Ali Reza Ghiasvand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4583745/publications.pdf

Version: 2024-02-01

116 papers 3,238 citations

30 h-index 50 g-index

118 all docs

118 docs citations

118 times ranked

2628 citing authors

#	Article	lF	CITATIONS
1	Thread-based isotachophoresis coupled with desorption electrospray ionization mass spectrometry for clean-up, preconcentration, and determination of alkaloids in biological fluids. Analytica Chimica Acta, 2022, 1193, 338810.	5.4	10
2	Mimic Nature Using Chemotaxis of Ionic Liquid Microdroplets for Drug Delivery Purposes. Molecules, 2022, 27, 786.	3.8	2
3	Nanomaterial-assisted thread-based isotachophoresis with on-thread solute trapping. Analyst, The, 2022, 147, 1944-1951.	3.5	5
4	Microextraction techniques for sampling and determination of polychlorinated biphenyls: A comprehensive review. Microchemical Journal, 2022, 179, 107442.	4.5	8
5	The comparison of two microextraction methods for the determination of safranal from Iranian saffron. , 2022, , 100021.		O
6	Headspace solidâ€phase microextraction sampling of endogenous aldehydes in biological fluids using a magnetic metalâ€organic framework/polyaniline nanocomposite. Journal of Separation Science, 2021, 44, 1130-1139.	2.5	8
7	A fast and simple method for determination of β-carotene in commercial fruit juice by cloud point extraction-cold column trapping combined with UV–Vis spectrophotometry. Food Chemistry, 2021, 343, 128481.	8.2	12
8	Applications of nanomaterials in ambient ionization mass spectrometry. TrAC - Trends in Analytical Chemistry, 2021, 136, 116202.	11.4	14
9	Optimization of smartphone-based on-site-capable uranium analysis in water using a 3D printed microdevice. Analytical and Bioanalytical Chemistry, 2021, 413, 3243-3251.	3.7	9
10	Data handling and data analysis in metabolomic studies of essential oils using GC-MS. Journal of Chromatography A, 2021, 1640, 461896.	3.7	17
11	Small-Footprint, Field-Deployable LC/MS System for On-Site Analysis of Per- and Polyfluoroalkyl Substances in Soil. Analytical Chemistry, 2021, 93, 12032-12040.	6.5	13
12	Fabrication and evaluation of a portable low-pressure headspace solid-phase microextraction device for on-site analysis. Microchemical Journal, 2021, 168, 106362.	4.5	8
13	Biomass-derived carbon nanospheres decorated by manganese oxide nanosheets, intercalated into polypyrrole, as an inside-needle capillary adsorption trap sorbent for the analysis of linear alkylbenzenes. Talanta, 2021, 233, 122583.	5.5	3
14	Microextraction and Determination of Poly- and Perfluoroalkyl Substances, Challenges, and Future Trends. Critical Reviews in Analytical Chemistry, 2021, , 1-20.	3.5	0
15	A review on magnetic field-assisted solid-phase microextraction techniques. Journal of Liquid Chromatography and Related Technologies, 2020, 43, 75-82.	1.0	14
16	A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchemical Journal, 2020, 152, 104319.	4.5	165
17	Random Forests machine learning applied to gas chromatography – Mass spectrometry derived average mass spectrum data sets for classification and characterisation of essential oils. Talanta, 2020, 208, 120471.	5.5	29
18	New extraction media in microextraction techniques. A review of reviews. Microchemical Journal, 2020, 153, 104386.	4.5	57

#	Article	IF	CITATIONS
19	Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications. Analytica Chimica Acta, 2020, 1139, 222-240.	5.4	66
20	Magnetic field-assisted solid-phase extraction of nucleoside drugs using Fe ₃ O ₄ @PANI core/shell nanocomposite. Journal of Liquid Chromatography and Related Technologies, 2020, 43, 733-741.	1.0	2
21	Thread-based isoelectric focusing coupled with desorption electrospray ionization mass spectrometry. Analyst, The, 2020, 145, 6928-6936.	3.5	12
22	Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchemical Journal, 2020, 157, 104967.	4.5	51
23	Characterisation of complex perfume and essential oil blends using multivariate curve resolution-alternating least squares algorithms on average mass spectrum from GC-MS. Talanta, 2020, 219, 121208.	5.5	7
24	Cooling assisted headspace microextraction by packed sorbent coupled to HPLC for the determination of volatile polycyclic aromatic hydrocarbons in soil. Analytica Chimica Acta, 2020, 1125, 128-134.	5.4	19
25	An ultrasound-assisted pressure-regulated solid-phase microextraction setup for fast and sensitive analysis of volatile pollutants in contaminated soil. Environmental Science and Pollution Research, 2020, 27, 36306-36315.	5.3	8
26	Nanostructured octadecylsilica chemically coated stainless-steel fiber for vacuum-assisted HS-SPME sampling of PAHs in soil. Microchemical Journal, 2020, 158, 105201.	4.5	9
27	Chromium-Based Polypyrrole/MIL-101 Nanocomposite as an Effective Sorbent for Headspace Microextraction of Methyl tert-Butyl Ether in Soil Samples. Molecules, 2020, 25, 644.	3.8	6
28	Heating-, Cooling- and Vacuum-Assisted Solid-Phase Microextraction (HCV-SPME) for Efficient Sampling of Environmental Pollutants in Complex Matrices. Chromatographia, 2020, 83, 531-540.	1.3	23
29	Fused-silica capillary internally modified with nanostructured octadecyl silica for dynamic in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from aqueous media. Microchemical Journal, 2020, 155, 104672.	4.5	19
30	Design and optimization of the VA-TV-SPME method for ultrasensitive determination of the PAHs in polluted water. Talanta, 2020, 212, 120809.	5.5	31
31	Bioanalytical Applications of Microextraction Techniques: A Review of Reviews. Chromatographia, 2020, 83, 567-577.	1.3	26
32	Liquid-phase microextraction of polycyclic aromatic hydrocarbons: A review. Reviews in Analytical Chemistry, 2020, 39, 1-19.	3.2	31
33	Simultaneous analysis of PAHs and BTEX in soil by a needle trap device coupled with GC-FID and using response surface methodology involving Box-Behnken design. Analytica Chimica Acta, 2019, 1083, 119-129.	5.4	41
34	Reduced-Pressure Fiber-in-Needle Sampling of Aldehydes for Room Temperature Assessment of Edible Oils' Oxidative Stability. Chromatographia, 2019, 82, 1405-1414.	1.3	3
35	Preparation of Carbotrap/silica composite for needle trap field sampling of halogenated volatile organic compounds followed by gas chromatography/mass spectrometry determination. Journal of Environmental Health Science & Engineering, 2019, 17, 1045-1053.	3.0	5
36	Enrichment and Separation of Cationic, Neutral, and Chiral Analytes by Micelle to Cyclodextrin Stacking–Micellar Electrokinetic Chromatography. Analytical Chemistry, 2019, 91, 1752-1757.	6.5	25

#	Article	IF	CITATIONS
37	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016–2018). Electrophoresis, 2019, 40, 17-39.	2.4	113
38	Chemometrics-assisted investigation of interactions of Tasmar with human serum albumin at a glassy carbon disk: Application to electrochemical biosensing of electro-inactive serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 2018, 156, 23-35.	2.8	35
39	Evaluation of a cooling/heating-assisted microextraction instrument using a needle trap device packed with aminosilica/graphene oxide nanocomposites, covalently attached to cotton. Analyst, The, 2018, 143, 2632-2640.	3.5	19
40	Ultrasensitive direct determination of BTEX in polluted soils using a simple and novel pressure-controlled solid-phase microextraction setup. Journal of the Iranian Chemical Society, 2018, 15, 1051-1059.	2.2	15
41	Comparison of the atmospheric- and reduced-pressure HS-SPME strategies for analysis of residual solvents in commercial antibiotics using a steel fiber coated with a multiwalled carbon nanotube/polyaniline nanocomposite. Analytical and Bioanalytical Chemistry, 2018, 410, 361-371.	3.7	23
42	A comparison study on a sulfonated graphene-polyaniline nanocomposite coated fiber for analysis of nicotine in solid samples through the traditional and vacuum-assisted HS-SPME. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 271-277.	2.8	34
43	Magnetic Field-Assisted Direct Immersion SPME of Endogenous Aldehydes in Human Urine. Chromatographia, 2018, 81, 1579-1587.	1.3	13
44	Iron oxide/silica/polypyrrole nanocomposite sorbent for the comparison study of direct-immersion and headspace solid-phase microextraction of aldehyde biomarkers in human urine. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 37-44.	2.8	23
45	Comparison of the Conventional and Electroenhanced Direct-Immersion Solid-Phase Microextraction for Sampling of Nicotine in Biological Fluids of the Human Body. Molecules, 2018, 23, 1171.	3.8	6
46	Evaluation of polypyrrole/silver/polyethylene glycol nanocomposite sorbent for electroenhanced direct-immersion solid-phase microextraction of carvacrol and thymol from medicinal plants. Journal of the Iranian Chemical Society, 2018, 15, 2585-2592.	2.2	10
47	Synthesis and characterization of MlLâ€101(Cr) intercalated by polyaniline composite, doped with silica nanoparticles and its evaluation as an efficient solidâ€phase extraction sorbent. Journal of Separation Science, 2018, 41, 3910-3917.	2.5	13
48	Application of needle trap device packed with Amberlite XAD-2 resin prepared by sol-gel method for reproducible sampling of aromatic amines in air. Microchemical Journal, 2018, 143, 127-132.	4.5	14
49	A Needle Trap Device Packed with Nanoporous Silica Sorbents for Separation and Gas Chromatographic Determination of Polycyclic Aromatic Hydrocarbons in Contaminated Soils. Journal of Chromatographic Science, 2018, 56, 771-778.	1.4	13
50	Single-step reinforced microextraction of polycyclic aromatic hydrocarbons from soil samples using an inside needle capillary adsorption trap with electropolymerized aniline/multi-walled carbon nanotube sorbent. Journal of Chromatography A, 2017, 1487, 47-53.	3.7	24
51	Separation and sensitive determination of quercetin in Rosa canina L. using solidified floating organic drop microextraction followed by high-performance liquid chromatography determination. Journal of the Iranian Chemical Society, 2017, 14, 1113-1118.	2.2	5
52	Determination of BTEX in urine samples using cooling/heating-assisted headspace solid-phase microextraction. Chemical Papers, 2017, 71, 1829-1838.	2.2	17
53	Amino-silica/graphene oxide nanocomposite coated cotton as an efficient sorbent for needle trap device. Analytica Chimica Acta, 2017, 975, 11-19.	5.4	46
54	A platinized stainless steel fiber with <i>inâ€situ</i> coated polyaniline/polypyrrole/graphene oxide nanocomposite sorbent for headspace solidâ€phase microextraction of aliphatic aldehydes in rice samples. Biomedical Chromatography, 2017, 31, e4024.	1.7	11

#	Article	IF	CITATIONS
55	Reinforced microextraction of polycyclic aromatic hydrocarbons from polluted soil samples using an in-needle coated fiber with polypyrrole/graphene oxide nanocomposite. Journal of Separation Science, 2017, 40, 2975-2983.	2.5	19
56	Determination of benzene, toluene, ethylbenzene and xylene in field and laboratory by means of cold fiber SPME equipped with thermoelectric cooler and GC/FID method. Polish Journal of Chemical Technology, 2017, 19, 9-15.	0.5	7
57	Simple, Low-Cost and Reliable Device for Vacuum-Assisted Headspace Solid-Phase Microextraction of Volatile and Semivolatile Compounds from Complex Solid Samples. Chromatographia, 2017, 80, 1771-1780.	1.3	30
58	Development of Carbotrap B-packed needle trap device for determination of volatile organic compounds in air. Journal of Chromatography A, 2017, 1527, 33-42.	3.7	26
59	A high area, porous and resistant platinized stainless steel fiber coated by nanostructured polypyrrole for direct HS-SPME of nicotine in biological samples prior to GC-FID quantification. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1061-1062, 5-10.	2.3	20
60	Use of volatile organic solvents in headspace liquidâ€phase microextraction by direct cooling of the organic drop using a simple cooling capsule. Journal of Separation Science, 2016, 39, 3011-3018.	2.5	8
61	A new optical sensor for selective quantitation of uranium by the immobilization of arsenazo III on an agarose membrane. Analytical Methods, 2016, 8, 4181-4187.	2.7	7
62	Cooling-Assisted Headspace Hollow Fiber-Based Liquid-Phase Microextraction Setup for Direct Determination of PAHs in Solid Samples by Using Volatile Solvents. Chromatographia, 2016, 79, 1187-1195.	1.3	15
63	Spherical agarose-coated magnetic nanoparticles functionalized with a new salen for magnetic solid-phase extraction of uranyl ion. Mikrochimica Acta, 2016, 183, 2449-2455.	5.0	8
64	Cooling-assisted microextraction: Comparison of techniques and applications. TrAC - Trends in Analytical Chemistry, 2016, 77, 54-65.	11.4	39
65	Direct determination of acrylamide in potato chips by using headspace solid-phase microextraction coupled with gas chromatography-flame ionization detection. Talanta, 2016, 146, 417-422.	5.5	44
66	Development of Solid Phase Microextraction for Determination of Carbon tetrachloride and Chloroform in Air by Gas Chromatography-Mass Spectrometry. MuhandisÄ«-i BihdÄsht-i ḥirfah/Ä«, 2016, 3, 17-24.	0.2	0
67	The Effects of Environmental Parameters on Air Sampling with SPME from Halogenated Hydrocarbons. Health Scope, 2016, 6, .	0.6	0
68	The Effects of Environmental Parameters on Air Sampling with SPME from Halogenated Hydrocarbons. Health Scope, 2016, In press, .	0.6	0
69	Application of graphene nanoplatelets silica composite, prepared by sol-gel technology, as a novel sorbent in two microextraction techniques. Journal of Separation Science, 2015, 38, 4225-4232.	2.5	24
70	A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey. Journal of Chromatography A, 2015, 1406, 87-93.	3.7	82
71	Cooling/heating-assisted headspace solid-phase microextraction of polycyclic aromatic hydrocarbons from contaminated soils. Analytica Chimica Acta, 2015, 900, 56-66.	5.4	47
72	Comparison of Ultrasound-Assisted Headspace Solid-Phase Microextraction and Hydrodistillation for the Identification of Major Constituents in Two Species of Hypericum. Journal of Chromatographic Science, 2015, 54, bmv136.	1.4	9

#	Article	IF	Citations
73	Graphene packed needle trap device as a novel field sampler for determination of perchloroethylene in the air of dry cleaning establishments. Talanta, 2015, 131, 142-148.	5.5	34
74	Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: equilibrium, kinetic, and thermodynamic study. Desalination and Water Treatment, 2015, 55, 252-262.	1.0	54
75	Highly sensitive and selective determination of uranium in natural waters through a novel solidified floating organic drop microextraction method coupled with spectrophotometric determination. Analytical Methods, 2014, 6, 5992-5998.	2.7	15
76	Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane. Chemical Papers, 2013 , 67 , .	2.2	14
77	SPME-based air sampling method for inhalation exposure assessment studies: case study on perchlorethylene exposure in dry cleaning. Environmental Monitoring and Assessment, 2013, 185, 4933-4941.	2.7	9
78	A needle trap device packed with a sol–gel derived, multi-walled carbon nanotubes/silica composite for sampling and analysis of volatile organohalogen compounds in air. Analytica Chimica Acta, 2013, 785, 67-74.	5 . 4	49
79	A Simple Device for Collection of Extraction Phase in Dispersive Liquid-Liquid Microextraction Method Based on Solidification of Floating Organic Droplet for Sensitive Determination of Curcumin in Human Serum. Analytical Chemistry Letters, 2013, 3, 92-101.	1.0	4
80	Determination of Inhalational Anesthetics in Field and Laboratory by SPME GC/MS. Analytical Letters, 2012, 45, 375-385.	1.8	8
81	Field application of SPME as a novel tool for occupational exposure assessment with inhalational anesthetics. Environmental Monitoring and Assessment, 2012, 184, 6483-6490.	2.7	17
82	A novel needle trap device with single wall carbon nanotubes sol–gel sorbent packed for sampling and analysis of volatile organohalogen compounds in air. Talanta, 2012, 101, 314-321.	5 . 5	42
83	Preparation of a New Solidâ€Phase Microextraction Fiber by Coating Silylated Nanoporous Silica on a Copper Wire. Journal of the Chinese Chemical Society, 2012, 59, 727-732.	1.4	12
84	Comparison of Headspace Solidâ€phase Microextraction, Headspace Singleâ€drop Microextraction and Hydrodistillation for Chemical Screening of Volatiles in <i>Myrtus Communis</i> L. Phytochemical Analysis, 2012, 23, 379-386.	2.4	31
85	Reversed-Phase Dispersive Liquid-Liquid Microextraction with Multivariate Optimization for Sensitive HPLC Determination of Tyrosol and Hydroxytyrosol in Olive Oil. Analytical Sciences, 2011, 27, 943.	1.6	27
86	Chemical Characterization of Cultivated Tagetes minuta L. by Use of Ultrasound-Assisted Head Space SPME and GC–MS. Chromatographia, 2011, 73, 1031-1035.	1.3	28
87	CMK-3 nanoporous carbon as a new fiber coating for solid-phase microextraction coupled to gas chromatography–mass spectrometry. Analytica Chimica Acta, 2011, 695, 58-62.	5.4	44
88	Selective homogeneous liquid-liquid extraction and preconcentration of copper(II) into a micro droplet using a benzo-substituted macrocyclic diamide, and its determination by electrothermal atomic absorption spectrometry. Mikrochimica Acta, 2010, 168, 115-121.	5.0	18
89	A study of the effects of cultivation variety, collection time, and climate on the amount of oleuropein in olive leaves. Acta Chromatographica, 2010, 22, 133-140.	1.3	17
90	Survey of iron, zinc, calcium, copper, lead, and cadmium in rice samples grown in Iran. Food Additives and Contaminants: Part B Surveillance, 2010, 3, 80-83.	2.8	29

#	Article	IF	Citations
91	Reversed-phase dispersive liquid–liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein. Talanta, 2010, 80, 1926-1931.	5.5	82
92	Development of a simple device for dispersive liquid–liquid microextraction with lighter than water organic solvents: Isolation and enrichment of glycyrrhizic acid from licorice. Analytica Chimica Acta, 2009, 655, 60-65.	5.4	110
93	Experimental and computational study on the aqueous acidity constants of some new aminobenzoic acid compounds. Journal of Molecular Liquids, 2009, 149, 60-65.	4.9	10
94	Amino ethyl-functionalized nanoporous silica as a novel fiber coating for solid-phase microextraction. Analytica Chimica Acta, 2009, 646, 1 -5.	5.4	114
95	A Comparative Study of Hydrodistillation and Hydrodistillation–Solvent Microextraction Methods for Identification of Volatile Components of Echinophora cinerea. Chromatographia, 2009, 69, 179-182.	1.3	15
96	Study of the Essential Oil Composition of Cumin Seeds by an Amino Ethyl-Functionalized Nanoporous SPME Fiber. Chromatographia, 2009, 70, 1147-1151.	1.3	33
97	Headspace-solvent microextraction for identification of volatile components of Myrtus communisL Acta Chromatographica, 2009, 21, 139-149.	1.3	5
98	Headspace microextraction of tin into an aqueous microdrop containing pd(II) and tributyl phosphate for its determination by ETAAS. Journal of the Brazilian Chemical Society, 2007, 18, 1145-1149.	0.6	5
99	Determination of flavour profile in Iranian fragrant rice samples using cold-fibre SPME–GC–TOF–MS. Flavour and Fragrance Journal, 2007, 22, 377-391.	2.6	64
100	New cold-fiber headspace solid-phase microextraction device for quantitative extraction of polycyclic aromatic hydrocarbons in sediment. Journal of Chromatography A, 2006, 1124, 35-42.	3.7	121
101	Determination of Silver(I) by Electrothermal-AAS in a Microdroplet Formed from a Homogeneous Liquid-Liquid Extraction System Using Tetraspirocyclohexylcalix[4]pyrroles. Analytical Sciences, 2005, 21, 387-390.	1.6	28
102	Preparation of a Novel Agarose-Salen Adsorbent, and its Use for Efficient Column Preconcentration and Flame AAS Determination of Lead in Water. Mikrochimica Acta, 2005, 150, 147-151.	5.0	15
103	Homogeneous liquid–liquid extraction method for the selective separation and preconcentration of ultra trace molybdenum. Talanta, 2005, 66, 912-916.	5.5	107
104	Synthesis of a New $\hat{l}\pm$ -Dioxime Derivative and Its Application for Selective Homogeneous Liquid-Liquid Extraction of Cu(II) into a Microdroplet Followed by Direct GFAAS Determination. Bulletin of the Korean Chemical Society, 2005, 26, 781-785.	1.9	11
105	Solubilities of Chelating Ligands Dibenzoylmethane, 1,10-Phenanthroline, and 8-Hydroxyquinoline in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2004, 49, 1483-1486.	1.9	10
106	Selective preconcentration of ultra trace copper(II) using octadecyl silica membrane disks modified by a recently synthesized glyoxime derivative. Talanta, 2004, 62, 287-292.	5.5	60
107	Homogeneous Liquid-Liquid Extraction of Uranium(VI) Using Tri-n-octylphosphine Oxide. Analytical Sciences, 2004, 20, 917-919.	1.6	29
108	Preconcentration of Ultra Trace Hg(li) in Aqueous Samples on Octadecyl Silica Membrane Disks Modified by Dibenzodiazathia-18-Crown-6-Dione and Its Determination by Cold Vapor Atomic Absorption Spectrometry. International Journal of Environmental Analytical Chemistry, 2002, 82, 23-30.	3.3	18

7

#	ARTICLE	IF	CITATION
109	Solubility determination of nitrophenol derivatives in supercritical carbon dioxide. Journal of Supercritical Fluids, 2002, 23, 225-231.	3.2	29
110	Solubilities of Some 9-Anthrone Derivatives in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2001, 46, 1371-1374.	1.9	16
111	Extraction of uranium from solid matrices using modified supercritical fluid CO2. Journal of Supercritical Fluids, 2001, 20, 163-169.	3.2	56
112	Solid phase extraction of ultra trace copper(II) using octadecyl silica membrane disks modified by a naphthol-derivative Schiff's base. Analytica Chimica Acta, 2000, 408, 271-277.	5.4	97
113	Solubilities of Some Hydroxyxanthone Derivatives in Supercritical Carbon Dioxide. Journal of Chemical & Chemic	1.9	25
114	Solid-Phase Extraction of Ultratrace Uranium(VI) in Natural Waters Using Octadecyl Silica Membrane Disks Modified by Tri-n-octylphosphine Oxide and Its Spectrophotometric Determination with Dibenzoylmethane. Analytical Chemistry, 1999, 71, 4892-4895.	6.5	123
115	Flow injection spectrophotometric determination of trace amounts of selenium. Talanta, 1998, 46, 1011-1017.	5.5	22
116	Electro-enhanced Ion Transport through Bulk-Liquid Membrane. International Journal of Electrochemical Science, 0, , 8561-8570.	1.3	0