Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4584490/publications.pdf

Version: 2024-02-01

		236612	197535
78	2,531	25	49
papers	citations	h-index	g-index
79	79	79	3597
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hierarchically Porous ZnO Architectures for Gas Sensor Application. Crystal Growth and Design, 2009, 9, 3532-3537.	1.4	321
2	Polypyrrole-Coated SnO ₂ Hollow Spheres and Their Application for Ammonia Sensor. Journal of Physical Chemistry C, 2009, 113, 1662-1665.	1.5	224
3	Facile Synthesis of Porous α-Fe ₂ O ₃ Nanorods and Their Application in Ethanol Sensors. Journal of Physical Chemistry C, 2008, 112, 17804-17808.	1.5	151
4	Synthesis, Characterization of Fe-doped TiO2 Nanotubes with High Photocatalytic Activity. Catalysis Letters, 2009, 129, 513-518.	1.4	138
5	CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. Materials Science and Engineering C, 2012, 32, 2079-2085.	3.8	127
6	Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. Journal of Nanoparticle Research, 2008, 10, 871-875.	0.8	97
7	ZnO Nanoclusters Supported on Dealuminated Zeolite \hat{l}^2 as a Novel Catalyst for Direct Dehydrogenation of Propane to Propylene. ChemCatChem, 2019, 11, 868-877.	1.8	89
8	Title is missing!. Catalysis Letters, 2002, 80, 41-46.	1.4	83
9	Au-Functionalized Hematite Hybrid Nanospindles: General Synthesis, Gas Sensing and Catalytic Properties. Journal of Physical Chemistry C, 2011, 115, 5352-5357.	1.5	78
10	Comparison of CuO/Ce0.8Zr0.2O2 and CuO/CeO2 Catalysts for Low-temperature CO Oxidation. Catalysis Letters, 2005, 105, 163-168.	1.4	76
11	Characterization and catalytic performance of TiO2 nanotubes-supported gold and copper particles. Journal of Molecular Catalysis A, 2006, 249, 211-217.	4.8	66
12	Preparation, Characterization and Photocatalytic Activities of F-doped TiO2Nanotubes. Catalysis Letters, 2008, 121, 165-171.	1.4	61
13	New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catalysis Science and Technology, 2019, 9, 1979-1988.	2.1	60
14	High-Performance, Scalable, and Low-Cost Copper Hydroxyapatite for Photothermal CO2 Reduction. ACS Catalysis, 2020, 10, 13668-13681.	5.5	55
15	Synthesis, characterization of B-doped TiO2 nanotubes with high photocatalytic activity. Journal of Sol-Gel Science and Technology, 2010, 53, 535-541.	1.1	48
16	Synthesis and Characterization of Thermally Stable Nanotubular TiO ₂ and Its Photocatalytic Activity. Journal of Physical Chemistry C, 2008, 112, 18772-18775.	1.5	46
17	Synthesis, characterization of CuO/Ce0.8Sn0.2O2 catalysts for low-temperature CO oxidation. Catalysis Communications, 2008, 9, 1259-1264.	1.6	42
18	High efficiency and stability of Au–Cu/hydroxyapatite catalyst for the oxidation of carbon monoxide. RSC Advances, 2017, 7, 45420-45431.	1.7	36

#	Article	IF	CITATIONS
19	CO oxidation over Cu ₂ O deposited on 2D continuous lamellar g-C ₃ N ₄ . New Journal of Chemistry, 2015, 39, 6642-6648.	1.4	34
20	Synthesis, Characterization, and Photocatalytic Activity of Nâ€Doped TiO2Nanotubes. Journal of Dispersion Science and Technology, 2008, 29, 245-249.	1.3	32
21	Propane Dehydrogenation Over PtSn Catalysts Supported on ZnO-Modified MgAl2O4. Catalysis Letters, 2009, 132, 472-479.	1.4	29
22	g-C ₃ N ₄ supported metal (Pd, Ag, Pt) catalysts for hydrogen-production from formic acid. New Journal of Chemistry, 2018, 42, 9449-9454.	1.4	28
23	ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Molecular Catalysis, 2019, 476, 110508.	1.0	28
24	An Investigation of Catalytic Activity for CO Oxidation of CuO/Ce x Zr1–x O2 Catalysts. Catalysis Letters, 2008, 121, 70-76.	1.4	26
25	Comparative Study on Catalytic Performances for Low-temperature CO Oxidation of Cu–Ce–O and Cu–Co–Ce–O Catalysts. Catalysis Letters, 2008, 124, 405-412.	1.4	25
26	The Preparation and Characterization of La Doped TiO2Nanotubes and Their Photocatalytic Activity. Journal of Dispersion Science and Technology, 2010, 31, 1311-1316.	1.3	25
27	Enhanced CO catalytic oxidation over an Au–Pt alloy supported on TiO ₂ nanotubes: investigation of the hydroxyl and Au/Pt ratio influences. Catalysis Science and Technology, 2018, 8, 6109-6122.	2.1	25
28	The preparation of Au/CeO2 catalysts and their activities for low-temperature CO oxidation. Catalysis Letters, 2006, 112, 115-119.	1.4	23
29	Synthesis and catalytic performance of gold-loaded TiO2 nanofibers. Catalysis Letters, 2007, 118, 55-58.	1.4	23
30	Nanotubular TiO2-supported amorphous Co–B catalysts and their catalytic performances for hydroformylation of cyclohexene. Catalysis Communications, 2015, 59, 45-49.	1.6	23
31	Promoting effects of lanthanum on the catalytic activity of Au/TiO ₂ nanotubes for CO oxidation. RSC Advances, 2015, 5, 11989-11995.	1.7	22
32	Preparation and chatacterazition of the Bi-doped TiO2photocatalysts. Reaction Kinetics and Catalysis Letters, 2005, 86, 291-298.	0.6	20
33	Synthesis and characterization of TiO ₂ nanotube supported Rh-nanoparticle catalysts for regioselective hydroformylation of vinyl acetate. RSC Advances, 2014, 4, 62215-62222.	1.7	20
34	Au/BiPO ₄ nanorod catalysts: synthesis, characterization and their catalytic performance for CO oxidation. RSC Advances, 2016, 6, 15304-15312.	1.7	20
35	Improved Catalytic Performance of Au/α-Fe2O3-Like-Worm Catalyst for Low Temperature CO Oxidation. Nanomaterials, 2019, 9, 1118.	1.9	20
36	TiO2â€"Hydroxyapatite Composite as a New Support of Highly Active and Sintering-Resistant Gold Nanocatalysts for Catalytic Oxidation of CO and Photocatalytic Degradation of Methylene Blue. Catalysis Letters, 2018, 148, 359-373.	1.4	18

#	Article	IF	CITATIONS
37	TiO2Supported Nano-Au Catalysts Prepared Via Solvated Metal Atom Impregnation for Low–Temperature CO Oxidation. Catalysis Letters, 2004, 96, 49-55.	1.4	16
38	Boron modified TiO ₂ nanotubes supported Rh-nanoparticle catalysts for highly efficient hydroformylation of styrene. New Journal of Chemistry, 2017, 41, 6120-6126.	1.4	16
39	Platinum and Iridium Oxide Co-modified TiO2 Nanotubes Array Based Photoelectrochemical Sensors for Glutathione. Nanomaterials, 2020, 10, 522.	1.9	16
40	Au/TiO2 nanotube catalysts prepared by combining sol–gel method with hydrothermal treatment and their catalytic properties for CO oxidation. Journal of Sol-Gel Science and Technology, 2014, 71, 406-412.	1.1	15
41	The synthesis and crystal structures of new 2-aminomethylbenzimidazole Zinc(II) complexes exhibiting luminescence. Transition Metal Chemistry, 2008, 33, 9-15.	0.7	14
42	TiO2Supported Nanoâ€"Au Catalysts Prepared via Solvated Metal Atom Impregnation for Low-Temperature CO Oxidation. Catalysis Letters, 2004, 97, 17-23.	1.4	13
43	Gold Nanoparticles Supported on Urchin-Like CuO: Synthesis, Characterization, and Their Catalytic Performance for CO Oxidation. Nanomaterials, 2020, 10, 67.	1.9	13
44	3D Hydrogen Titanate Nanotubes on Ti Foil: A Carrier for Enzymatic Glucose Biosensor. Sensors, 2020, 20, 1024.	2.1	13
45	Hydroformylation of vinyl acetate and cyclohexene over TiO ₂ nanotube supported Rh and Ru nanoparticle catalysts. RSC Advances, 2018, 8, 12053-12059.	1.7	12
46	Preparation and Characterization of Bismuth Doped TiO2Thin Films. Journal of Dispersion Science and Technology, 2008, 29, 1471-1475.	1.3	10
47	Hydroformylation of 1-octene over nanotubular TiO2-supported amorphous Co-B catalysts. Chemical Research in Chinese Universities, 2015, 31, 851-857.	1.3	9
48	A novel three-dimensional copper(II) networkviahydrogen bonds: diaquabis[bis(pyrazol-1-yl-κN2)methane]copper(II) diperchlorate. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1210-1212.	0.4	8
49	Flower-like hydrogen titanate nanosheets: preparation, characterization and their photocatalytic hydrogen production performance in the presence of Pt cocatalyst. RSC Advances, 2020, 10, 27652-27661.	1.7	8
50	Synthesis of metal-doped tio2 nanotubes and their catalytic performance for low-temperature co oxidation. Reaction Kinetics and Catalysis Letters, 2006, 88, 301-308.	0.6	7
51	Study of CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation. Reaction Kinetics and Catalysis Letters, 2006, 89, 37-44.	0.6	7
52	Characterization of Pt catalysts supported by three forms of TiO2 and their catalytic activities for hydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 117-126.	0.8	7
53	Titanate Nanotube-Supported Au–Rh Bimetallic Catalysts: Characterization and Their Catalytic Performances in Hydroformylation of Vinyl Acetate. Catalysts, 2018, 8, 420.	1.6	7
54	Au/M-TiO2 nanotube catalysts (M=Ce, Ga, Co, Y): preparation, characterization and their catalytic activity for CO oxidation. Journal of Sol-Gel Science and Technology, 2018, 86, 699-710.	1.1	7

#	Article	IF	CITATIONS
55	One-pot synthesis of 3D Cu ₂ S–MoS ₂ nanocomposites by an ionic liquid-assisted strategy with high photocatalytic activity. New Journal of Chemistry, 2019, 43, 269-276.	1.4	7
56	Alkali and Alkaline Earth Cation-Decorated TiO2 Nanotube-Supported Rh Catalysts for Vinyl Acetate Hydroformylation. Catalysts, 2019, 9, 194.	1.6	7
57	Synthesis and CO Oxidation Activity of 1D Mixed Binary Oxide CeO2-LaO x Supported Gold Catalysts. Nanoscale Research Letters, 2017, 12, 579.	3.1	6
58	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 78, 49-58.	0.6	5
59	Preparation, characterization and photocatalytic performances of materials based on CS2-modified titanate nanotubes. Materials Science-Poland, 2013, 31, 531-542.	0.4	5
60	Gold nanoparticles supported on LnPO 4 (Ln = La, Ce) nanorods and nanospheroids as high performance catalysts for CO oxidation. Materials Research Bulletin, 2018, 97, 411-420.	2.7	5
61	Synthesis and Characterization of Rh/B–TNTs as a Recyclable Catalyst for Hydroformylation of Olefin Containing –CN Functional Group. Nanomaterials, 2018, 8, 755.	1.9	5
62	Constructing Co3O4/g-C3N4 Ultra-Thin Nanosheets with Z-Scheme Charge Transfer Pathway for Efficient Photocatalytic Water Splitting. Nanomaterials, 2021, 11, 3341.	1.9	5
63	Influence of the addition of Pd and Cu to cobalt catalysts prepared by SMAI for F-T synthesis. Open Chemistry, 2007, 5, 144-155.	1.0	4
64	Influences of the H2PtCl6Solution's pH on the Photocatalytic Activities of Platinum-Loaded TiO2Nanotubes. Journal of Dispersion Science and Technology, 2008, 29, 1408-1411.	1.3	4
65	A comparative study of CO catalytic oxidation on Au/YPO4-prisms and Au/YPO4-rods. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	4
66	The influence of CePO ₄ nanorods on the CO oxidation activity of Au/GdPO ₄ -rods. RSC Advances, 2018, 8, 21699-21711.	1.7	4
67	Preparation and Characterization of Rh/MgSNTs Catalyst for Hydroformylation of Vinyl Acetate: The RhO was Obtained by Calcination. Catalysts, 2019, 9, 215.	1.6	4
68	Preparation of TiO2/ZnS core/sheath heterostructure nanotubes via a wet chemical method and their photocatalytic activity. Reaction Kinetics and Catalysis Letters, 2007, 92, 239-246.	0.6	3
69	Preparation and characterization of mesoporous TiO2-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	3
70	Effect of Ni Addition on the Low Temperature Carbon Monoxide Oxidation over Au/HAP Nanocatalyst. Catalysis Surveys From Asia, 2018, 22, 208-221.	1.0	3
71	Performance of Pt–MoS2 co-modified 3-dimensional TiO2 nanoflowers in photocatalytic water splitting reaction. Journal of Sol-Gel Science and Technology, 2021, 98, 517-527.	1.1	3
72	Amine-Functionalized Natural Halloysite Nanotubes Supported Metallic (Pd, Au, Ag) Nanoparticles and Their Catalytic Performance for Dehydrogenation of Formic Acid. Nanomaterials, 2022, 12, 2414.	1.9	3

#	Article	lF	CITATIONS
73	Characterization and CO oxidation behavior of CuO/CeO2 catalysts. Reaction Kinetics and Catalysis Letters, 2005, 84, 29-36.	0.6	2
74	Promoting Effects of Iron on CO Oxidation over Au/TiO2 Supported Au Nanoparticles. Chemical Research in Chinese Universities, 2018, 34, 965-970.	1.3	2
75	Role of Hydroxyl Groups in Low-Temperature CO Catalytic Oxidation over Zn ₄ Si ₂ O ₇ (OH) ₂ Nanowire-Supported Gold Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 25456-25466.	1.5	2
76	Flower-Like Au–CuO/Bi2WO6 Microsphere Catalysts: Synthesis, Characterization, and Their Catalytic Performances for CO Oxidation. Catalysts, 2017, 7, 266.	1.6	1
77	Characterization and CO oxidation catalytic behavior of CuO/CeO <subscript>2 </subscript> catalysts. Reaction Kinetics and Catalysis Letters, 2005, 84, 29-36.	0.6	O
78	Fabrication and photocatalytic performance of C, Ptâ \in comodified TiO 2 nanotubes. Micro and Nano Letters, 2020, 15, 1089-1094.	0.6	0