
Ricardo Floriano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4583401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-entropy alloys as anode materials of nickel - metal hydride batteries. Scripta Materialia, 2022, 209, 114387.	5.2	22
2	The Effect of Cooling Rate on the Microstructure and Hardness of As-Cast Co-28Cr-6Mo Alloy Used as Biomedical Knee Implant. International Journal of Metalcasting, 2022, 16, 2187-2198.	1.9	5
3	Glycine amino acid transformation under impacts by small solar system bodies, simulated via high-pressure torsion method. Scientific Reports, 2022, 12, 5677.	3.3	3
4	Production of Low-Cost TiNbFe Alloys from the Elemental Powders of NbFe Pre-Alloy and Their Hydrogenation Features. Materials Transactions, 2021, 62, 27-33.	1.2	0
5	Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy. International Journal of Hydrogen Energy, 2021, , .	7.1	46
6	High-Pressure Torsion for Synthesis of High-Entropy Alloys. Metals, 2021, 11, 1263.	2.3	22
7	Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion. Materials Letters, 2021, 302, 130368.	2.6	28
8	Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scripta Materialia, 2020, 178, 387-390.	5.2	132
9	Mechanical Synthesis and Hydrogen Storage Characterization of MgVCr and MgVTiCrFe Highâ€Entropy Alloy. Advanced Engineering Materials, 2020, 22, 1901079.	3.5	54
10	Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations. International Journal of Hydrogen Energy, 2020, 45, 33759-33770.	7.1	67
11	Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion. Materials Science and Engineering C, 2020, 112, 110908.	7.3	72
12	New Mg–V–Cr BCC Alloys Synthesized by High-Pressure Torsion and Ball Milling. Materials Transactions, 2018, 59, 741-746.	1.2	21
13	Effects of friction stir processing on hydrogen storage of ZK60 alloy. International Journal of Hydrogen Energy, 2018, 43, 11085-11091.	7.1	18
14	Hydrogen storage in MgH2LaNi5 composites prepared by cold rolling under inert atmosphere. International Journal of Hydrogen Energy, 2018, 43, 13348-13355.	7.1	25
15	Structural characterization and hydrogen storage properties of MgH 2 –Mg 2 CoH 5 nanocomposites. International Journal of Hydrogen Energy, 2017, 42, 14593-14601.	7.1	17
16	Iron and niobium based additives in magnesium hydride: Microstructure and hydrogen storage properties. International Journal of Hydrogen Energy, 2017, 42, 6810-6819.	7.1	57
17	Processing of MgH2 by extensive cold rolling under protective atmosphere. International Journal of Hydrogen Energy, 2017, 42, 2201-2208.	7.1	16
18	Low temperature rolling of AZ91 alloy for hydrogen storage. International Journal of Hydrogen Energy, 2017, 42, 29394-29405.	7.1	19

RICARDO FLORIANO

#	Article	IF	CITATIONS
19	Mg-based Nanocomposites for Hydrogen Storage Containing Ti-Cr-V Alloys as Additives. Materials Research, 2016, 19, 80-85.	1.3	19
20	Effects of microwave heating in nanolaminated Nb2GeC synthesis. Ceramics International, 2016, 42, 16343-16348.	4.8	5
21	Severely deformed ZK60Â+Â2.5% Mm alloy for hydrogen storage produced by two different processing routes. International Journal of Hydrogen Energy, 2016, 41, 11284-11292.	7.1	25
22	BICUVOX.1â€matrix composite electrolyte with yttriaâ€stabilized zirconia as an inert phase: SEM evaluation of the chemical stability under hydrogen atmosphere. Scanning, 2015, 37, 372-379.	1.5	7
23	Controlled mechanochemical synthesis and hydrogen desorption mechanisms of nanostructured Mg2CoH5. International Journal of Hydrogen Energy, 2015, 40, 1504-1515.	7.1	13
24	Inhibition of order–disorder phase transition and improvements in the BICUVOX.1 properties by using yttria-stabilized zirconia particles. Ceramics International, 2015, 41, 171-177.	4.8	9
25	Exploring several different routes to produce Mg- based nanomaterials for Hydrogen storage. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012115.	0.6	5
26	MgH2-based nanocomposites prepared by short-time high energy ball milling followed byÂcold rolling: A new processing route. International Journal of Hydrogen Energy, 2014, 39, 4404-4413.	7.1	23
27	Cold rolling under inert atmosphere: A powerful tool for Mg activation. International Journal of Hydrogen Energy, 2014, 39, 4959-4965.	7.1	30
28	Hydrogen storage properties of MgH2 processed by cold forging. Journal of Alloys and Compounds, 2014, 615, S719-S724.	5.5	18
29	Cold rolling of MgH2 powders containing different additives. International Journal of Hydrogen Energy, 2013, 38, 16193-16198.	7.1	37
30	Nanostructured MgH2 obtained by cold rolling combined with short-time high-energy ball milling. Materials Research, 2013, 16, 158-163.	1.3	14
31	Nanostructured MgH2 prepared by cold rolling and cold forging. Journal of Alloys and Compounds, 2011, 509, S444-S448.	5.5	54
32	Synthesis by High-Energy Ball Milling of MgH ₂ -TiFe Composites for Hydrogen Storage. Materials Science Forum, 0, 899, 13-18.	0.3	6
33	SÃntese e caracterização de nanocompósitos de Mg-LaNi5 para armazenagem de hidrogênio. , 0, , .		0
34	Preparação de ligas magnésio-nÃquel para armazenagem de hidrogênio processadas por laminação a frio. , 0, , .		0