List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4583211/publications.pdf Version: 2024-02-01

μλης Τλο μιμ

#	Article	IF	CITATIONS
1	Reinforcing hydration layer on membrane surface via nano-capturing and hydrothermal crosslinking for fouling reduction. Journal of Membrane Science, 2022, 644, 120076.	8.2	18
2	Plasticization-enhanced trimethylbenzene functionalized polyethersulfone hollow fiber membranes for propylene and propane separation. Journal of Membrane Science, 2022, 647, 120293.	8.2	7
3	Rapid fabrication of fluorinated covalent organic polymer membranes for organic solvent nanofiltration. Journal of Membrane Science, 2022, 648, 120345.	8.2	24
4	Rapid in-situ growth of covalent organic frameworks on hollow fiber substrates with Janus-like characteristics for efficient organic solvent nanofiltration. Separation and Purification Technology, 2022, 294, 121166.	7.9	16
5	Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination, 2021, 516, 115230.	8.2	41
6	Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Science Advances, 2020, 6, .	10.3	168
7	Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nature Communications, 2020, 11, 5882.	12.8	101
8	Smart covalent organic networks (CONs) with "on-off-on―light-switchable pores for molecular separation. Science Advances, 2020, 6, eabb3188.	10.3	71
9	The optimization of contact interface between metal/MoS2 FETs by oxygen plasma treatment. Journal of Materials Science: Materials in Electronics, 2020, 31, 9660-9665.	2.2	3
10	Green Synthesis of Thin-Film Composite Membranes for Organic Solvent Nanofiltration. ACS Sustainable Chemistry and Engineering, 2020, 8, 11541-11548.	6.7	40
11	Molecularly tunable thin-film nanocomposite membranes with enhanced molecular sieving for organic solvent forward osmosis. Nature Communications, 2020, 11, 1198.	12.8	77
12	Oriented Zeolitic Imidazolate Framework (ZIF) Nanocrystal Films for Molecular Separation Membranes. ACS Applied Nano Materials, 2020, 3, 3839-3846.	5.0	20
13	A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nature Communications, 2020, 11, 1633.	12.8	40
14	Infiltrating molecular gatekeepers with coexisting molecular solubility and 3D-intrinsic porosity into a microporous polymer scaffold for gas separation. Journal of Materials Chemistry A, 2020, 8, 6196-6209.	10.3	47
15	A review of polymeric composite membranes for gas separation and energy production. Progress in Polymer Science, 2019, 97, 101141.	24.7	219
16	Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules. Advanced Materials, 2018, 30, 1705933.	21.0	190
17	Facile fabrication of sulfonated polyphenylenesulfone (sPPSU) membranes with high separation performance for organic solvent nanofiltration. Journal of Membrane Science, 2018, 549, 550-558.	8.2	56
18	Cross-linked mixed matrix membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) with enhanced flux. Journal of Membrane Science, 2018, 548, 319-331.	8.2	116

#	Article	IF	CITATIONS
19	Facile fabrication of solvent resistant thin film composite membranes by interfacial crosslinking reaction between polyethylenimine and dibromo-p-xylene on polybenzimidazole substrates. Journal of Membrane Science, 2018, 560, 115-124.	8.2	70
20	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401.	21.0	229
21	Advanced Anti-Fouling Membranes for Osmotic Power Generation from Wastewater via Pressure Retarded Osmosis (PRO). Environmental Science & Technology, 2018, 52, 6686-6694.	10.0	50
22	Structural Tuning of Polymers of Intrinsic Microporosity via the Copolymerization with Macrocyclic 4â€ <i>tert</i> â€butylcalix[4]arene for Enhanced Gas Separation Performance. Advanced Sustainable Systems, 2018, 2, 1800044.	5.3	34
23	Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation. Journal of Materials Chemistry A, 2017, 5, 4583-4595.	10.3	69
24	Cross-linked mixed matrix membranes consisting of carboxyl-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN). Separation and Purification Technology, 2017, 186, 243-254.	7.9	66
25	Polyelectrolyte functionalized lamellar graphene oxide membranes on polypropylene support for organic solvent nanofiltration. Carbon, 2017, 122, 604-613.	10.3	92
26	Thin-film composite (TFC) hollow fiber membrane with double-polyamide active layers for internal concentration polarization and fouling mitigation in osmotic processes. Journal of Membrane Science, 2017, 523, 497-504.	8.2	73
27	Hollow fiber membrane lumen modified by polyzwitterionic grafting. Journal of Membrane Science, 2017, 522, 1-11.	8.2	38
28	Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. Journal of Membrane Science, 2017, 523, 92-102.	8.2	67
29	Zwitterions coated hollow fiber membranes with enhanced antifouling properties for osmotic power generation from municipal wastewater. Water Research, 2016, 104, 389-396.	11.3	62
30	Metal ion modified PIM-1 and its application for propylene/propane separation. Journal of Membrane Science, 2016, 515, 36-44.	8.2	72
31	Preparation, characterization, and properties of poly(thioether imide)s from isomeric bis(chlorophthalimide)s and bisthiophenols. High Performance Polymers, 2016, 28, 64-74.	1.8	11
32	Analysis of flux reduction behaviors of PRO hollow fiber membranes: Experiments, mechanisms, and implications. Journal of Membrane Science, 2016, 505, 1-14.	8.2	23
33	Synthesis of organosoluble and transparent phenolphthalein-based cardo poly(ether sulfone imide)s via aromatic nucleophilic substitution polymerization. High Performance Polymers, 2016, 28, 1263-1271.	1.8	9
34	Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes. Applied Energy, 2016, 162, 687-698.	10.1	102
35	Zwitterionic polymers grafted poly(ether sulfone) hollow fiber membranes and their antifouling behaviors for osmotic power generation. Journal of Membrane Science, 2016, 497, 142-152.	8.2	113
36	Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation. Water Research, 2016, 88, 144-155.	11.3	62

#	Article	IF	CITATIONS
37	Synthesis of organosoluble and lightâ€colored cardo polyimides via aromatic nucleophilic substitution polymerization. Polymers for Advanced Technologies, 2015, 26, 1519-1527.	3.2	20
38	Hybrid pressure retarded osmosis–membrane distillation (PRO–MD) process for osmotic power and clean water generation. Environmental Science: Water Research and Technology, 2015, 1, 507-515.	2.4	45
39	Synthesis of high performance phenolphthalein-based cardo poly(ether ketone imide)s via aromatic nucleophilic substitution polymerization. Polymer, 2015, 70, 30-37.	3.8	26
40	Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed. Journal of Membrane Science, 2015, 479, 148-158.	8.2	148
41	Influence of crystalline polyimide hard block on the properties of poly(imide siloxane) copolymers. Polymer, 2015, 56, 229-236.	3.8	19
42	Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation. Progress in Polymer Science, 2015, 51, 1-27.	24.7	171
43	Suppression of aging and plasticization in highly permeable polymers. Polymer, 2015, 77, 377-386.	3.8	114
44	Synthesis and characterization of high performance poly(thioether imide)s via aromatic nucleophilic substitution reaction of isomeric AB-type monomers. Polymer Bulletin, 2015, 72, 3269-3282.	3.3	2
45	Preparation, characterization, and properties of poly(thioether ether imide)s from isomeric bis(chlorophthalimide)s and bis(4-mercaptophenyl) ether. High Performance Polymers, 2015, 27, 112-121.	1.8	6
46	Robust and high performance pressure retarded osmosis hollow fiber membranes for osmotic power generation. AICHE Journal, 2014, 60, 1107-1119.	3.6	65
47	Physical aging and carbon dioxide plasticization of thin polyimide films in mixed gas permeation. Journal of Membrane Science, 2014, 450, 457-468.	8.2	66
48	Anti-Fouling Behavior of Hyperbranched Polyglycerol-Grafted Poly(ether sulfone) Hollow Fiber Membranes for Osmotic Power Generation. Environmental Science & Technology, 2014, 48, 9898-9907.	10.0	148
49	Preparation, characterization, and properties of poly(thioether ether imide)s from isomeric bis(chlorophthalimide)s and 4,4′-thiobisbenzenethiol. Polymers for Advanced Technologies, 2014, 25, 329-337.	3.2	19
50	The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration. Green Chemistry, 2014, 16, 1383-1392.	9.0	154
51	Design of robust hollow fiber membranes with high power density for osmotic energy production. Chemical Engineering Journal, 2014, 241, 457-465.	12.7	123
52	Synthesis and properties of transparent polyimides derived from trans- and cis-1,4-bis(3,4-dicarboxyphenoxy)cyclohexane dianhydrides. Journal of Polymer Research, 2013, 20, 1.	2.4	36
53	Outer-Selective Pressure-Retarded Osmosis Hollow Fiber Membranes from Vacuum-Assisted Interfacial Polymerization for Osmotic Power Generation. Environmental Science & Technology, 2013, 47, 13167-13174.	10.0	98
54	Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. Journal of Membrane Science, 2013, 444, 173-183.	8.2	245

#	Article	IF	CITATIONS
55	Highly Robust Thin-Film Composite Pressure Retarded Osmosis (PRO) Hollow Fiber Membranes with High Power Densities for Renewable Salinity-Gradient Energy Generation. Environmental Science & Technology, 2013, 47, 8070-8077.	10.0	124
56	Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Progress in Polymer Science, 2012, 37, 1401-1424.	24.7	375
57	Natural gas purification and olefin/paraffin separation using cross-linkable dual-layer hollow fiber membranes comprising β-Cyclodextrin. Journal of Membrane Science, 2012, 423-424, 392-403.	8.2	42
58	High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development. Macromolecules, 2012, 45, 1427-1437.	4.8	241
59	Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Current Opinion in Chemical Engineering, 2012, 1, 246-257.	7.8	303
60	UVâ€Rearranged PIMâ€1 Polymeric Membranes for Advanced Hydrogen Purification and Production. Advanced Energy Materials, 2012, 2, 1456-1466.	19.5	118
61	Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with α, β, and γ-cyclodextrin. Journal of Membrane Science, 2012, 390-391, 141-151.	8.2	84
62	Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO ₂ capture. Energy and Environmental Science, 2011, 4, 201-208.	30.8	129
63	Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse. Industrial & Engineering Chemistry Research, 2010, 49, 5869-5876.	3.7	266
64	Crystal Structure and Thermodecomposition Kinetics of Mn(II) Complex with 1-Phenyl-3-Methyl-4-Benzoyl-5-Pyrazolone. Journal of Chemical Crystallography, 2010, 40, 58-63.	1.1	5
65	Polyamideâ€imide nanofiltration hollow fiber membranes with elongationâ€induced nanoâ€pore evolution. AICHE Journal, 2010, 56, 1481-1494.	3.6	82
66	Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer. Industrial & amp; Engineering Chemistry Research, 2010, 49, 4824-4831.	3.7	256
67	Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 2009, 327, 18-31.	8.2	313
68	Enhanced propylene/propane separation by carbonaceous membrane derived from poly (aryl ether) Tj ETQq0 0 0 47, 1857-1866.	rgBT /Ove 10.3	rlock 10 Tf 5 60
69	Functionalization of cellulose dialysis membranes for chiral separation using beta-cyclodextrin immobilization. Journal of Membrane Science, 2007, 290, 78-85.	8.2	63
70	Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32, 483-507.	24.7	1,570
71	The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging. Journal of Membrane Science, 2003, 225, 125-134.	8.2	60
72	C2 and C3 hydrocarbon separations in poly(1,5-naphthalene-2,2′-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes. Journal of Membrane Science, 2002, 210, 55-64.	8.2	43