
Rolanas Dauksevicius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4584193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strength and elastic properties of 3D printed PVDF-based parts for lightweight biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104603.	1.5	13
2	Fused filament fabrication and mechanical performance of PVDF-based specialty thermoplastics. International Journal of Advanced Manufacturing Technology, 2021, 117, 3267-3280.	1.5	2
3	Numerical and experimental study of a novel body-mounted piezoelectric energy harvester based on synchronized multi-magnet excitation. , 2019, , .		1
4	Nonlinear piezoelectric vibration energy harvester with frequency-tuned impacting resonators for improving broadband performance at low frequencies. Smart Materials and Structures, 2019, 28, 025025.	1.8	24
5	Experimental study of multi-magnet excitation for enhancing micro-power generation in piezoelectric vibration energy harvester. Mechanika, 2019, 25, 219-224.	0.3	2
6	Design of UV-crosslinked polymeric thin layers for encapsulation of piezoelectric ZnO nanowires for pressure-based fingerprint sensors. Journal of Materials Chemistry C, 2018, 6, 605-613.	2.7	16
7	Direct observation of spontaneous polarization induced electron charge transfer in stressed ZnO nanorods. Nano Energy, 2018, 43, 376-382.	8.2	6
8	Analysis of magnetic plucking dynamics in a frequency up-converting piezoelectric energy harvester. Smart Materials and Structures, 2018, 27, 085016.	1.8	22
9	Rational Design Approach for Enhancing Higher-Mode Response of a Microcantilever in Vibro-Impacting Mode. Sensors, 2017, 17, 2884.	2.1	4
10	Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes. Sensors, 2016, 16, 11.	2.1	29
11	UV-crosslinked Polymeric Materials for Encapsulation of ZnO Nanowires in Piezoelectric Fingerprint Sensors. Procedia Engineering, 2016, 168, 1135-1139.	1.2	3
12	Piezo-force and Vibration Analysis of ZnO Nanowire Arrays for Sensor Application. Procedia Engineering, 2016, 168, 1192-1195.	1.2	9
13	Finite Element Analysis of Polymer-encapsulated ZnO Nanowire-based Sensor Array Intended for Pressure Sensing in Biometric Applications. Procedia Engineering, 2016, 168, 864-867.	1.2	4
14	Multiphysics Model of Encapsulated Piezoelectric-semiconducting Nanowire with Schottky Contacts and External Capacitive Circuit. Procedia Engineering, 2015, 120, 896-901.	1.2	5
15	Enhanced pressure response in ZnO nanorods due to spontaneous polarization charge. , 2015, , .		2
16	Influence of contact point location on dynamical and electrical responses of impactâ€ŧype vibration energy harvester based on piezoelectric transduction. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2014, 94, 898-903.	0.9	3
17	Frequency up-converting Vibration Energy Harvester with Multiple Impacting Beams for Enhanced Wideband Operation at Low Frequencies. Procedia Engineering, 2014, 87, 1517-1520.	1.2	5
18	Study of Vibration Milling for Improving Surface Finish of Difficult-to-Cut Materials. Strojniski Vestnik/Journal of Mechanical Engineering, 2013, 57, 351-357.	0.6	26

#	Article	IF	CITATIONS
19	Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis. Sensors, 2013, 13, 5368-5380.	2.1	20
20	SEGMENTATION OF PIEZOELECTRIC LAYERS BASED ON THE NUMERICAL STUDY OF NORMAL STRAIN DISTRIBUTIONS IN BIMORPH CANTILEVERS VIBRATING IN THE SECOND TRANSVERSE MODE. Mechanika, 2013, 19, .	0.3	0
21	Flexible and Robust Multilayer Micro-Vibrational Harvesters for High Acceleration Environments. Journal of Physics: Conference Series, 2013, 476, 012113.	0.3	3
22	Multiphysics finite element model of a frequency-amplifying piezoelectric energy harvester with impact coupling for low-frequency vibrations. Journal of Physics: Conference Series, 2013, 476, 012090.	0.3	4
23	Numerical–experimental identification of the most effective dynamic operation mode of a vibration drilling tool for improved cutting performance. Journal of Sound and Vibration, 2012, 331, 5175-5190.	2.1	7
24	RESIDUAL STRESS IN A THIN-FILM MICROOPTOELECTROMECHANICAL (MOEMS) MEMBRANE. Mechanika, 2012, 18, .	0.3	2
25	NON-INVASIE MICRO-OPTO-ELECTRO-MECHANICAL SYSTEM ADAPTATION TO RADIAL BLOOD FLOW PULSE AND VELOCITY ANALYSIS. Mechanika, 2012, 18, .	0.3	2
26	Finite element analysis of piezoelectric microgenerator–towards optimal configuration. Procedia Engineering, 2010, 5, 1312-1315.	1.2	7
27	An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting. Journal of Sound and Vibration, 2010, 329, 4866-4879.	2.1	60
28	Technological Realization of MEMS Structures and Their Experimental Investigation. Intelligent Systems, Control and Automation: Science and Engineering, 2010, , 185-214.	0.3	0
29	Dynamics of Elastic Vibro-Impact Microsystems. Intelligent Systems, Control and Automation: Science and Engineering, 2010, , 53-132.	0.3	0
30	Modeling and Simulation of Contact-Type Electrostatic Microactuator. Intelligent Systems, Control and Automation: Science and Engineering, 2010, , 11-52.	0.3	0
31	Theoretical Analysis of a Micromotor. Intelligent Systems, Control and Automation: Science and Engineering, 2010, , 133-183.	0.3	0
32	Numerical Analysis of Dynamic Effects of a Nonlinear Vibro-Impact Process for Enhancing the Reliability of Contact-Type MEMS Devices. Sensors, 2009, 9, 10201-10216.	2.1	18
33	Numerical analysis of fluid–structure interaction effects on vibrations of cantilever microstructure. Journal of Sound and Vibration, 2007, 308, 660-673.	2.1	26
34	Investigation of Electrostatic Cantilever-Type Micromechanical Actuator. Solid State Phenomena, 2006, 113, 179-184.	0.3	0
35	Design, fabrication, and simulation of cantilever-type electrostatic micromechanical switch. , 2005, 5763, 436.		6
36	Finite Element Modeling and Simulation of Squeezed-Film Effects in a Vibrating MEMS Structure. Solid State Phenomena, 0, 147-149, 314-319.	0.3	0