
Pasquale Scarlino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4583634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A programmable two-qubit quantum processor in silicon. Nature, 2018, 555, 633-637.	13.7	534
2	Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nature Nanotechnology, 2014, 9, 666-670.	15.6	394
3	High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field. Physical Review Applied, 2016, 5, .	1.5	192
4	Coherent spin–photon coupling using a resonant exchange qubit. Nature, 2018, 560, 179-184.	13.7	169
5	Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator. Physical Review X, 2017, 7, .	2.8	168
6	Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11738-11743.	3.3	119
7	Valley dependent anisotropic spin splitting in silicon quantum dots. Npj Quantum Information, 2018, 4,	2.8	49
8	Roadmap on quantum nanotechnologies. Nanotechnology, 2021, 32, 162003.	1.3	45
9	All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics. Physical Review Letters, 2019, 122, 206802.	2.9	44
10	Microwave Photon-Mediated Interactions between Semiconductor Qubits. Physical Review X, 2018, 8, .	2.8	42
11	Spin-Relaxation Anisotropy in a GaAs Quantum Dot. Physical Review Letters, 2014, 113, 256802.	2.9	40
12	Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit. Nature Communications, 2019, 10, 3011.	5.8	40
13	Virtual-photon-mediated spin-qubit–transmon coupling. Nature Communications, 2019, 10, 5037.	5.8	39
14	Floquet Spectroscopy of a Strongly Driven Quantum Dot Charge Qubit with a Microwave Resonator. Physical Review Letters, 2018, 121, 043603.	2.9	35
15	Second-Harmonic Coherent Driving of a Spin Qubit in a Si/SiGe Quantum Dot. Physical Review Letters, 2015, 115, 106802.	2.9	30
16	Dressed photon-orbital states in a quantum dot: Intervalley spin resonance. Physical Review B, 2017, 95,	1.1	23
17	Strong photon coupling to the quadrupole moment of an electron in a solid-state qubit. Nature Physics, 2020, 16, 642-646.	6.5	23
18	<i>In situ</i> Tuning of the Electric-Dipole Strength of a Double-Dot Charge Qubit: Charge-Noise Protection and Ultrastrong Coupling. Physical Review X, 2022, 12, .	2.8	20

#	Article	IF	CITATIONS
19	Microwave-Cavity-Detected Spin Blockade in a Few-Electron Double Quantum Dot. Physical Review Letters, 2019, 122, 213601.	2.9	18
20	Excitation and time resolved spectroscopy of SAW harmonics up to GHz regime in photolithographed GaAs devices. Journal of Micromechanics and Microengineering, 2017, 27, 125002.	1.5	9
21	Charge qubit in a triple quantum dot with tunable coherence. Physical Review Research, 2021, 3, .	1.3	9
22	Excitation of a Si/SiGe quantum dot using an on-chip microwave antenna. Applied Physics Letters, 2013, 103, .	1.5	8
23	Frequency and time domain analysis of surface acoustic wave propagation on a piezoelectric gallium arsenide substrate: A computational insight. Journal of Intelligent Material Systems and Structures, 2019, 30, 801-812.	1.4	1
24	Hole spin qubits work at mT magnetic fields. Nature Materials, 2021, 20, 1047-1048.	13.3	1