George R Rossman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4584164/publications.pdf

Version: 2024-02-01

248 papers 14,297 citations

61 h-index 25787 108 g-index

253 all docs

253 docs citations

times ranked

253

8270 citing authors

#	Article	IF	CITATIONS
1	Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 1992, 255, 1391-1397.	12.6	882
2	Mantle-derived fluids in diamond micro-inclusions. Nature, 1988, 335, 784-789.	27.8	452
3	An IR absorption calibration for water in minerals. American Mineralogist, 1997, 82, 1111-1115.	1.9	413
4	Quantitative analysis of trace OH in garnet and pyroxenes. American Mineralogist, 1995, 80, 465-474.	1.9	402
5	Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. Journal of Geophysical Research, 2003, 108 , .	3.3	383
6	Water in minerals? A peak in the infrared. Journal of Geophysical Research, 1984, 89, 4059-4071.	3.3	353
7	Lunar apatite with terrestrial volatile abundances. Nature, 2010, 466, 466-469.	27.8	258
8	Desert Varnish: The Importance of Clay Minerals. Science, 1977, 196, 1446-1448.	12.6	253
9	Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 2014, 346, 1100-1102.	12.6	243
10	Hydrogen speciation in synthetic quartz. Physics and Chemistry of Minerals, 1984, 11, 204-212.	0.8	226
11	Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochimica Et Cosmochimica Acta, 2001, 65, 2487-2497.	3.9	223
12	The natural occurrence of hydroxide in olivine. Physics and Chemistry of Minerals, 1987, 14, 461-472.	0.8	218
13	Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 1996, 23, 319.	0.8	213
14	Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature, 1991, 351, 732-735.	27.8	200
15	Characterization of hydrous species in minerals by high-speed proton MAS-NMR. Journal of the American Chemical Society, 1988, 110, 1367-1375.	13.7	196
16	Hydrogen incorporation in olivine from 2-12 GPa. American Mineralogist, 2006, 91, 285-294.	1.9	194
17	Abundance and Partitioning of OH in a High-pressure Magmatic System: Megacrysts from the Monastery Kimberlite, South Africa. Journal of Petrology, 2004, 45, 1539-1564.	2.8	187
18	lce-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle. Science, 2018, 359, 1136-1139.	12.6	166

#	Article	IF	CITATIONS
19	Theoretical estimates of equilibrium chromium-isotope fractionations. Chemical Geology, 2004, 205, 99-114.	3.3	165
20	The manganese- and iron-oxide mineralogy of desert varnish. Chemical Geology, 1979, 25, 79-94.	3. 3	163
21	Fibrous nanoinclusions in massive rose quartz: The origin of rose coloration. American Mineralogist, 2001, 86, 466-472.	1.9	158
22	Trapping an Iron(VI) Water-Splitting Intermediate in Nonaqueous Media. Joule, 2018, 2, 747-763.	24.0	157
23	Studies of OH in nominally anhydrous minerals. Physics and Chemistry of Minerals, 1996, 23, 299.	0.8	152
24	Mixed valence of iron in minerals with cation clusters. Physics and Chemistry of Minerals, 1984, 11, 37-51.	0.8	149
25	Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochimica Et Cosmochimica Acta, 2003, 67, 3267-3281.	3.9	143
26	The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contributions To Mineralogy and Petrology, 1992, 111, 161-178.	3.1	138
27	The concentration and speciation of hydrogen in feldspars using FTIR and ¹ H MAS NMR spectroscopy. American Mineralogist, 2003, 88, 901-911.	1.9	127
28	Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nature Geoscience, 2012, 5, 779-782.	12.9	120
29	Planar OH-bearing defects in mantle olivine. Nature, 1987, 328, 143-145.	27.8	111
30	Electronic structure of oxo-bridge iron(III) dimers. Journal of the American Chemical Society, 1972, 94, 2683-2690.	13.7	109
31	Origin of the yellow color of complex nickel oxides. Journal of Solid State Chemistry, 1981, 39, 277-287.	2.9	109
32	Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist, 2009, 94, 841-844.	1.9	101
33	Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol. American Mineralogist, 2011, 96, 1725-1741.	1.9	98
34	A survey of hydrous species and concentrations in igneous feldspars. American Mineralogist, 2004, 89, 586-600.	1.9	95
35	Analytical Methods for Measuring Water in Nominally Anhydrous Minerals. Reviews in Mineralogy and Geochemistry, 2006, 62, 1-28.	4.8	92
36	Field Effect Optoelectronic Modulation of Quantum-Confined Carriers in Black Phosphorus. Nano Letters, 2017, 17, 78-84.	9.1	89

#	Article	IF	Citations
37	Water content of mantle garnets. Geology, 1984, 12, 720.	4.4	85
38	Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia; evidence from stable isotopes and hydroxyl in garnet. American Mineralogist, 1995, 80, 799-809.	1.9	85
39	Spectroscopic and magnetic properties of heptacyanomolybdate(III). Evidence for pentagonal-bipyramidal and monocapped trigonal-prismatic structures. Inorganic Chemistry, 1973, 12, 824-829.	4.0	83
40	The intensity of amphibole OH bands in the infrared absorption spectrum. Physics and Chemistry of Minerals, 1991, 18, 64.	0.8	82
41	An Update on Color in Gems. Part 1: Introduction and Colors Caused by Dispersed Metal Ions. Gems & Gemology, 1987, 23, 126-139.	0.6	82
42	Magnetic behavior and infrared spectra of jarosite, basic iron sulfate, and their chromate analogs. Journal of Solid State Chemistry, 1975, 13, 1-13.	2.9	81
43	Ahrensite, \hat{I}^3 -Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars. Geochimica Et Cosmochimica Acta, 2016, 184, 240-256.	3.9	81
44	Tissintite, (Ca, Na, â−¡)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite. Earth and Planetary Science Letters, 2015, 422, 194-205.	4.4	79
45	Fe2+-Fe3+ interactions in tourmaline. Physics and Chemistry of Minerals, 1987, 14, 163-171.	0.8	78
46	Case hardening of sandstone. Geology, 1982, 10, 520.	4.4	77
47	Determination of Fe3+ and Fe2+ concentrations in feldspar by optical absorption and EPR spectroscopy. Physics and Chemistry of Minerals, 1984, 11, 213-224.	0.8	76
48	Chelates of .betadiketones. VI. Synthesis and characterization of dimeric dialkoxo-bridged iron(III) complexes with acetylacetone and 2,2,6,6-tetramethylheptane-3,5-dione (HDPM). Inorganic Chemistry, 1972, 11, 990-994.	4.0	75
49	Submicrometer fluid inclusions in turbid-diamond coats. Earth and Planetary Science Letters, 1991, 105, 1-12.	4.4	74
50	Quantitative polarized infrared analysis of trace OH in populations of randomly oriented mineral grains. American Mineralogist, 2006, 91, 278-284.	1.9	74
51	An Update on Color in Gems. Part 2: Colors Involving Multiple Atoms and Color Centers. Gems & Gemology, 1988, 24, 3-15.	0.6	73
52	Elastic properties of pyrope. Physics and Chemistry of Minerals, 1991, 17, 617.	0.8	72
53	FTIR spectroscopy of lawsonite between 82 and 325 K. American Mineralogist, 1996, 81, 1080-1091.	1.9	71
54	Analysis of hydrogen and fluorine in pyroxenes: II. Clinopyroxene. American Mineralogist, 2013, 98, 1042-1054.	1.9	71

#	Article	IF	CITATIONS
55	Channel constituents in beryl. Physics and Chemistry of Minerals, 1978, 3, 225-235.	0.8	70
56	A model for the irradiative coloration of smoky feldspar and the inhibiting influence of water. Physics and Chemistry of Minerals, 1985, 12, 324-332.	0.8	68
57	Analysis of hydrogen and fluorine in pyroxenes: I. Orthopyroxene. American Mineralogist, 2013, 98, 1026-1041.	1.9	67
58	Identifying characteristics of charge transfer transitions in minerals. Physics and Chemistry of Minerals, 1987, 14, 94-99.	0.8	66
59	Mid-infrared reflectance spectra and optical constants of six iron oxide/oxyhydroxide phases. Icarus, 2009, 204, 663-671.	2.5	66
60	Dielectric constants of yttrium and rareâ€earth garnets, the polarizability of gallium oxide, and the oxide additivity rule. Journal of Applied Physics, 1990, 67, 3798-3802.	2.5	64
61	Single-crystal IR spectroscopy of very strong hydrogen bonds in pectolite, NaCa ₂ [Si ₃ O ₈ (OH)], and serandite, NaMn ₂ [Si ₃ O ₈ (OH)]. American Mineralogist, 1998, 83, 569-576.	1.9	63
62	The hydrous component in andradite garnet. American Mineralogist, 1998, 83, 835-840.	1.9	63
63	Mid-infrared (5–100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals. Icarus, 2007, 192, 605-622.	2.5	63
64	Raman characterization of synthetic magnesian calcites. American Mineralogist, 2016, 101, 2525-2538.	1.9	63
65	An Update on Color in Gems. Part 3: Colors Caused By Band Gaps and Physical Phenomena. Gems & Gemology, 1988, 24, 81-102.	0.6	63
66	Grossmanite, CaTi3+AlSiO6, a new pyroxene from the Allende meteorite. American Mineralogist, 2009, 94, 1491-1494.	1.9	62
67	Stationary and mobile hydrogen defects in potassium feldspar. Geochimica Et Cosmochimica Acta, 1996, 60, 4075-4094.	3.9	61
68	Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite. American Mineralogist, 2011, 96, 709-715.	1.9	60
69	Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California. American Mineralogist, 2008, 93, 154-157.	1.9	59
70	Dihydroxo-bridged ferric dimer. Journal of the American Chemical Society, 1969, 91, 4564-4566.	13.7	58
71	Hydrogen, lithium, and boron in mantle-derived olivine: The role of coupled substitutions. American Mineralogist, 2002, 87, 1432-1436.	1.9	58
72	Water in boninite glass and coexisting orthopyroxene: concentration and partitioning. Contributions To Mineralogy and Petrology, 1995, 118, 414-419.	3.1	55

#	Article	IF	CITATIONS
73	Hydrogen bonding interactions in phase A [Mg 7 Si 2 O 8 (OH) 6] at ambient and high pressure. Physics and Chemistry of Minerals, 2000, 27, 225-233.	0.8	55
74	Mn-rich tourmaline from Austria: structure, chemistry, optical spectra, and relations to synthetic solid solutions. American Mineralogist, 2004, 88, 1369-1376.	1.9	55
75	Davisite, CaScAlSiO6, a new pyroxene from the Allende meteorite. American Mineralogist, 2009, 94, 845-848.	1.9	54
76	Dielectric constant of MgAl2O4 spinel and the oxide additivity rule. Journal of Physics and Chemistry of Solids, 1991, 52, 1055-1059.	4.0	53
77	Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo,Ru,Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite. American Mineralogist, 2014, 99, 654-666.	1.9	53
78	Panguite, (Ti4+,Sc,Al,Mg,Zr,Ca)1.8O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD. American Mineralogist, 2012, 97, 1219-1225.	1.9	52
79	The hydrous component of pyrope from the Dora Maira Massif, Western Alps. European Journal of Mineralogy, 1989, 1, 151-154.	1.3	51
80	Liebermannite, <scp>KA</scp> Si ₃ O ₈ , a new shockâ€metamorphic, highâ€pressure mineral from the Zagami Martian meteorite. Meteoritics and Planetary Science, 2018, 53, 50-61.	1.6	49
81	Spectroscopic standards for four- and fivefold-coordinated Fe ²⁺ in oxygen-based minerals. American Mineralogist, 2001, 86, 896-903.	1.9	48
82	The Geochemistry of Gems and Its Relevance to Gemology: Different Traces, Different Prices. Elements, 2009, 5, 159-162.	0.5	47
83	Elastic properties of hydrogrossular garnet and implications for water in the upper mantle. Journal of Geophysical Research, 1993, 98, 20031-20037.	3.3	46
84	Water content of the Martian soil: Laboratory simulations of reflectance spectra. Journal of Geophysical Research, 1998, 103, 11125-11133.	3.3	45
85	The Influence of Water on the Optical Properties of Singleâ€Layer Molybdenum Disulfide. Advanced Materials, 2015, 27, 2734-2740.	21.0	44
86	Fibrous nanoinclusions in massive rose quartz: HRTEM and AEM investigations. American Mineralogist, 2002, 87, 269-276.	1.9	43
87	Optical spectroscopic study of tuhualite and a re-examination of the beryl, cordierite, and osumilite spectra. American Mineralogist, 2001, 86, 973-980.	1.9	42
88	Calcium Tschermak's pyroxene, CaAlAlSiO6, from the Allende and Murray meteorites: EBSD and micro-Raman characterizations. American Mineralogist, 2009, 94, 1483-1486.	1.9	42
89	Fast single-photon avalanche diode arrays for laser Raman spectroscopy. Optics Letters, 2011, 36, 3672.	3.3	42
90	Kangite, (Sc,Ti,Al,Zr,Mg,Ca,Â)2O3, a new ultra-refractory scandia mineral from the Allende meteorite: Synchrotron micro-Laue diffraction and electron backscatter diffraction. American Mineralogist, 2013, 98, 870-878.	1.9	42

#	Article	IF	Citations
91	Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. American Mineralogist, 2014, 99, 198-205.	1.9	42
92	Hydrous species in feldspars: A reassessment based on FTIR and SIMS. American Mineralogist, 2015, 100, 1209-1221.	1.9	42
93	Electronic energy levels in hexahalotellurate(IV) complexes. Journal of the American Chemical Society, 1970, 92, 307-310.	13.7	41
94	Spectroscopic standard for tetrahedrally coordinated ferric iron: ? LiAlO2:Fe3+. Physics and Chemistry of Minerals, 1983, 9, 212-215.	0.8	41
95	The diffusion behavior of hydrogen in plagioclase feldspar at 800-1000 ÂC: Implications for re-equilibration of hydroxyl in volcanic phenocrysts. American Mineralogist, 2013, 98, 1779-1787.	1.9	41
96	Anisotropic Quantum Well Electro-Optics in Few-Layer Black Phosphorus. Nano Letters, 2019, 19, 269-276.	9.1	40
97	Tunable intraband optical conductivity and polarization-dependent epsilon-near-zero behavior in black phosphorus. Science Advances, 2021, 7, .	10.3	40
98	Infrared and electron microprobe analysis of ammonium ions in hyalophane feldspar. European Journal of Mineralogy, 1992, 4, 847-850.	1.3	40
99	Synthesis and structural characterization of a new cyanomanganate(III) complex, heptapotassium .muoxo-bis[pentacyanomanganate(III)]cyanide. Journal of the American Chemical Society, 1974, 96, 7910-7915.	13.7	39
100	Dielectric constants of crystalline and amorphous spodumene, anorthite and diopside and the oxide additivity rule. Physics and Chemistry of Minerals, 1992, 19, 148.	0.8	39
101	Mn-bearing "oxy-rossmanite" with tetrahedrally coordinated Al and B from Austria: Structure, chemistry, and infrared and optical spectroscopic study. American Mineralogist, 2005, 90, 481-487.	1.9	39
102	Brearleyite, Ca12Al14O32Cl2, a new alteration mineral from the NWA 1934 meteorite. American Mineralogist, 2011, 96, 1199-1206.	1.9	39
103	Tracing the fluid evolution of the Kiruna iron oxide apatite deposits using zircon, monazite, and whole rock trace elements and isotopic studies. Chemical Geology, 2017, 466, 303-322.	3.3	39
104	Nearly 90% Circularly Polarized Emission in Monolayer WS ₂ Single Crystals by Chemical Vapor Deposition. ACS Nano, 2020, 14, 1350-1359.	14.6	39
105	Discovery of davemaoite, CaSiO ₃ -perovskite, as a mineral from the lower mantle. Science, 2021, 374, 891-894.	12.6	39
106	CRYSTAL CHEMISTRY OF DARK BLUE AQUAMARINE FROM THE TRUE BLUE SHOWING, YUKON TERRITORY, CANADA. Canadian Mineralogist, 2010, 48, 597-613.	1.0	38
107	Silica coatings in the Ka'u Desert, Hawaii, a Mars analog terrain: A micromorphological, spectral, chemical, and isotopic study. Journal of Geophysical Research, 2010, 115, .	3.3	38
108	Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy. American Mineralogist, 2012, 97, 203-211.	1.9	38

#	Article	IF	Citations
109	Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array. Applied Optics, 2016, 55, 739.	2.1	38
110	Ferric iron in tourmaline. Physics and Chemistry of Minerals, 1984, 11, 225-234.	0.8	37
111	Fe2+-Ti4+ charge transfer in stoichiometric Fe2+,Ti4+-minerals. Physics and Chemistry of Minerals, 1988, 16, 78.	0.8	37
112	Calculated trends of oh infrared stretching vibrations with composition and structure in aluminosilicate molecules. Physics and Chemistry of Minerals, 1993, 20, 425.	0.8	37
113	Estimated optical constants of gypsum in the regions of weak absorptions: Application of scattering theories and comparisons to independent measurements. Journal of Geophysical Research, 2007, 112, .	3.3	37
114	Amorphous, hydrous, ferric phosphatic dermal granules in Molpadia (Holothuroidea): Physical and chemical characterization and ecologic implications of the bioinorganic fraction. Chemical Geology, 1975, 15, 15-51.	3.3	36
115	Buseckite, (Fe,Zn,Mn)S, a new mineral from the Zaklodzie meteorite. American Mineralogist, 2012, 97, 1226-1233.	1.9	36
116	A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth and Planetary Science Letters, 2017, 473, 14-23.	4.4	36
117	Single-crystal IR- and UV/VIS-spectroscopic measurements on transition-metal-bearing pyrope: the incorporation of hydroxide in garnet. European Journal of Mineralogy, 2000, 12, 259-271.	1.3	36
118	Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline. American Mineralogist, 2012, 97, 1402-1416.	1.9	35
119	Optical spectra of Co ²⁺ in three synthetic silicate minerals. American Mineralogist, 2001, 86, 889-895.	1.9	34
120	Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California: A detailed investigation. American Mineralogist, 2010, 95, 24-40.	1.9	34
121	Time-resolved Raman spectroscopy for in situ planetary mineralogy. Applied Optics, 2010, 49, 4951.	2.1	34
122	Direct growth of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition. Carbon, 2020, 156, 212-224.	10.3	34
123	Refractive index and optical dispersion of In2O3, InBO3 and gahnite. Materials Research Bulletin, 2013, 48, 2240-2243.	5.2	33
124	IR spectroscopy and OH– in silicate garnet: The long quest to document the hydrogarnet substitution. American Mineralogist, 2018, 103, 384-393.	1.9	33
125	Pezzottaite from Ambatovita, Madagascar: A New Gem Mineral. Gems & Gemology, 2003, 39, 284-301.	0.6	33
126	Absorption spectrum of shock-compressed Fe2+-bearing MgO and the radiative conductivity of the lower mantle. Physics of the Earth and Planetary Interiors, 1980, 22, 272-276.	1.9	32

#	Article	IF	CITATIONS
127	Simultaneous pair electronic excitations in a binuclear iron(III) complex. Chemical Physics Letters, 1970, 6, 26-28.	2.6	31
128	Determination of quantitative cation distribution in orthopyroxenes from electronic absorption spectra. Physics and Chemistry of Minerals, 1979, 4, 43-53.	0.8	31
129	Hydroxide in kyanite: A quantitative determination of the absolute amount and calibration of the IR spectrum. American Mineralogist, 2004, 89, 998-1003.	1.9	31
130	Fe-BEARING OLENITE WITH TETRAHEDRALLY COORDINATED AI FROM AN ABYSSAL PEGMATITE AT KUTNA HORA, CZECH REPUBLIC: STRUCTURE, CRYSTAL CHEMISTRY, OPTICAL AND XANES SPECTRA. Canadian Mineralogist, 2006, 44, 23-30.	1.0	31
131	Low water contents in diamond mineral inclusions: Proto-genetic origin in a dry cratonic lithosphere. Earth and Planetary Science Letters, 2016, 433, 125-132.	4.4	31
132	Dielectric constants of tephroite, fayalite and olivine and the oxide additivity rule. Physics and Chemistry of Minerals, 1991, 18, 1.	0.8	30
133	Crystal field stabilization energies of almandine-pyrope and almandine-spessartine garnets determined by FTIR near infrared measurements. Physics and Chemistry of Minerals, 1994, 21, 516.	0.8	30
134	Hydrogen in spessartine-almandine garnets as a tracer of granitic pegmatite evolution. American Mineralogist, 2001, 86, 485-490.	1.9	30
135	Li-bearing tourmalines in Variscan granitic pegmatites from the Moldanubian nappes, Lower Austria. European Journal of Mineralogy, 2012, 24, 695-715.	1.3	30
136	Browneite, MnS, a new sphalerite-group mineral from the Zaklodzie meteorite. American Mineralogist, 2012, 97, 2056-2059.	1.9	30
137	Warkite, Ca2Sc6Al6O20, a new mineral in carbonaceous chondrites and a key-stone phase in ultrarefractory inclusions from the solar nebula. Geochimica Et Cosmochimica Acta, 2020, 277, 52-86.	3.9	30
138	Evidence in Tissint for recent subsurface water on Mars. Earth and Planetary Science Letters, 2015, 425, 55-63.	4.4	29
139	Hydrogen in "anhydrous―minerals. Nuclear Instruments & Methods in Physics Research B, 1990, 45, 41-44.	1.4	28
140	Orientation and motion of water molecules in cordierite: A proton nuclear magnetic resonance study. Physics and Chemistry of Minerals, 1982, 8, 14-19.	0.8	27
141	Crystal chemistry of wadsleyite II and water in the Earth's interior. Physics and Chemistry of Minerals, 2005, 31, 691-705.	0.8	27
142	Anharmonic lattice dynamics of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext> Ag </mml:mtext> <mml:mn>2 by inelastic neutron scattering and first-principles molecular dynamics simulations. Physical Review B, 2014, 89, .</mml:mn></mml:msub></mml:math>	:/mml:mn:	·
143	Ambient and coldâ€temperature infrared spectra and XRD patterns of ammoniated phyllosilicates and carbonaceous chondrite meteorites relevant to Ceres and other solar system bodies. Meteoritics and Planetary Science, 2018, 53, 1884-1901.	1.6	27
144	Nitrogen incorporation in silicates and metals: Results from SIMS, EPMA, FTIR, and laser-extraction mass spectrometry. American Mineralogist, 2019, 104, 31-46.	1.9	27

#	Article	IF	CITATIONS
145	Developments in Gemstone Analysis Techniques and Instrumentation During the 2000s. Gems & Gemology, 2010, 46, 241-257.	0.6	27
146	Exsolution of metallic copper from Lake County labradorite. Geology, 1985, 13, 644.	4.4	26
147	Murchisite, Cr5S6, a new mineral from the Murchison meteorite. American Mineralogist, 2011, 96, 1905-1908.	1.9	26
148	Gem-Quality Cuprian-Elbaite Tourmalines From São José Da Batalha, ParaÃba, Brazil. Gems & Gemology, 1990, 26, 189-205.	0.6	26
149	Rb, Sr, Nd and Sm concentrations in quartz. Geochimica Et Cosmochimica Acta, 1987, 51, 2325-2329.	3.9	25
150	OH in naturally occurring corundum. European Journal of Mineralogy, 2006, 18, 441-447.	1.3	25
151	Quantitative laser-induced breakdown spectroscopy of potassium for in-situ geochronology on Mars. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 70, 45-50.	2.9	25
152	Machiite, Al2Ti3O9, a new oxide mineral from the Murchison carbonaceous chondrite: A new ultra-refractory phase from the solar nebula. American Mineralogist, 2020, 105, 239-243.	1.9	25
153	Mn-rich fluorapatite from Austria: Crystal structure, chemical analysis, and spectroscopic investigations. American Mineralogist, 2004, 89, 629-632.	1.9	24
154	IR spectroscopy of hemimorphite between 82 and 373 K and optical evidence for a low-temperature phase transition. European Journal of Mineralogy, 1997, 9, 793-802.	1.3	24
155	Proton disorder in dehydrated hemimorphite – IR spectroscopy and X-ray structure refinement at low and ambient temperatures. European Journal of Mineralogy, 1997, 9, 803-810.	1.3	24
156	Electrically Tunable and Dramatically Enhanced Valleyâ€Polarized Emission of Monolayer WS ₂ at Room Temperature with Plasmonic Archimedes Spiral Nanostructures. Advanced Materials, 2022, 34, e2104863.	21.0	24
157	Absorption spectra of Cr3+ in Al2O3 under shock compression. Physics and Chemistry of Minerals, 1979, 4, 253-263.	0.8	23
158	Effect of H2O and CO2 on Dielectric Properties of Single-Crystal Cordierite and Comparison with Polycrystalline Cordierite. Journal of the American Ceramic Society, 1992, 75, 2395-2399.	3.8	23
159	Plumbophyllite, a new species from the Blue Bell claims near Baker, San Bernardino County, California. American Mineralogist, 2009, 94, 1198-1204.	1.9	23
160	Timescales and mechanisms of formation of amorphous silica coatings on fresh basalts at Kīlauea Volcano, Hawai'i. Journal of Volcanology and Geothermal Research, 2014, 286, 41-54.	2.1	23
161	Correlation between OH concentration and oxygen isotope diffusion rate in diopsides from the Adirondack Mountains, New York. American Mineralogist, 2002, 87, 899-908.	1.9	22
162	Feasibility of determining the quantitative OH content of garnets with Raman spectroscopy. American Mineralogist, 2002, 87, 307-311.	1.9	22

#	Article	IF	CITATIONS
163	High-temperature, high-pressure optical spectroscopic study of ferric-iron-bearing tourmaline. American Mineralogist, 2002, 87, 1148-1153.	1.9	22
164	THE ORIGIN OF COLOR IN "FIRE" OBSIDIAN. Canadian Mineralogist, 2007, 45, 551-557.	1.0	22
165	V3+-bearing, Mg-rich, strongly disordered olenite from a graphite deposit near Amstall, Lower Austria: A structural, chemical and spectroscopic investigation. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2008, 184, 243-253.	0.3	22
166	Stability of hydroxylated minerals on Mars: A study on the effects of exposure to ultraviolet radiation. Journal of Geophysical Research, 1999, 104, 27031-27041.	3. 3	21
167	The water content of nepheline. Mineralogy and Petrology, 1989, 40, 235-240.	1.1	20
168	Observation of surface charge screening and Fermi level pinning on a synthetic, boronâ€doped diamond. Journal of Applied Physics, 1993, 74, 4015-4019.	2.5	20
169	Chapter 13. COLORED VARIETIES OF THE SILICA MINERALS. , 1994, , 433-468.		20
170	Low Voltage FESEM of Geological Materials. Microscopy Today, 2006, 14, 20-23.	0.3	20
171	Hydrogen Incorporation in Natural Mantle Olivines. Geophysical Monograph Series, 0, , 45-56.	0.1	20
172	Darrellhenryite, Na(LiAl2)Al6(BO3)3Si6O18(OH)3O, a new mineral from the tourmaline supergroup. American Mineralogist, 2013, 98, 1886-1892.	1.9	20
173	Bluebellite and mojaveite, two new minerals from the central Mojave Desert, California, USA. Mineralogical Magazine, 2014, 78, 1325-1340.	1.4	20
174	Industrial growth, morphology and some properties of Bi-colored amethyst–citrine quartz (ametrine). Journal of Crystal Growth, 2000, 212, 255-260.	1.5	19
175	DEVITOITE, A NEW HETEROPHYLLOSILICATE MINERAL WITH ASTROPHYLLITE-LIKE LAYERS FROM EASTERN FRESNO COUNTY, CALIFORNIA. Canadian Mineralogist, 2010, 48, 29-40.	1.0	19
176	Synthetic B-rich olenite: Correlations of single-crystal structural data. American Mineralogist, 2012, 97, 1591-1597.	1.9	19
177	Lead-tellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite, Pb2Cu42+Te26+O10(OH)2(SO4)(H2O), a new mineral with thick HCP layers. American Mineralogist, 2013, 98, 1315-1321.	1.9	18
178	Impact-melt hygrometer for Mars: The case of shergottite Elephant Moraine (EETA) 79001. Earth and Planetary Science Letters, 2018, 490, 206-215.	4.4	18
179	Ophirite, Ca2Mg4[Zn2Mn23+(H2O)2(Fe3+W9O34)2]{middle dot}46H2O, a new mineral with a heteropolytungstate tri-lacunary Keggin anion. American Mineralogist, 2014, 99, 1045-1051.	1.9	17
180	Dielectric constants of YVO4, Fe-, Ge-, and V-containing garnets, the polarizabilities of Fe2O3, GeO2, and V2O5, and the oxide additivity rule. Journal of Solid State Chemistry, 1991, 95, 313-318.	2.9	16

#	Article	IF	Citations
181	Hydrogen analysis in minerals by continuous-flow mass spectrometry. American Mineralogist, 2007, 92, 1990-1997.	1.9	16
182	Thermochromic and photochromic behaviour of "chameleon―diamonds. Diamond and Related Materials, 2007, 16, 401-408.	3.9	16
183	Silicon isotope systematics of acidic weathering of fresh basalts, Kilauea Volcano, Hawai'i. Geochimica Et Cosmochimica Acta, 2015, 169, 63-81.	3.9	16
184	Dielectric constants of apatite, epidote, vesuvianite, and zoisite, and the oxide additivity rule. Physics and Chemistry of Minerals, 1992, 19, 157.	0.8	15
185	Laser-induced time-resolved luminescence of orange kyanite Al2SiO5. Optical Materials, 2011, 33, 1476-1480.	3.6	15
186	Lead-tellurium oxysalts from Otto Mountain near Baker, California: XI. Eckhardite, (Ca,Pb)Cu2+Te6+O5(H2O), a new mineral with HCP stair-step layers. American Mineralogist, 2013, 98, 1617-1623.	1.9	15
187	Electronic environments of ferrous iron in rhyolitic and basaltic glasses at high pressure. Journal of Geophysical Research: Solid Earth, 2017, 122, 6306-6322.	3.4	15
188	Micro- and nano-size hydrogarnet clusters and proton ordering in calcium silicate garnet: Part I. The quest to understand the nature of "water―in garnet continues. American Mineralogist, 2020, 105, 455-467.	1.9	15
189	The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups. Mineralogical Magazine, 2013, 77, 2825-2839.	1.4	14
190	Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities. European Journal of Mineralogy, 2016, 28, 163-177.	1.3	14
191	Laser-induced time-resolved luminescence of natural sillimanite Al2SiO5 and synthetic Al2SiO5 activated by chromium. Journal of Luminescence, 2012, 132, 2855-2862.	3.1	13
192	Color in Gems: The New Technologies. Gems & Gemology, 1981, 17, 60-71.	0.6	13
193	Identification of a mid-infrared electronic absorption band of Fe2+ in the distorted M(2) site of Orthopyroxene, (Mg, Fe)SiO3. Chemical Physics Letters, 1976, 41, 474-475.	2.6	12
194	MICRO-ANALYTICAL STUDY OF THE OPTICAL PROPERTIES OF RAINBOW AND SHEEN OBSIDIANS. Canadian Mineralogist, 2001, 39, 57-71.	1.0	12
195	Yttriaite-(Y): The natural occurrence of Y2O3 from the Bol'shaya Pol'ya River, Subpolar Urals, Russia. American Mineralogist, 2011, 96, 1166-1170.	1.9	12
196	VIOLET-COLORED DIOPSIDE FROM SOUTHERN BAFFIN ISLAND, NUNAVUT, CANADA. Canadian Mineralogist, 2000, 38, 1193-1199.	1.0	11
197	Synthesis of a novel strontium-based wide-bandgap semiconductor via X-ray photochemistry under extreme conditions. Journal of Materials Chemistry C, 2018, 6, 12473-12478.	5.5	11
198	1. Analytical Methods for Measuring Water in Nominally Anhydrous Minerals. , 2006, , 1-28.		10

#	Article	IF	Citations
199	Dissymmetrization in tourmaline: the atomic arrangement of sectorally zoned triclinic Ni-bearing dravite. Canadian Mineralogist, 2011, 49, 29-40.	1.0	10
200	Camaronesite, [Fe3+(H2O)2(PO3OH)]2(SO4)·1–2H2O, a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite. Mineralogical Magazine, 2013, 77, 453-465.	1.4	10
201	New Technologies of the 1980s: Their Impact in Gemology. Gems & Gemology, 1990, 26, 64-75.	0.6	10
202	ABSORPTION SPECTROSCOPY OF IONIC AND MOLECULAR UNITS IN CRYSTALS AND GLASSES. , 1975, , 1-38.		9
203	Dielectric constants of topaz, orthoclase and scapolite and the oxide additivity rule. Physics and Chemistry of Minerals, 1992, 19, 166.	0.8	9
204	GREENISH QUARTZ FROM THE THUNDER BAY AMETHYST MINE PANORAMA, THUNDER BAY, ONTARIO, CANADA. Canadian Mineralogist, 2008, 46, 111-124.	1.0	9
205	The dumortierite supergroup. II. Three new minerals from the Szklary pegmatite, SW Poland: Nioboholtite, (Nb _{0.6} â=¡ _{0.4})Al ₆ BSi ₃ O ₁₈ , titanoholtite, (Ti _{0.75} â=¡ _{0.25})Al ₆ BSi ₃ 3O ₁₈ , and szklaryite, â=¡Al ₆ BAs ³⁺ ₃ O ₁₅ . Mineralogical	1.4	9
206	Micro- and nano-size hydrogarnet clusters in calcium silicate garnet: Part II. Mineralogical, petrological, and geochemical aspects. American Mineralogist, 2020, 105, 468-478.	1.9	9
207	Lead-tellurium oxysalts from Otto Mountain near Baker, California, USA: XII. Andychristyite, PbCu ²⁺ Te ⁶⁺ O ₅ (H ₂ O), a new mineral with <i>hcp</i> hcp	1.4	8
208	Heat capacity and entropy behavior of andradite: a multi-sample and â° methodological investigation. European Journal of Mineralogy, 2018, 30, 681-694.	1.3	8
209	Dielectric constants of BaO and melilites and the oxide additivity rule. European Journal of Mineralogy, 1992, 4, 1241-1250.	1.3	8
210	Magnetic Properties of Gem-Quality Synthetic Diamonds. Gems & Gemology, 1984, 20, 163-166.	0.6	8
211	An infrared and 1 H MAS NMR investigation of strong hydrogen bonding in ussingite, Na 2 AlSi 3 O 8 (OH). Physics and Chemistry of Minerals, 2004, 31, 115-121.	0.8	7
212	Joteite, Ca2CuAl[AsO4][AsO3(OH)]2(OH)2·5H2O, a new arsenate with a sheet structure and unconnected acid arsenate groups. Mineralogical Magazine, 2013, 77, 2811-2823.	1.4	7
213	Ramazzoite, [Mg8Cu12(PO4)(CO3)4(OH)24(H2O)20][(H0.33SO4)3(H2O)36], the first mineral with a polyoxometalate cation. European Journal of Mineralogy, 2018, 30, 827-834.	1.3	7
214	Radioactive Irradiated Spodumene. Gems & Gemology, 1982, 18, 87-89.	0.6	7
215	The AnahÃ-Ametrine Mine, Bolivia. Gems & Gemology, 1994, 30, 4-23.	0.6	7
216	Device and method of optically orienting biaxial crystals for sample preparation. Review of Scientific Instruments, 2014, 85, 093105.	1.3	6

#	Article	IF	CITATIONS
217	Vesuvianite From Pajsberg, Sweden, and the Role of Be In the Vesuvianite Structure. Canadian Mineralogist, 2016, 54, 1525-1537.	1.0	6
218	Kyawthuite, Bi3+Sb5+O4, a new gem mineral from Mogok, Burma (Myanmar). Mineralogical Magazine, 2017, 81, 477-484.	1.4	6
219	Bodieite, Bi3+2(Te4+O3)2(SO4), a New Mineral from the Tintic District, Utah, and the Masonic District, California, USA. Canadian Mineralogist, 2018, 56, 763-772.	1.0	6
220	Davidbrownite-(NH ₄), (NH ₄ ,K) ₅ (V ⁴⁺ O) ₂ (C ₂ O ₄)[PO <sub 2019,="" 83,="" 869-877.<="" a="" arizona,="" from="" magazine,="" mine,="" mineral="" mineralogical="" new="" phosphate–oxalate="" rowley="" td="" the="" usa.=""><td>)>2.751.4</td><td>ub> (OH) <su< td=""></su<></td></sub>)>2.751.4	ub> (OH) <su< td=""></su<>
221	Coupled hydrogen and fluorine incorporation in garnet: New constraints from FTIR, ERDA, SIMS, and EPMA. American Mineralogist, 2022, 107, 587-602.	1.9	6
222	Yellow Mn-Rich Tourmaline From The Canary Mining Area, Zambia. Gems & Gemology, 2007, 43, 314-331.	0.6	6
223	Potential protonation sites in the Al2SiO5 polymorphs based on polarized FTIR spectroscopy and properties of the electron density distribution. Physics and Chemistry of Minerals, 2007, 34, 295-306.	0.8	5
224	THE CRYSTAL CHEMISTRY OF THE KORNERUPINE-PRISMATINE SERIES. II. THE ROLE OF HYDROGEN. Canadian Mineralogist, 2009, 47, 263-274.	1.0	5
225	Afmite, Al3(OH)4 (H2O)3(PO4)(PO3OH)· H2O, a new mineral from Fumade, Tarn, France: description and crystal structure. European Journal of Mineralogy, 2011, 23, 269-277.	1.3	5
226	Fluorowardite, NaAl3(PO4)2(OH)2F2{middle dot}2H2O, the fluorine analog of wardite from the Silver Coin mine, Valmy, Nevada. American Mineralogist, 2014, 99, 804-810.	1.9	5
227	Color in Natural Diamonds: The Beauty of Defects. Rocks and Minerals, 2014, 89, 66-75.	0.1	5
228	Å»abiÅ"skiite, ideally Ca(Al _{0.5} Ta _{0.5})(SiO ₄)O, a new mineral of the titanite group from the PiÅ,awa Górna pegmatite, the Góry Sowie Block, southwestern Poland. Mineralogical Magazine, 2017, 81, 591-610.	1.4	5
229	The Chinese red feldspar controversy: Chronology of research through July 2009. Gems & Gemology, 2011, 47, 16-30.	0.6	5
230	Irradiative coloration of quartz and feldspars with application to preparing high-purity mineral separates. Chemical Geology, 1994, 114, 185-189.	3.3	4
231	Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada. American Mineralogist, 2006, 91, 702-705.	1.9	4
232	Wayneburnhamite, Pb ₉ Ca ₆ (Si ₂ O ₇) ₃ (SiO ₄) ₃ an apatite polysome: The Mn-free analog of ganomalite from Crestmore, California. American Mineralogist, 2016, 101, 2423-2429.	ub>	4
233	New minerals in type A inclusions from Allende and clues to processes in the early solar system: Paqueite, Ca ₃ TiSi ₂ (Al,Ti,Si) ₃ O ₁₄ , and burnettite, CaVAlSiO ₆ . Meteoritics and Planetary Science, 2022, 57, 1300-1324.	1.6	4
234	Topology of synthetic, boron-doped diamond by scanning tunneling microscopy. Diamond and Related Materials, 1994, 3, 94-97.	3.9	3

#	Article	lF	CITATIONS
235	Electronic Spectra of Minerals in the Visible and Near-Infrared Regions. , 2019, , 3-20.		3
236	The Nature of the Mn(III) Color Centers in Elbaite Tourmalines. Inorganic Chemistry, 2020, 59, 9618-9626.	4.0	3
237	Micro- and nano-size hydrogrossular-like clusters in pyrope crystals from ultra-high-pressure rocks of the Dora-Maira Massif, western Alps. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	3
238	Response to Comment on "Discovery of davemaoite, CaSiO ₃ -perovskite, as a mineral from the lower mantleâ€. Science, 2022, 376, eabo2029.	12.6	3
239	Pararaisaite, the Dimorph of Raisaite, from the North Star Mine, Tintic, Utah, Usa. Canadian Mineralogist, 2018, 56, 811-820.	1.0	2
240	Determination of the crystallographic orientation of SrI2 crystals. Journal of Crystal Growth, 2018, 498, 263-268.	1.5	2
241	Vanadium-rich Muscovite from Austria: Crystal Structure, Chemical Analysis, and Spectroscopic Investigations. Canadian Mineralogist, 2019, 57, 383-389.	1.0	2
242	Growth and characteristics of some new varieties of coloured quartz single crystals. High Pressure Research, 2001, 20, 219-227.	1.2	1
243	9. Optical Spectroscopy. , 2014, , 371-398.		1
244	2D Materials: The Influence of Water on the Optical Properties of Single-Layer Molybdenum Disulfide (Adv. Mater. 17/2015). Advanced Materials, 2015, 27, 2733-2733.	21.0	1
245	Characterizing Hydration of the Ocean Crust Using Shortwave Infrared Microimaging Spectroscopy of ICDP Oman Drilling Project Cores. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022676.	3.4	1
246	The atomic arrangement and electronic interactions in vonsenite at 295, 100, and 90 K. American Mineralogist, 2022, 107, 92-99.	1.9	0
247	Unstable Radition-Induced Yellow-Green Color in Grossular Garnet. Gems & Gemology, 1992, 28, 188-191.	0.6	0
248	HEAT TREATMENT OF GEM QUALITY ANDRADITE (VAR. DEMANTOID): IS INTERVALENCE CHARGE TRANSFER NECESSARY FOR BROWN COLORATION IN ANDRADITE?., 2017,,.		0