
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4583732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of surface tension and drying time on inkjet-printed PEDOT:PSS for ITO-free OLED devices. Journal of Science: Advanced Materials and Devices, 2022, 7, 100394.	1.5	15
2	Chemical insights into perovskite ink stability. CheM, 2022, 8, 31-45.	5.8	19
3	Correlating the chemical structure and charge transport ability of dibenzofulvene-based hole transporting materials for stable perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 5981-5993.	2.7	4
4	Perovskite Single rystal Solar Cells: Advances and Challenges. Solar Rrl, 2022, 6, .	3.1	19
5	Two-step MAPbI ₃ deposition by low-vacuum proximity-space-effusion for high-efficiency inverted semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 16456-16469.	5.2	25
6	Improved Photostability in Fluorinated 2D Perovskite Single Crystals. Nanomaterials, 2021, 11, 465.	1.9	8
7	Implication of polymeric template agent on the formation process of hybrid halide perovskite films. Nanotechnology, 2021, 32, 265707.	1.3	13
8	Methylammonium-formamidinium reactivity in aged organometal halide perovskite inks. Cell Reports Physical Science, 2021, 2, 100432.	2.8	18
9	Inclusion of 2D Transition Metal Dichalcogenides in Perovskite Inks and Their Influence on Solar Cell Performance. Nanomaterials, 2021, 11, 1706.	1.9	7
10	Electronic transport, ionic activation energy and trapping phenomena in a polymer-hybrid halide perovskite composite. Journal of Science: Advanced Materials and Devices, 2021, 6, 543-550.	1.5	6
11	An Insight into Chemistry and Structure of Colloidal 2D-WS2 Nanoflakes: Combined XPS and XRD Study. Nanomaterials, 2021, 11, 1969.	1.9	22
12	Robust, High-Performing Maize–Perovskite-Based Solar Cells with Improved Stability. ACS Applied Energy Materials, 2021, 4, 11194-11203.	2.5	11
13	Managing transparency through polymer/perovskite blending: A route toward thermostable and highly efficient, semi-transparent solar cells. Nano Energy, 2021, 89, 106406.	8.2	20
14	Photoluminescence emission induced by localized states in halide-passivated colloidal two-dimensional WS ₂ nanoflakes. Journal of Materials Chemistry C, 2021, 9, 2398-2407.	2.7	3
15	Polymerâ€Assisted Single‣tep Slotâ€Đie Coating of Flexible Perovskite Solar Cells at Mild Temperature from Dimethyl Sulfoxide. ChemPlusChem, 2021, 86, 1442-1450.	1.3	16
16	Managing Growth and Dimensionality of Quasi 2D Perovskite Singleâ€Crystalline Flakes for Tunable Excitons Orientation. Advanced Materials, 2021, 33, e2102326.	11.1	20
17	Production and Characterization of Polyethylene Terephthalate Nanoparticles. Polymers, 2021, 13, 3745.	2.0	20
18	One-step polymer assisted roll-to-roll gravure-printed perovskite solar cells without using anti-solvent bathing. Cell Reports Physical Science, 2021, 2, 100639.	2.8	23

#	Article	IF	CITATIONS
19	Exploring the role of halide mixing in lead-free BZA ₂ SnX ₄ two dimensional hybrid perovskites. Journal of Materials Chemistry A, 2020, 8, 1875-1886.	5.2	21
20	Highly Efficient All-Solid-State WO ₃ -Perovskite Photovoltachromic Cells for Single-Glass Smart Windows. ACS Applied Energy Materials, 2020, 3, 10453-10462.	2.5	19
21	The Effect of Extended Ball-Milling upon Three-Dimensional and Two-Dimensional Perovskite Crystals Properties. Applied Sciences (Switzerland), 2020, 10, 4775.	1.3	8
22	Simple Processing Additive-Driven 20% Efficiency for Inverted Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 18431-18436.	4.0	12
23	Biodegradable Carbon-based Ashes/Maize Starch Composite Films for Agricultural Applications. Polymers, 2020, 12, 524.	2.0	17
24	One-step synthesis at room temperature of low dimensional perovskite single crystals with high optical quality. Journal of Luminescence, 2020, 221, 117079.	1.5	10
25	Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells. Metals, 2020, 10, 14.	1.0	9
26	In-plane Aligned Colloidal 2D WS2 Nanoflakes for Solution-Processable Thin Films with High Planar Conductivity. Scientific Reports, 2019, 9, 9002.	1.6	16
27	Quantum Nature of Light in Nonstoichiometric Bulk Perovskites. ACS Nano, 2019, 13, 10711-10716.	7.3	2
28	Mechanistic insight into the formation of colloidal WS ₂ nanoflakes in hot alkylamine media. Nanoscale Advances, 2019, 1, 2772-2782.	2.2	5
29	Rheological Tunability of Perovskite Precursor Solutions: From Spin Coating to Inkjet Printing Process. Nanomaterials, 2019, 9, 582.	1.9	31
30	Synthesis, Properties, and Modeling of Cs _{1–<i>x</i>} Rb <i>_x</i> SnBr ₃ Solid Solution: A New Mixed-Cation Lead-Free All-Inorganic Perovskite System. Chemistry of Materials, 2019, 31, 3527-3533.	3.2	30
31	Optimizing the Interface between Hole Transporting Material and Nanocomposite for Highly Efficient Perovskite Solar Cells. Nanomaterials, 2019, 9, 1627.	1.9	23
32	Investigating temperature-induced structural changes of lead halide perovskites by <i>in situ</i> X-ray powder diffraction. Journal of Applied Crystallography, 2019, 52, 1104-1118.	1.9	4
33	Addressing the Function of Easily Synthesized Hole Transporters in Direct and Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1069-1076.	2.5	33
34	Connecting the solution chemistry of PbI ₂ and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites. Chemical Science, 2018, 9, 3200-3208.	3.7	55
35	GO/glucose/PEDOT:PSS ternary nanocomposites for flexible supercapacitors. Composites Part B: Engineering, 2018, 148, 149-155.	5.9	37
36	Room-temperature processed films of colloidal carved rod-shaped nanocrystals of reduced tungsten oxide as interlayers for perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 11396-11404.	1.3	12

#	Article	IF	CITATIONS
37	Direct or Indirect Bandgap in Hybrid Lead Halide Perovskites?. Advanced Optical Materials, 2018, 6, 1701254.	3.6	54
38	Ambient condition retention of band-gap tuning in MAPbI ₃ induced by high pressure quenching. Chemical Communications, 2018, 54, 13212-13215.	2.2	21
39	Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells. Nano Energy, 2018, 54, 400-408.	8.2	60
40	Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off. Scientific Reports, 2018, 8, 15496.	1.6	42
41	Tunable Out-of-Plane Excitons in 2D Single-Crystal Perovskites. ACS Photonics, 2018, 5, 4179-4185.	3.2	67
42	Light-Induced Formation of Pb ³⁺ Paramagnetic Species in Lead Halide Perovskites. ACS Energy Letters, 2018, 3, 1840-1847.	8.8	28
43	Sequential deposition of hybrid halide perovskite starting both from lead iodide and lead chloride on the most widely employed substrates. Thin Solid Films, 2018, 657, 110-117.	0.8	5
44	Biodegradable extruded thermoplastic maize starch for outdoor applications. Journal of Thermal Analysis and Calorimetry, 2018, 134, 549-558.	2.0	11
45	Elucidating the effect of the lead iodide complexation degree behind the morphology and performance of perovskite solar cells. Nanoscale, 2017, 9, 3889-3897.	2.8	26
46	GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties. Nanotechnology, 2017, 28, 174001.	1.3	14
47	Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2017, 7, 1602600.	10.2	78
48	Rheological and physical characterization of <scp>PEDOT</scp> : <scp>PSS</scp> /graphene oxide nanocomposites for perovskite solar cells. Polymer Engineering and Science, 2017, 57, 546-552.	1.5	25
49	Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7, 44629.	1.6	175
50	Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes. Applied Physics Letters, 2017, 111, .	1.5	18
51	Rational Design of Molecular Hole-Transporting Materials for Perovskite Solar Cells: Direct versus Inverted Device Configurations. ACS Applied Materials & Interfaces, 2017, 9, 24778-24787.	4.0	71
52	PEDOT:PSS/GO nanocomposites: Determination of the aspect ratio by indirect measurements. AIP Conference Proceedings, 2016, , .	0.3	0
53	Carbon nanotube—Based cold cathodes: Field emission angular properties and temporal stability. Journal of Applied Physics, 2016, 120, 164305.	1.1	3
54	Rod-coil block copolymer as nanostructuring compatibilizer for efficient CdSe NCs/PCPDTBT hybrid solar cells. European Polymer Journal, 2016, 78, 352-363.	2.6	12

#	Article	IF	CITATIONS
55	Engineering TiO ₂ /Perovskite Planar Heterojunction for Hysteresis‣ess Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600493.	1.9	24
56	Cooperative Effect of GO and Glucose on PEDOT:PSS for High <i>V</i> _{OC} and Hysteresisâ€Free Solutionâ€Processed Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 6985-6994.	7.8	61
57	Covalently Functionalized SWCNTs as Tailored p-Type Dopants for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 27966-27973.	4.0	38
58	The Bright Side of Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 4322-4334.	2.1	115
59	Mastering heterostructured colloidal nanocrystal properties for light-emitting diodes and solar cells. Journal of Materials Chemistry C, 2016, 4, 6430-6446.	2.7	23
60	Charge Carrier Generation and Extraction in Hybrid Polymer/Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2016, 120, 14356-14364.	1.5	5
61	UV Reduced Graphene Oxide PEDOT:PSS Nanocomposite for Perovskite Solar Cells. IEEE Nanotechnology Magazine, 2016, 15, 725-730.	1.1	19
62	Polymer Nanocomposites based on in situ reduced graphene oxide for photovoltaic applications in in innovative hybrid solar cells. , 2015, , .		0
63	X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method. Vacuum, 2015, 119, 159-162.	1.6	39
64	Molecularâ€Level Switching of Polymer/Nanocrystal Nonâ€Covalent Interactions and Application in Hybrid Solar Cells. Advanced Functional Materials, 2015, 25, 111-119.	7.8	50
65	NiO/MAPbI _{3-x} Cl _{<i>x</i>} /PCBM: A Model Case for an Improved Understanding of Inverted Mesoscopic Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 4283-4289.	4.0	59
66	Growing perovskite into polymers for easy-processable optoelectronic devices. Scientific Reports, 2015, 5, 7725.	1.6	78
67	Role of Polymer in Hybrid Polymer/PbS Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2015, 119, 14972-14979.	1.5	43
68	Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1628-1637.	2.1	78
69	In Situ X-ray Absorption Spectroscopy–X-ray Diffraction Investigation of Nb–H Nanoclusters in MgH ₂ during Hydrogen Desorption. Journal of Physical Chemistry C, 2015, 119, 7765-7770.	1.5	9
70	Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale, 2015, 7, 18956-18963.	2.8	80
71	Implications of TiO ₂ surface functionalization on polycrystalline mixed halide perovskite films and photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 20811-20818.	5.2	31
72	Synthesis of Reduced Graphite Oxide by a Novel Green Process Based on UV Light Irradiation. Science of Advanced Materials, 2015, 7, 2445-2451.	0.1	9

#	Article	IF	CITATIONS
73	MAPbl _{3-x} Cl _x mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Materials Research Society Symposia Proceedings, 2014, 1667, 41.	0.1	4
74	Investigating Charge Dynamics in Halide Perovskite Sensitized Mesostructured Solar Cells. Materials Research Society Symposia Proceedings, 2014, 1667, 7.	0.1	2
75	Surface chemistry of arenethiolate-capped PbS quantum dots and application as colloidally stable photovoltaic ink. Thin Solid Films, 2014, 560, 2-9.	0.8	9
76	Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells. Energy and Environmental Science, 2014, 7, 1889-1894.	15.6	151
77	Room-temperature treatments for all-inorganic nanocrystal solar cell devices. Thin Solid Films, 2014, 560, 44-48.	0.8	4
78	Three-Dimensional Self-Assembly of Networked Branched TiO2 Nanocrystal Scaffolds for Efficient Room-Temperature Processed Depleted Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5026-5033.	4.0	7
79	Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 3532-3538.	2.1	175
80	Carbon-Nanotubes Field Emitter to be Used in Advanced X-ray Source. , 2014, , 358-365.		1
81	MAPbl _{3-x} Cl _{<i>x</i>} Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials, 2013, 25, 4613-4618.	3.2	732
82	All-donor poly(arylene-ethynylene)s containing anthracene and silole-based units: Synthesis, electronic, and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 4860-4872.	2.5	14
83	Pulsed laser deposition of a dense and uniform Au nanoparticles layer for surface plasmon enhanced efficiency hybrid solar cells. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	20
84	Fabrication of flexible all-inorganic nanocrystal solar cells by room-temperature processing. Energy and Environmental Science, 2013, 6, 1565.	15.6	29
85	Colloidal Arenethiolate-Capped PbS Quantum Dots: Optoelectronic Properties, Self-Assembly, and Application in Solution-Cast Photovoltaics. Journal of Physical Chemistry C, 2013, 117, 13305-13317.	1.5	112
86	Poly-(3-hexylthiophene)/[6,6]-phenyl-C61-butyric-acid-methyl-ester bilayer deposition by matrix-assisted pulsed laser evaporation for organic photovoltaic applications. Applied Physics Letters, 2012, 100, 073306.	1.5	53
87	Revisiting the Yb electronic structure with low-energy photoemission spectroscopy. Physical Review B, 2012, 85, .	1.1	2
88	Improved photovoltaic performances by post-deposition acidic treatments on tetrapod shaped colloidal nanocrystal solids. Nanotechnology, 2012, 23, 305403.	1.3	11
89	Bulk Heterojunction versus Diffused Bilayer: The Role of Device Geometry in Solution p-Doped Polymer-Based Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 1908-1915.	2.1	51
90	Light energy harvesting with nano-dipoles. Nanoscale, 2012, 4, 1728.	2.8	8

#	Article	IF	CITATIONS
91	Synthesis and Photovoltaic Properties of Regioregular Head-to-Head Substituted Thiophene Hexadecamers. Macromolecules, 2012, 45, 8284-8291.	2.2	22
92	Organic photovoltaic devices with colloidal TiO2 nanorods as key functional components. Physical Chemistry Chemical Physics, 2012, 14, 3987.	1.3	21
93	Angular distribution of field emitted electrons from vertically aligned carbon nanotube arrays. Applied Physics Letters, 2012, 100, .	1.5	8
94	Monodispersed vs. polydispersed systems for bulk heterojunction solar cells: the case of dithienopyrrole/anthracene based materials. Journal of Materials Chemistry, 2012, 22, 19752.	6.7	26
95	Graded vertical phase separation of donor/acceptor species for polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 100, 147-152.	3.0	36
96	Preparation of Phosphorescent Amyloid‣ike Protein Fibrils. Chemistry - A European Journal, 2010, 16, 4190-4195.	1.7	30
97	Nanowalled polymer microtubes fabricated by using strained semiconductor templates. Nanotechnology, 2010, 21, 245305.	1.3	10
98	White Light with Phosphorescent Protein Fibrils in OLEDs. Nano Letters, 2010, 10, 2225-2230.	4.5	69
99	Phototransport in networks of tetrapod-shaped colloidal semiconductor nanocrystals. Nanoscale, 2010, 2, 2171.	2.8	28
100	The attenuation length of low energy electrons in Yb. Journal of Physics Condensed Matter, 2010, 22, 305002.	0.7	13
101	White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Applied Physics Letters, 2009, 94, 243506.	1.5	37
102	Polarized Light Emitting Diode by Long-Range Nanorod Self-Assembling on a Water Surface. ACS Nano, 2009, 3, 1506-1512.	7.3	127
103	White Electroluminescence from a Microcontactâ€Printingâ€Deposited CdSe/ZnS Colloidal Quantumâ€Dot Monolayer. Small, 2008, 4, 2143-2147.	5.2	55
104	Hybrid Lightâ€Emitting Diodes from Microcontactâ€Printing Doubleâ€Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers. Advanced Materials, 2008, 20, 1886-1891.	11.1	93
105	Multilayer hybrid LEDs based on colloidal inorganic semiconductors nanocrystal and PIN technology. , 2008, , .		0
106	Attenuation lengths of low-energy electrons in solids: The case of CoO. Physical Review B, 2008, 77, .	1.1	20
107	Hybrid colloidal nanocrystal-organics based LEDs. Proceedings of SPIE, 2008, , .	0.8	1
108	Blue light emitting diodes based on fluorescent CdSeâ^•ZnS nanocrystals. Applied Physics Letters, 2007, 90, 051106.	1.5	82

#	Article	IF	Citations
109	Sequential Growth of Magic-Size CdSe Nanocrystals. Advanced Materials, 2007, 19, 548-552.	11.1	289
110	White-light-emitting diodes using semiconductor nanocrystals. Mikrochimica Acta, 2007, 159, 207-215.	2.5	48
111	Bright White-Light-Emitting Device from Ternary Nanocrystal Composites. Advanced Materials, 2006, 18, 2545-2548.	11.1	204
112	Multifunctional platinum porphyrin dendrimers as emitters in undoped phosphorescent based light emitting devices. Applied Physics Letters, 2006, 89, 061125.	1.5	40
113	White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. Journal of Applied Physics, 2005, 97, 113501.	1.1	115
114	Dislocations in AIIIBVI single crystals. Physica Status Solidi A, 1988, 105, 101-112.	1.7	17
115	Morphological Study of CdSe Nanocrystals Passivated with a Low Band Gap Rod-Coil Diblock Copolymer for Hybrid Solar Cells. Advances in Science and Technology, 0, , .	0.2	2