002, , 843-844.		0
461	Synthesis of glycopeptide modified IgE epitopes. , 2002, , 775-776.		0
462	Lipoamino acid based glycoconjugates for peptide and drug delivery., 2002,, 77-78.		0
463	Novel lipoamino acid and liposaccharide based peptide delivery system for tumor selective somatostatin analogs., 2002,, 779-781.		0
464	Developing an Effective Glycanâ€Based Vaccine for Streptococcus Pyogenes. Angewandte Chemie, 0, , .	1.6	0
465	Investigation of liposomal self-adjuvanting peptide epitopes derived from conserved blood-stage Plasmodium antigens. PLoS ONE, 2022, 17, e0264961.	1.1	O