Shi Zhang Qiao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4582788/shi-zhang-qiao-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

530	87,157 citations	148	285
papers		h-index	g-index
564	101,051 ext. citations	13.3	8.93
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
530	Stabilizing Cu Ions by Solid Solutions to Promote CO Electroreduction to Methane <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	31
529	NiMo/NiCo2O4 as synergy catalyst supported on nickel foam for efficient overall water splitting. <i>Molecular Catalysis</i> , 2022 , 518, 112086	3.3	2
528	Customizing the microenvironment of CO 2 electrocatalysis via three-phase interface engineering. <i>SmartMat</i> , 2022 , 3, 111-129	22.8	2
527	Mild synthesis for defect-switchable photocatalysts for hydrogen evolution. <i>Chem Catalysis</i> , 2022 , 2, 434-436		1
526	Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries <i>Advanced Materials</i> , 2022 , e2201716	24	7
525	Metal-metal interactions in correlated single-atom catalysts Science Advances, 2022, 8, eabo0762	14.3	18
524	Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction. <i>Chemical Engineering Science</i> , 2022 , 117735	4.4	6
523	Synchrotron X-ray Spectroscopic Investigations of In-Situ Formed Alloy Anodes for Magnesium Batteries <i>Advanced Materials</i> , 2021 , e2108688	24	2
522	Main-group elements boost electrochemical nitrogen fixation. <i>CheM</i> , 2021 ,	16.2	28
521	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	4
520	Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. <i>Advanced Science</i> , 2021 , e2104363	13.6	8
519	Catalytic Oxidation of KS via Atomic Co and Pyridinic N Synergy in Potassium-Sulfur Batteries. Journal of the American Chemical Society, 2021 , 143, 16902-16907	16.4	11
518	Molecular Cleavage of Metal-Organic Frameworks and Application to Energy Storage and Conversion. <i>Advanced Materials</i> , 2021 , e2104341	24	17
517	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. <i>Angewandte Chemie</i> , 2021 , 133, 19724-19742	3.6	5
516	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19572-19590	16.4	93
515	Hierarchical porous S-doped FeNC electrocatalyst for high-power-density zinclir battery. <i>Materials Today Energy</i> , 2021 , 19, 100624	7	13
514	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5201-5	21 ^{16.4}	98

(2021-2021)

513	Molecular Scalpel to Chemically Cleave Metal-Organic Frameworks for Induced Phase Transition. Journal of the American Chemical Society, 2021 , 143, 6681-6690	16.4	26
512	Metal organic framework (MOF) in aqueous energy devices. <i>Materials Today</i> , 2021 , 48, 270-270	21.8	16
511	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14131-14137	16.4	56
510	Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7819-7827	16.4	126
509	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. <i>Angewandte Chemie</i> , 2021 , 133, 14250-14256	3.6	15
508	Metastable Two-Dimensional Materials for Electrocatalytic Energy Conversions. <i>Accounts of Materials Research</i> , 2021 , 2, 559-573	7.5	25
507	The Controllable Reconstruction of Bi-MOFs for Electrochemical CO2 Reduction through Electrolyte and Potential Mediation. <i>Angewandte Chemie</i> , 2021 , 133, 18326-18332	3.6	1
506	CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites. <i>Applied Surface Science</i> , 2021 , 540, 148293	6.7	15
505	Destabilizing Alkaline Water with 3d-Metal (Oxy)(Hydr)Oxides for Improved Hydrogen Evolution. <i>Chemistry - A European Journal</i> , 2021 , 27, 553-564	4.8	7
504	Highly Selective Two-Electron Electrocatalytic CO2 Reduction on Single-Atom Cu Catalysts. <i>Small Structures</i> , 2021 , 2, 2000058	8.7	44
503	Anomalous C-C Coupling on Under-Coordinated Cu (111): A Case Study of Cu Nanopyramids for CO Reduction Reaction by Molecular Modelling. <i>ChemSusChem</i> , 2021 , 14, 671-678	8.3	4
502	Opportunities of Aqueous Manganese-Based Batteries with Deposition and Stripping Chemistry. <i>Advanced Energy Materials</i> , 2021 , 11, 2002904	21.8	37
501	ReS2 Nanosheets with In Situ Formed Sulfur Vacancies for Efficient and Highly Selective Photocatalytic CO2 Reduction. <i>Small Science</i> , 2021 , 1, 2000052		30
500	Suppressing Al dendrite growth towards a long-life Al-metal battery. <i>Energy Storage Materials</i> , 2021 , 34, 194-202	19.4	22
499	Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction. <i>Energy and Environmental Science</i> , 2021 , 14, 3912-3930	35.4	27
498	Spatial-confinement induced electroreduction of CO and CO to diols on densely-arrayed Cu nanopyramids. <i>Chemical Science</i> , 2021 , 12, 8079-8087	9.4	7
497	Mechanism for Zincophilic Sites on Zinc-Metal Anode Hosts in Aqueous Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003419	21.8	79
496	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents. <i>Angewandte Chemie</i> , 2021 , 133, 7442-7451	3.6	43

495	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents. Angewandte Chemie - International Edition, 2021 , 60, 7366-7375	16.4	161
494	Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. <i>Advanced Materials</i> , 2021 , 33, e2007508	24	81
493	The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte and Potential Mediation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18178-18184	16.4	35
492	Significantly Raised Visible-Light Photocatalytic H Evolution on a 2D/2D ReS /In ZnS van der Waals Heterostructure. <i>Small</i> , 2021 , 17, e2100296	11	9
491	Selective Catalysis Remedies Polysulfide Shuttling in Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2021 , 33, e2101006	24	55
490	Significantly Raised Visible-Light Photocatalytic H2 Evolution on a 2D/2D ReS2/In2ZnS4 van der Waals Heterostructure (Small 32/2021). <i>Small</i> , 2021 , 17, 2170168	11	1
489	Dual-Function Electrolyte Additive for Highly Reversible Zn Anode. <i>Advanced Energy Materials</i> , 2021 , 11, 2102010	21.8	47
488	Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. <i>Nature Energy</i> , 2021 , 6, 904-9	16 2.3	57
487	Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25114-25121	16.4	17
486	Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15475-15489	16.4	23
485	Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al-S batteries. <i>Nature Communications</i> , 2021 , 12, 5714	17.4	13
484	Key to C production: selective C-C coupling for electrochemical CO reduction on copper alloy surfaces. <i>Chemical Communications</i> , 2021 , 57, 9526-9529	5.8	1
483	Directing the selectivity of CO2 electroreduction to target C2 products via non-metal doping on Cu surfaces. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6345-6351	13	12
482	Two-dimensional building blocks for photocatalytic ammonia production. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18733-18745	13	6
481	Single-Atom Photocatalysts for Emerging Reactions. ACS Central Science, 2021, 7, 39-54	16.8	34
480	Recent Progress of 3d Transition Metal Single-Atom Catalysts for Electrochemical CO2 Reduction. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001904	4.6	22
479	A MoN electrocatalyst for efficient NaS electrodeposition in room-temperature sodium-sulfur batteries. <i>Nature Communications</i> , 2021 , 12, 7195	17.4	9
478	Electrochemical Reduction of CO2 to Ethane through Stabilization of an Ethoxy Intermediate. Anaewandte Chemie. 2020, 132, 19817-19821	3.6	14

(2020-2020)

477	Atomic Engineering Catalyzed MnO Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density. <i>Advanced Materials</i> , 2020 , 32, e2001894	24	123
476	Creating compressive stress at the NiOOH/NiO interface for water oxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10747-10754	13	20
475	Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9171-9176	16.4	206
474	Photocatalysts for Hydrogen Evolution Coupled with Production of Value-Added Chemicals. <i>Small Methods</i> , 2020 , 4, 2000063	12.8	62
473	Unveiling the Advances of 2D Materials for Li/Na-S Batteries Experimentally and Theoretically. <i>Matter</i> , 2020 , 2, 323-344	12.7	78
472	Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. <i>Angewandte Chemie</i> , 2020 , 132, 9256-9261	3.6	59
471	Hybrid Aqueous Batteries: Atomic Engineering Catalyzed MnO2 Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density (Adv. Mater. 25/2020). <i>Advanced Materials</i> , 2020 , 32, 2070191	24	2
470	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. <i>Angewandte Chemie</i> , 2020 , 132, 8258-8263	3.6	13
469	Electron-State Confinement of Polysulfides for Highly Stable Sodium-Sulfur Batteries. <i>Advanced Materials</i> , 2020 , 32, e1907557	24	87
468	Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. <i>Nano Energy</i> , 2020 , 71, 104601	17.1	65
467	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. <i>Materials Today</i> , 2020 , 36, 125-138	21.8	152
466	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon-Based Catalysts for Electrocatalytic Nitrogen Reduction. <i>Angewandte Chemie</i> , 2020 , 132, 4555-4561	3.6	4
465	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon-Based Catalysts for Electrocatalytic Nitrogen Reduction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4525-4531	16.4	88
464	Rational Design of Spinel Cobalt Vanadate Oxide Co VO for Superior Electrocatalysis. <i>Advanced Materials</i> , 2020 , 32, e1907168	24	72
463	Atomic-Level Reactive Sites for Semiconductor-Based Photocatalytic CO2 Reduction. <i>Advanced Energy Materials</i> , 2020 , 10, 1903879	21.8	162
462	Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. <i>Energy and Environmental Science</i> , 2020 , 13, 1096-1131	35.4	135
461	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8181-8186	16.4	99
460	Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15829-15833	13	7

459	Electrochemical Reduction of CO to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie - International Edition, 2020 , 59, 19649-19653	16.4	61
458	Roadmap for advanced aqueous batteries: From design of materials to applications. <i>Science Advances</i> , 2020 , 6, eaba4098	14.3	455
457	Isolated Boron Sites for Electroreduction of Dinitrogen to Ammonia. ACS Catalysis, 2020, 10, 1847-1854	13.1	82
456	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020 , 142, 2012-2022	16.4	84
455	Toward High-Voltage Aqueous Batteries: Super- or Low-Concentrated Electrolyte?. <i>Joule</i> , 2020 , 4, 1846	- 195 1	102
454	Atomic-Level Insights into the Edge Active ReS2 Ultrathin Nanosheets for High-Efficiency Light-to-Hydrogen Conversion 2020 , 2, 1484-1494		35
453	Recent Progress in Engineering the Atomic and Electronic Structure of Electrocatalysts via Cation Exchange Reactions. <i>Advanced Materials</i> , 2020 , 32, e2001866	24	45
452	In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction. <i>Advanced Energy Materials</i> , 2020 , 10, 2001289	21.8	81
451	Topotactically Transformed Polygonal Mesopores on Ternary Layered Double Hydroxides Exposing Under-Coordinated Metal Centers for Accelerated Water Dissociation. <i>Advanced Materials</i> , 2020 , 32, e2006784	24	67
450	Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution. <i>CheM</i> , 2020 , 6, 2382-2394	16.2	67
449	Revealing the Magnesium-Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Ab-Initio Simulations. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21728-21735	16.4	10
448	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. <i>Science Advances</i> , 2020 , 6, eaaz8447	14.3	47
447	Graphene-encapsulated nickel-copper bimetallic nanoparticle catalysts for electrochemical reduction of CO to CO. <i>Chemical Communications</i> , 2020 , 56, 11275-11278	5.8	13
446	Innentitelbild: Electrochemical Reduction of CO2 to Ethane through Stabilization of an Ethoxy Intermediate (Angew. Chem. 44/2020). <i>Angewandte Chemie</i> , 2020 , 132, 19530-19530	3.6	
445	Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. <i>Nature Catalysis</i> , 2020 , 3, 743-753	36.5	71
444	Revealing the Magnesium-Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Ab-Initio Simulations. <i>Angewandte Chemie</i> , 2020 , 132, 21912-21919	3.6	3
443	Test factors affecting the performance of zinc∃ir battery. <i>Journal of Energy Chemistry</i> , 2020 , 44, 1-7	12	18
442	Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. <i>Advanced Energy Materials</i> , 2020 , 10, 2000789	21.8	108

(2019-2019)

441	Targeted Synergy between Adjacent Co Atoms on Graphene Oxide as an Efficient New Electrocatalyst for LiftO2 Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1904206	15.6	49
440	Efficient Surface Modulation of Single-Crystalline Na2Ti3O7 Nanotube Arrays with Ti3+ Self-Doping toward Superior Sodium Storage 2019 , 1, 389-398		15
439	Selectivity Control for Electrochemical CO2 Reduction by Charge Redistribution on the Surface of Copper Alloys. <i>ACS Catalysis</i> , 2019 , 9, 9411-9417	13.1	106
438	Revealing the Origin of Improved Reversible Capacity of Dual-Shell Bismuth Boxes Anode for Potassium-Ion Batteries. <i>Matter</i> , 2019 , 1, 1681-1693	12.7	62
437	A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: new insight into the alkaline mechanism. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3648-3654	13	86
436	A 2D metal-organic framework/Ni(OH) heterostructure for an enhanced oxygen evolution reaction. <i>Nanoscale</i> , 2019 , 11, 3599-3605	7.7	86
435	Impact of Interfacial Electron Transfer on Electrochemical CO Reduction on Graphitic Carbon Nitride/Doped Graphene. <i>Small</i> , 2019 , 15, e1804224	11	56
434	Negative Charging of Transition-Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. <i>Angewandte Chemie</i> , 2019 , 131, 11922-11926	3.6	12
433	Contemporaneous oxidation state manipulation to accelerate intermediate desorption for overall water electrolysis. <i>Chemical Communications</i> , 2019 , 55, 8313-8316	5.8	7
432	Non-metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 12380-12385	3.6	19
431	Non-metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12252-12257	16.4	127
430	Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9664-9672	16.4	390
429	Nitrogen Vacancies on 2D Layered W N : A Stable and Efficient Active Site for Nitrogen Reduction Reaction. <i>Advanced Materials</i> , 2019 , 31, e1902709	24	258
428	Negative Charging of Transition-Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11796-11800	16.4	101
427	Atomically Dispersed Single Co Sites in Zeolitic Imidazole Frameworks Promoting High-Efficiency Visible-Light-Driven Hydrogen Production. <i>Chemistry - A European Journal</i> , 2019 , 25, 9670-9677	4.8	7
426	Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13635-13640	13	19
425	How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. <i>Chemical Society Reviews</i> , 2019 , 48, 3166-3180	58.5	377
424	Advantageous crystalline\(\text{Imorphous phase boundary for enhanced electrochemical water oxidation. } \) Energy and Environmental Science, \(\text{2019}, 12, 2443-2454 \)	35.4	172

423	Graphitic Carbon Nitride (g-C N)-Derived N-Rich Graphene with Tuneable Interlayer Distance as a High-Rate Anode for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1901261	24	232
422	Understanding the Roadmap for Electrochemical Reduction of CO to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7646-76	65 ⁵ 6.4	371
421	Electrocatalysis: Well-Dispersed Nickel- and Zinc-Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction (Adv. Mater. 16/2019). <i>Advanced Materials</i> , 2019 , 31, 1970113	24	2
420	Well-Dispersed Nickel- and Zinc-Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2019 , 31, e1807771	24	149
419	Engineering 2D Metal-Organic Framework/MoS Interface for Enhanced Alkaline Hydrogen Evolution. <i>Small</i> , 2019 , 15, e1805511	11	105
418	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. <i>Electrochemical Energy Reviews</i> , 2019 , 2, 332-371	29.3	59
417	Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8117-8121	13	86
416	Co (II) Boron Imidazolate Framework with Rigid Auxiliary Linkers for Stable Electrocatalytic Oxygen Evolution Reaction. <i>Advanced Science</i> , 2019 , 6, 1801920	13.6	33
415	Ruthenium-Based Single-Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution. <i>Advanced Energy Materials</i> , 2019 , 9, 1803913	21.8	152
414	An Electrolytic ZnMnO2 Battery for High-Voltage and Scalable Energy Storage. <i>Angewandte Chemie</i> , 2019 , 131, 7905-7910	3.6	49
413	An Electrolytic Zn-MnO Battery for High-Voltage and Scalable Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7823-7828	16.4	464
412	Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. <i>Chemical Society Reviews</i> , 2019 , 48, 2518-2534	58.5	227
411	A two-dimensional metal-organic framework accelerating visible-light-driven H production. <i>Nanoscale</i> , 2019 , 11, 8304-8309	7.7	19
410	Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. <i>Nano Energy</i> , 2019 , 60, 591-599	17.1	100
409	Syngas production from electrocatalytic CO2 reduction with high energetic efficiency and current density. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7675-7682	13	47
408	Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. <i>ACS Energy Letters</i> , 2019 , 4, 805-810	20.1	188
407	Surface P atom grafting of g-C3N4 for improved local spatial charge separation and enhanced photocatalytic H2 production. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7628-7635	13	34
406	Transition-Metal-Doped Rulr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. <i>Advanced Materials</i> , 2019 , 31, e1900510	24	261

405	Nahinfrarotaktive Bleichalkogenid-Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen. <i>Angewandte Chemie</i> , 2019 , 131, 5256-5279	3.6	1
404	Near-Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Post-Synthesis Ligand Exchange, and Applications in Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5202-522	24 ^{6.4}	47
403	Realizing large-scale and controllable fabrication of active cobalt oxide nanorod catalysts for zinc-air battery. <i>Chemical Engineering Science</i> , 2019 , 194, 127-133	4.4	13
402	The Application of Hollow Structured Anodes for Sodium-Ion Batteries: From Simple to Complex Systems. <i>Advanced Materials</i> , 2019 , 31, e1800492	24	96
401	Electrochemical Nitrogen Reduction: Identification and Elimination of Contamination in Electrolyte. <i>ACS Energy Letters</i> , 2019 , 4, 2111-2116	20.1	100
400	Sodium-Ion Batteries: 1T?-ReS2 Confined in 2D-Honeycombed Carbon Nanosheets as New Anode Materials for High-Performance Sodium-Ion Batteries (Adv. Energy Mater. 30/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970117	21.8	3
399	True or False in Electrochemical Nitrogen Reduction. <i>Joule</i> , 2019 , 3, 1573-1575	27.8	25
398	Characterization of semiconductor photocatalysts. <i>Chemical Society Reviews</i> , 2019 , 48, 5184-5206	58.5	126
397	Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. <i>CheM</i> , 2019 , 5, 2429-2441	16.2	95
396	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO2 electroreduction. <i>Nanoscale Horizons</i> , 2019 , 4, 1411-1415	10.8	14
395	1T?-ReS2 Confined in 2D-Honeycombed Carbon Nanosheets as New Anode Materials for High-Performance Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901146	21.8	32
394	Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. <i>Nature Communications</i> , 2019 , 10, 4876	17.4	118
393	Regulating Electrocatalysts via Surface and Interface Engineering for Acidic Water Electrooxidation. <i>ACS Energy Letters</i> , 2019 , 4, 2719-2730	20.1	124
392	Laser-Induced Pyridinic-Nitrogen-Rich Defective Carbon Nanotubes for Efficient Oxygen Electrocatalysis. <i>ChemCatChem</i> , 2019 , 11, 6131-6138	5.2	5
391	The Ampoule Method: A Pathway towards Controllable Synthesis of Electrocatalysts for Water Electrolysis. <i>Chemistry - A European Journal</i> , 2019 , 26, 3898	4.8	5
390	Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. <i>ACS Catalysis</i> , 2019 , 9, 2902-2908	13.1	329
389	2D Atomically Thin Electrocatalysts: From Graphene to Metallene. <i>Matter</i> , 2019 , 1, 1454-1455	12.7	5
388	Surface strategies for catalytic CO reduction: from two-dimensional materials to nanoclusters to single atoms. <i>Chemical Society Reviews</i> , 2019 , 48, 5310-5349	58.5	365

387	Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. <i>CheM</i> , 2019 , 5, 445-459	16.2	205
386	Long-Life Room-Temperature SodiumBulfur Batteries by Virtue of Transition-Metal-NanoclusterBulfur Interactions. <i>Angewandte Chemie</i> , 2019 , 131, 1498-1502	3.6	50
385	Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1484-1488	16.4	113
384	Tungsten Nitride Nanodots Embedded Phosphorous Modified Carbon Fabric as Flexible and Robust Electrode for Asymmetric Pseudocapacitor. <i>Small</i> , 2019 , 15, e1804104	11	54
383	Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting. <i>Advanced Materials</i> , 2019 , 31, e1803625	24	163
382	2D Metal Organic Framework Nanosheet: A Universal Platform Promoting Highly Efficient Visible-Light-Induced Hydrogen Production. <i>Advanced Energy Materials</i> , 2019 , 9, 1803402	21.8	144
381	3D Hollow EMnO Framework as an Efficient Electrocatalyst for Lithium-Oxygen Batteries. <i>Small</i> , 2019 , 15, e1804958	11	64
3 80	A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6814-6818	16.4	121
379	A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. <i>Angewandte Chemie</i> , 2018 , 130, 6930-6934	3.6	17
378	Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation. <i>Small</i> , 2018 , 14, e1800195	11	63
377	Titelbild: A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation (Angew. Chem. 23/2018). <i>Angewandte Chemie</i> , 2018 , 130, 6819-6819	3.6	2
376	An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency. <i>Advanced Materials</i> , 2018 , 30, e1707261	24	110
375	Electrocatalytic Activity of a 2D Phosphorene-Based Heteroelectrocatalyst for Photoelectrochemical Cells. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2644-2647	16.4	39
374	Electrocatalytic Activity of a 2D Phosphorene-Based Heteroelectrocatalyst for Photoelectrochemical Cells. <i>Angewandte Chemie</i> , 2018 , 130, 2674-2677	3.6	8
373	Die Wasserstoffentwicklungsreaktion in alkalischer L\(\bar{\text{U}}\)ung: Von der Theorie und Einkristallmodellen zu praktischen Elektrokatalysatoren. <i>Angewandte Chemie</i> , 2018 , 130, 7690-7702	3.6	64
372	Porous MoS2/Carbon Spheres Anchored on 3D Interconnected Multiwall Carbon Nanotube Networks for Ultrafast Na Storage. <i>Advanced Energy Materials</i> , 2018 , 8, 1702909	21.8	153
371	Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1305-1322	13	125
370	Cocatalysts in Semiconductor-based Photocatalytic CO Reduction: Achievements, Challenges, and Opportunities. <i>Advanced Materials</i> , 2018 , 30, 1704649	24	614

(2018-2018)

369	Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8540-8544	16.4	140
368	Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. <i>ACS Energy Letters</i> , 2018 , 3, 1198-1204	20.1	124
367	Metal-Free 2D/2D Phosphorene/g-C N Van der Waals Heterojunction for Highly Enhanced Visible-Light Photocatalytic H Production. <i>Advanced Materials</i> , 2018 , 30, e1800128	24	521
366	Cuprous ions embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to ethylene. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9373-9377	13	28
365	NiO as a Bifunctional Promoter for RuO toward Superior Overall Water Splitting. Small, 2018, 14, e1704	40713	147
364	Synthesis of cadmium chalcogenides nanowires via laser-activated gold catalysts in solution. <i>Materials Chemistry and Physics</i> , 2018 , 212, 408-414	4.4	5
363	Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. <i>National Science Review</i> , 2018 , 5, 626-627	10.8	38
362	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. <i>Chemical Reviews</i> , 2018 , 118, 6337-6408	8 68.1	1057
361	Molecular-Level Hybridization of Nafion with Quantum Dots for Highly Enhanced Proton Conduction. <i>Advanced Materials</i> , 2018 , 30, e1707516	24	90
360	Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage. <i>Angewandte Chemie</i> , 2018 , 130, 8676-8680	3.6	29
359	Nanoconfined Nickel@Carbon Core-Shell Cocatalyst Promoting Highly Efficient Visible-Light Photocatalytic H Production. <i>Small</i> , 2018 , 14, e1801705	11	36
358	N-doping goes sp-hybridized. <i>Nature Chemistry</i> , 2018 , 10, 900-902	17.6	12
357	Identifying the Key Role of Pyridinic-N-Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. <i>Advanced Materials</i> , 2018 , 30, e1800005	24	279
356	Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. <i>ACS Catalysis</i> , 2018 , 8, 6707-6732	13.1	240
355	The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7568-7579	16.4	659
354	Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. <i>Chemical Communications</i> , 2018 , 54, 463-466	5.8	91
353	Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. <i>Energy and Environmental Science</i> , 2018 , 11, 45-56	35.4	887
352	Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. <i>Nano Energy</i> , 2018 , 43, 103-109	17.1	366

351	Disulfide-Bridged Organosilica Frameworks: Designed, Synthesis, Redox-Triggered Biodegradation, and Nanobiomedical Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1707325	15.6	106
350	Bronze alloys with tin surface sites for selective electrochemical reduction of CO. <i>Chemical Communications</i> , 2018 , 54, 13965-13968	5.8	37
349	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H2 production. Journal of Materials Chemistry A, 2018 , 6, 23278-23282	13	27
348	Titelbild: 2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries (Angew. Chem. 51/2018). <i>Angewandte Chemie</i> , 2018 , 130, 16809-16809	3.6	О
347	Single-Crystal Nitrogen-Rich Two-Dimensional MoN Nanosheets for Efficient and Stable Seawater Splitting. <i>ACS Nano</i> , 2018 , 12, 12761-12769	16.7	171
346	1D Sub-Nanotubes with Anatase/Bronze TiO Nanocrystal Wall for High-Rate and Long-Life Sodium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1804116	24	85
345	Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. <i>Nano Energy</i> , 2018 , 53, 690-697	17.1	126
344	Multiscale Structural Engineering of Ni-Doped CoO Nanosheets for Zinc-Air Batteries with High Power Density. <i>Advanced Materials</i> , 2018 , 30, e1804653	24	93
343	NIPAM-based Microgel Microenvironment Regulates the Therapeutic Function of Cardiac Stromal Cells. <i>ACS Applied Materials & Data Cells. ACS Applied Materials & Data Cells</i> . 10, 37783-37796	9.5	19
342	2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 16945-16949	3.6	10
341	2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16703-16707	16.4	224
340	Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. <i>Science Advances</i> , 2018 , 4, eaau6261	14.3	130
339	A boron imidazolate framework with mechanochromic and electrocatalytic properties. <i>Materials Horizons</i> , 2018 , 5, 1151-1155	14.4	36
338	Carbon-Based Electrochemical Oxygen Reduction and Hydrogen Evolution Catalysts 2018 , 403-455		1
337	Charge State Manipulation of Cobalt Selenide Catalyst for Overall Seawater Electrolysis. <i>Advanced Energy Materials</i> , 2018 , 8, 1801926	21.8	140
336	Graphene Hybrids: Identifying the Key Role of Pyridinic-Nto Bonding in Synergistic Electrocatalysis for Reversible ORR/OER (Adv. Mater. 23/2018). <i>Advanced Materials</i> , 2018 , 30, 1870164	24	3
335	Tuning Spin State of Rock-Salt-Based Oxides by Manipulation of Crystallinity for Efficient Oxygen Electrocatalysis. <i>Advanced Energy Materials</i> , 2018 , 8, 1703469	21.8	30
334	Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. <i>CheM</i> , 2018 , 4, 1809-1831	16.2	372

(2017-2017)

333	3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability. <i>Advanced Functional Materials</i> , 2017 , 27, 1605703	15.6	48
332	Advent of 2D Rhenium Disulfide (ReS2): Fundamentals to Applications. <i>Advanced Functional Materials</i> , 2017 , 27, 1606129	15.6	224
331	Molecule-Level g-CN Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3336-3339	16.4	816
330	Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. <i>Accounts of Chemical Research</i> , 2017 , 50, 915-923	24.3	672
329	Modest Oxygen-Defective Amorphous Manganese-Based Nanoparticle Mullite with Superior Overall Electrocatalytic Performance for Oxygen Reduction Reaction. <i>Small</i> , 2017 , 13, 1603903	11	53
328	Recent Advances in Atomic Metal Doping of Carbon-based Nanomaterials for Energy Conversion. <i>Small</i> , 2017 , 13, 1700191	11	235
327	Catalytically active and chemically inert CdInS coating on a CdS photoanode for efficient and stable water splitting. <i>Nanoscale</i> , 2017 , 9, 6296-6301	7.7	41
326	Na Ti O @N-Doped Carbon Hollow Spheres for Sodium-Ion Batteries with Excellent Rate Performance. <i>Advanced Materials</i> , 2017 , 29, 1700989	24	226
325	Counteracting Blueshift Optical Absorption and Maximizing Photon Harvest in Carbon Nitride Nanosheet Photocatalyst. <i>Small</i> , 2017 , 13, 1700376	11	31
324	Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis. <i>Angewandte Chemie</i> , 2017 , 129, 1344-1348	3.6	68
323	Self-Templating Synthesis of Hollow Co O Microtube Arrays for Highly Efficient Water Electrolysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1324-1328	16.4	558
322	Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. <i>ACS Nano</i> , 2017 , 11, 7293-7300	16.7	271
321	Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions. <i>Advanced Energy Materials</i> , 2017 , 7, 1700518	21.8	406
320	Direct Growth of Well-Aligned MOF Arrays onto Various Substrates. <i>CheM</i> , 2017 , 2, 751-752	16.2	17
319	Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8539-8543	16.4	254
318	Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis. <i>Angewandte Chemie</i> , 2017 , 129, 8659-8663	3.6	32
317	Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: a DFT study. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7184-7190	13	48
316	3D Synergistically Active Carbon Nanofibers for Improved Oxygen Evolution. <i>Advanced Energy Materials</i> , 2017 , 7, 1602928	21.8	111

315	Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO2 Reduction. <i>Small Methods</i> , 2017 , 1, 1600006	12.8	92
314	Atomically and Electronically Coupled Pt and CoO Hybrid Nanocatalysts for Enhanced Electrocatalytic Performance. <i>Advanced Materials</i> , 2017 , 29, 1604607	24	194
313	Titelbild: Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis (Angew. Chem. 5/2017). <i>Angewandte Chemie</i> , 2017 , 129, 1181-1181	3.6	2
312	Polydopamine-Inspired, Dual Heteroatom-Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1602068	21.8	256
311	TiC MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. <i>Nature Communications</i> , 2017 , 8, 13907	17.4	1073
310	Nitrogen-Doped CNx/CNTs Heteroelectrocatalysts for Highly Efficient Dye-Sensitized Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1602276	21.8	88
309	Identification of pH-dependent synergy on Ru/MoS interface: a comparison of alkaline and acidic hydrogen evolution. <i>Nanoscale</i> , 2017 , 9, 16616-16621	7.7	95
308	Hierarchical 1T-MoS2 nanotubular structures for enhanced supercapacitive performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23704-23711	13	47
307	Molecules interface engineering derived external electric field for effective charge separation in photoelectrocatalysis. <i>Nano Energy</i> , 2017 , 42, 90-97	17.1	22
306	Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21560-21569	13	37
305	Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. <i>Chemical Communications</i> , 2017 , 53, 10906-10909	5.8	218
304	Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production. <i>Angewandte Chemie</i> , 2017 , 129, 10509-10513	3.6	34
303	A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1702524	15.6	265
302	Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10373-10377	16.4	247
301	Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO2. <i>Advanced Energy Materials</i> , 2017 , 7, 1700759	21.8	250
300	S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. <i>Nano Energy</i> , 2017 , 40, 264-273	17.1	258
299	Strongly interactive 0D/2D hetero-structure of a ZnCdS nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H production. <i>Chemical Communications</i> , 2017 , 53, 9882-9885	5.8	58
298	A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride. <i>Advanced Functional Materials</i> , 2017 , 27, 1702384	15.6	94

(2016-2017)

297	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. <i>Nature Communications</i> , 2017 , 8, 1509	17.4	276
296	Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO Reduction to Hydrocarbon/Alcohol. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18093-18100	16.4	341
295	Scalable Self-Supported Graphene Foam for High-Performance Electrocatalytic Oxygen Evolution. <i>ACS Applied Materials & District Materia</i>	9.5	18
294	Microwave activated gold nanoparticles for catalytic growth of monocrystal CdSe nanowires in solution. <i>New Journal of Chemistry</i> , 2017 , 41, 14822-14825	3.6	1
293	Unprecedented carbon sub-microspheres with a porous hierarchy for highly efficient oxygen electrochemistry. <i>Nanoscale</i> , 2017 , 9, 18731-18736	7.7	13
292	Graphene oxide coupled carbon nitride homo-heterojunction photocatalyst for enhanced hydrogen production. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 562-571	7.8	27
291	Hollow Carbon Nanospheres with Tunable Hierarchical Pores for Drug, Gene, and Photothermal Synergistic Treatment. <i>Small</i> , 2017 , 13, 1602592	11	92
290	Versatile PbS Quantum Dot Ligand Exchange Systems in the Presence of Pb-Thiolates. <i>Small</i> , 2017 , 13, 1602956	11	13
289	High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage. <i>Advanced Materials</i> , 2017 , 29, 1604007	24	379
288	Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. <i>Nanoscale Horizons</i> , 2016 , 1, 41-44	10.8	46
287	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16174-16181	16.4	586
286	Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting. <i>ACS Nano</i> , 2016 , 10, 8738-45	16.7	310
285	Activity origin and catalyst design principles for lelectrocatalytic hydrogen evolution on heteroatom-doped graphene. <i>Nature Energy</i> , 2016 , 1,	62.3	703
284	Engineering hollow electrodes for hybrid solar cells for efficient light harvesting and carrier collection. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17260-17266	13	3
283	Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. <i>Nature Communications</i> , 2016 , 7, 12876	17.4	471
282	Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting. <i>Advanced Functional Materials</i> , 2016 , 26, 3314-3323	15.6	690
281	Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution. <i>Angewandte Chemie</i> , 2016 , 128, 1150-1154	3.6	8o
280	Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. <i>Angewandte Chemie</i> , 2016 , 128, 3868-3872	3.6	42

279	Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1138-42	16.4	478
278	Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. <i>ACS Catalysis</i> , 2016 , 6, 4720-4728	13.1	327
277	Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. <i>Advanced Materials</i> , 2016 , 28, 3423-52	24	933
276	Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3804-8	16.4	225
275	Laser synthesis of clean mesocrystal of cupric oxide for efficient gas sensing. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2699-2704	13	19
274	2D phosphorene as a water splitting photocatalyst: fundamentals to applications. <i>Energy and Environmental Science</i> , 2016 , 9, 709-728	35.4	420
273	Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2445-2452	13	105
272	Laser-driven absorption/desorption of catalysts for producing nanowire arrays in solution. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 379-383	13	7
271	Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. <i>Nano Energy</i> , 2016 , 19, 373-381	17.1	499
270	Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. <i>Biomaterials</i> , 2016 , 91, 90-127	15.6	199
269	Self-supported electrocatalysts for advanced energy conversion processes. <i>Materials Today</i> , 2016 , 19, 265-273	21.8	212
268	Water Splitting: Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution (Adv. Mater. 24/2016). <i>Advanced Materials</i> , 2016 , 28, 4943	24	
267	Magnetic Core-Shell Silica Nanoparticles with Large Radial Mesopores for siRNA Delivery. <i>Small</i> , 2016 , 12, 4735-42	11	74
266	Flexible SnO2/N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. <i>Small</i> , 2016 , 12, 853-9	11	264
265	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. <i>Energy and Environmental Science</i> , 2016 , 9, 2563-2570	35.4	183
264	Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping. <i>Small</i> , 2016 , 12, 3703-11	11	93
263	Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 4935-42	24	75
262	Smart surface-enhanced Raman scattering traceable drug delivery systems. <i>Nanoscale</i> , 2016 , 8, 12803-1	7 .7	15

(2015-2016)

261	Mechanistic insight into the nucleation and growth of oleic acid capped lead sulphide quantum dots. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14055-62	3.6	14
260	Pulsed laser deposition of porous N-carbon supported cobalt (oxide) thin films for highly efficient oxygen evolution. <i>Chemical Communications</i> , 2016 , 52, 11947-11950	5.8	26
259	Highly active nickel-cobalt/nanocarbon thin films as efficient water splitting electrodes. <i>Nanoscale</i> , 2016 , 8, 18507-18515	7.7	47
258	A mesoporous organosilica nano-bowl with high DNA loading capacity - a potential gene delivery carrier. <i>Nanoscale</i> , 2016 , 8, 17446-17450	7.7	36
257	A Robust Strategy for Living Growth of Lead Sulfide Quantum Dots. ChemNanoMat, 2016, 2, 49-53	3.5	4
256	Nanoflake Arrays: CdS Nanoflake Arrays for Highly Efficient Light Trapping (Adv. Mater. 4/2015). <i>Advanced Materials</i> , 2015 , 27, 772-772	24	
255	EPGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for enhanced cellular uptake and intracellular GSH-responsive release. <i>Advanced Healthcare Materials</i> , 2015 , 4, 771-81	10.1	42
254	Three-dimensional MnO2 ultrathin nanosheet aerogels for high-performance LiD2 batteries. Journal of Materials Chemistry A, 2015 , 3, 2559-2563	13	79
253	Pd coated MoS 2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. Journal of Power Sources, 2015 , 284, 68-76	8.9	61
252	Polydopamine-graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. <i>Nanoscale</i> , 2015 , 7, 12598-605	7.7	96
251	Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. <i>ACS Catalysis</i> , 2015 , 5, 5207-5234	13.1	675
250	Molecular-based design and emerging applications of nanoporous carbon spheres. <i>Nature Materials</i> , 2015 , 14, 763-74	27	712
249	An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction. <i>Chemical Communications</i> , 2015 , 51, 7516-9	5.8	103
248	H2 purification by functionalized graphdiyne Ifole of nitrogen doping. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6767-6771	13	56
247	Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. <i>Nanoscale</i> , 2015 , 7, 17590-610	7.7	259
246	Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. <i>Energy and Environmental Science</i> , 2015 , 8, 3708-3717	35.4	903
245	Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and ZnBir batteries. <i>Energy Storage Materials</i> , 2015 , 1, 17-24	19.4	59
244	Synergistic synthesis of quasi-monocrystal CdS nanoboxes with high-energy facets. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23106-23112	13	3

243	MoO2-CoO coupled with a macroporous carbon hybrid electrocatalyst for highly efficient oxygen evolution. <i>Nanoscale</i> , 2015 , 7, 16704-14	7.7	40
242	Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4646-50	16.4	654
241	Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1712-1721	7.3	53
240	Hierarchical mesoporous yolk-shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. <i>Chemical Communications</i> , 2015 , 51, 2518-21	5.8	136
239	CdS nanoflake arrays for highly efficient light trapping. Advanced Materials, 2015, 27, 740-5	24	37
238	Ionic liquid self-combustion synthesis of BiOBr/Bi24O31Br10 heterojunctions with exceptional visible-light photocatalytic performances. <i>Nanoscale</i> , 2015 , 7, 1116-26	7.7	151
237	Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications. <i>Small</i> , 2015 , 11, 392-413	11	217
236	Functionalised silica/epoxy nanocomposites with enhanced fracture toughness for large-scale applications. <i>Journal of Composite Materials</i> , 2015 , 49, 1439-1447	2.7	5
235	Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 52-65	16.4	1282
234	Large-pore mesoporous RuNi-doped TiO2Al2O3 nanocomposites for highly efficient selective CO methanation in hydrogen-rich reformate gases. <i>Applied Catalysis B: Environmental</i> , 2015 , 165, 752-762	21.8	31
233	Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. <i>Nano Energy</i> , 2015 , 11, 11-18	17.1	209
232	A Three-Component Nanocomposite with Synergistic Reactivity for Oxygen Reduction Reaction in Alkaline Solution. <i>Advanced Energy Materials</i> , 2015 , 5, 1401186	21.8	31
231	Heteroatom-Doped Nanoporous Carbon for Electrocatalysis 2015 , 43-74		
230	Nitrogen-Doped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction. <i>ChemCatChem</i> , 2015 , 7, 3808-3817	5.2	59
229	3D WS2 Nanolayers@Heteroatom-Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes. <i>Advanced Materials</i> , 2015 , 27, 4234-41	24	350
228	Soft-Templating Synthesis of N-Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1546-53	4.5	52
227	Cancer-Cell-Specific Nuclear-Targeted Drug Delivery by Dual-Ligand-Modified Mesoporous Silica Nanoparticles. <i>Small</i> , 2015 , 11, 5919-26	11	68
226	Three-Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction. <i>Advanced Energy Materials</i> , 2015 , 5, 1500936	21.8	155

(2014-2015)

225	Template Design and Economical Strategy for the Synthesis of SSZ-13 (CHA-Type) Zeolite as an Excellent Catalyst for the Selective Catalytic Reduction of NOx by Ammonia. <i>ChemCatChem</i> , 2015 , 7, 3842-3847	5.2	30
224	Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate-Zinc Oxide Nanorod p-n Heterojunction. <i>Chemistry - A European Journal</i> , 2015 , 21, 15360-8	4.8	117
223	Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality. <i>Advanced Materials</i> , 2015 , 27, 5372-8	24	216
222	Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. <i>ACS Nano</i> , 2015 , 9, 931-40	16.7	569
221	Elektrochemie der Wasserstoffentwicklungsreaktion: Optimierung durch Korrelation von Experiment und Theorie. <i>Angewandte Chemie</i> , 2015 , 127, 52-66	3.6	137
220	Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. <i>Carbon</i> , 2015 , 86, 235-244	10.4	60
219	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. <i>Chemical Society Reviews</i> , 2015 , 44, 2060-86	58.5	3275
218	Paper-Based N-Doped Carbon Films for Enhanced Oxygen Evolution Electrocatalysis. <i>Advanced Science</i> , 2015 , 2, 1400015	13.6	56
217	Phosphorus-Doped Graphitic Carbon Nitrides Grown In Situ on Carbon-Fiber Paper: Flexible and Reversible Oxygen Electrodes. <i>Angewandte Chemie</i> , 2015 , 127, 4729-4733	3.6	87
216	Gain high-quality colloidal quantum dots directly from natural minerals. <i>Langmuir</i> , 2015 , 31, 2251-5	4	10
215	Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors. <i>Chemistry - A European Journal</i> , 2015 , 21, 4614-21	4.8	80
215		4.8 3.7	80
	Chemistry - A European Journal, 2015, 21, 4614-21 Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow	·	
214	Chemistry - A European Journal, 2015, 21, 4614-21 Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation. PLoS ONE, 2015, 10, e0141870 Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Frontiers	3.7	10
214	Chemistry - A European Journal, 2015, 21, 4614-21 Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation. PLoS ONE, 2015, 10, e0141870 Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Frontiers of Chemical Science and Engineering, 2014, 8, 114-122 Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to	3.7	10
214 213	Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation. <i>PLoS ONE</i> , 2015 , 10, e0141870 Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. <i>Frontiers of Chemical Science and Engineering</i> , 2014 , 8, 114-122 Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4394-403 Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery.	3·7 4·5 16.4	10579454
214 213 212 211	Chemistry - A European Journal, 2015, 21, 4614-21 Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation. PLoS ONE, 2015, 10, e0141870 Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Frontiers of Chemical Science and Engineering, 2014, 8, 114-122 Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. Journal of the American Chemical Society, 2014, 136, 4394-403 Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery. Biomaterials, 2014, 35, 5580-90	3·7 4·5 16.4 15.6	10579454

207	Shape Control of Mn3O4 Nanoparticles on Nitrogen-Doped Graphene for Enhanced Oxygen Reduction Activity. <i>Advanced Functional Materials</i> , 2014 , 24, 2072-2078	15.6	261
206	Freeze-drying of ovalbumin loaded mesoporous silica nanoparticle vaccine formulation increases antigen stability under ambient conditions. <i>International Journal of Pharmaceutics</i> , 2014 , 465, 325-32	6.5	21
205	Intracellular microenvironment responsive polymers: a multiple-stage transport platform for high-performance gene delivery. <i>Small</i> , 2014 , 10, 871-7	11	20
204	Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. <i>Chemical Society Reviews</i> , 2014 , 43, 7787-812	58.5	1751
203	Pure gold nanocages by galvanic replacement reaction of magnesium nanoparticles. <i>RSC Advances</i> , 2014 , 4, 1185-1188	3.7	13
202	A graphene-MnO2 framework as a new generation of three-dimensional oxygen evolution promoter. <i>Chemical Communications</i> , 2014 , 50, 207-9	5.8	74
201	In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles. <i>Nanoscale</i> , 2014 , 6, 6617-26	7.7	46
200	Ternary NiS/ZnxCd1-xS/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H2-Production Activity. <i>Advanced Energy Materials</i> , 2014 , 4, 1301925	21.8	218
199	CdTe nanoflake arrays on a conductive substrate: template synthesis and photoresponse property. Journal of Materials Chemistry A, 2014 , 2, 957-961	13	9
198	Double open-circuit voltage of three-dimensional ZnO/CdTe solar cells by a balancing depletion layer. <i>ACS Applied Materials & Double Samp; Interfaces</i> , 2014 , 6, 14718-23	9.5	19
197	N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18139-18146	13	168
196	Acid B ase Bifunctional Periodic Mesoporous Metal Phosphonates for Synergistically and Heterogeneously Catalyzing CO2 Conversion. <i>ACS Catalysis</i> , 2014 , 4, 3847-3855	13.1	68
195	Intracellular microenvironment-responsive label-free autofluorescent nanogels for traceable gene delivery. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1839-48	10.1	25
194	Synthesis of highly active and stable spinel-type oxygen evolution electrocatalysts by a rapid inorganic self-templating method. <i>Chemistry - A European Journal</i> , 2014 , 20, 12669-76	4.8	38
193	Amorphous Ni(OH)2 @ three-dimensional Ni corellhell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13845-138	353	323
192	Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. <i>Advanced Materials</i> , 2014 , 26, 6074-9	24	439
191	Silver/Nitrogen-Doped Graphene Interaction and Its Effect on Electrocatalytic Oxygen Reduction. <i>Chemistry of Materials</i> , 2014 , 26, 5868-5873	9.6	88
190	Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13925-31	16.4	1512

(2013-2014)

189	Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. <i>ACS Nano</i> , 2014 , 8, 6856-62	16.7	445
188	Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. <i>ACS Nano</i> , 2014 , 8, 5290-6	16.7	802
187	Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. <i>Small</i> , 2014 , 10, 2382-9	11	359
186	Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7281-5	16.4	651
185	Synthesis of multi-functional large pore mesoporous silica nanoparticles as gene carriers. <i>Nanotechnology</i> , 2014 , 25, 055701	3.4	43
184	Intracellular Microenvironment-Responsive Dendrimer-Like Mesoporous Nanohybrids for Traceable, Effective, and Safe Gene Delivery. <i>Advanced Functional Materials</i> , 2014 , 24, 7627-7637	15.6	53
183	Enhanced visible-light photocatalytic H2 production by Znx Cd1-x S modified with earth-abundant nickel-based cocatalysts. <i>ChemSusChem</i> , 2014 , 7, 3426-34	8.3	147
182	Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn). <i>Frontiers of Chemical Science and Engineering</i> , 2014 , 8, 378-385	4.5	2
181	Graphitic Carbon Nitride Nanosheet©arbon Nanotube Three-Dimensional Porous Composites as High-Performance Oxygen Evolution Electrocatalysts. <i>Angewandte Chemie</i> , 2014 , 126, 7409-7413	3.6	128
180	Highly Conductive CdS Inverse Opals for Photochemical Solar Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 707-715	15.6	31
179	Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area. <i>Chemistry - A European Journal</i> , 2014 , 20, 13314-20	4.8	52
178	Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. <i>Advanced Materials</i> , 2014 , 26, 2925-30	24	521
177	Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. <i>Chemical Communications</i> , 2013 , 49, 7705-7	5.8	226
176	Facile fabrication of core-shell-structured Ag@carbon and mesoporous yolk-shell-structured Ag@carbon@silica by an extended StBer method. <i>Chemistry - A European Journal</i> , 2013 , 19, 6942-5	4.8	115
175	Encapsulation of lipase in mesoporous silica yolkEhell spheres with enhanced enzyme stability. <i>RSC Advances</i> , 2013 , 3, 22008	3.7	52
174	N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. <i>Advanced Materials</i> , 2013 , 25, 6226-31	24	358
173	Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers. <i>Advanced Materials</i> , 2013 , 25, 5981-5	24	173
172	Pyrite nanorod arrays as an efficient counter electrode for dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11828	13	52

171	Enhanced electrochemical catalytic activity by copper oxide grown on nitrogen-doped reduced graphene oxide. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13179	13	87
170	Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 3192-3198	3.6	332
169	Hierarchically porous nitrogen-doped graphene-NiCo(2)O(4) hybrid paper as an advanced electrocatalytic water-splitting material. <i>ACS Nano</i> , 2013 , 7, 10190-6	16.7	457
168	N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. <i>Energy and Environmental Science</i> , 2013 , 6, 3693	35.4	282
167	Multiferroics and electronic structure of (1🛭)PbTiO3\(\text{BBi}\)Bi(Ni1/2Ti1/2)O3 thin films. <i>Thin Solid Films</i> , 2013 , 542, 155-159	2.2	2
166	Ordered mesoporous core/shell SnO2/C nanocomposite as high-capacity anode material for lithium-ion batteries. <i>Chemistry - A European Journal</i> , 2013 , 19, 16897-901	4.8	63
165	Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13567-70	16.4	498
164	Scalable synthesis of hollow Cu2O nanocubes with unique optical properties via a simple hydrolysis-based approach. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 302-307	13	45
163	Modify the morphology of colloidal Ag2Se nanostructures by laser irradiation. <i>CrystEngComm</i> , 2013 , 15, 1685	3.3	5
162	Comparison of ZnO and TiO2 nanowires for photoanode of dye-sensitized solar cells. <i>Journal of Alloys and Compounds</i> , 2013 , 546, 307-313	5.7	41
161	Nanostructured morphology control for efficient supercapacitor electrodes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2941-2954	13	232
160	Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9409	13	61
159	Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3110-6	16.4	776
158	Critical role of small micropores in high CO2 uptake. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2523	3-3 .6	184
157	Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12088-94	3.6	274
156	pH-responsive nutraceutical-mesoporous silica nanoconjugates with enhanced colloidal stability. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2318-22	16.4	79
155	Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. <i>Small</i> , 2013 , 9, 3138-46	11	105
154	Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. <i>Chemistry - A European Journal</i> , 2013 , 19, 7118-24	4.8	126

153	Oxidation Stability of Nanographite Materials. Advanced Energy Materials, 2013, 3, 1176-1179	21.8	17
152	A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. <i>Nature Communications</i> , 2013 , 4,	17.4	475
151	Enhanced visible-light hydrogen-production activity of copper-modified ZnxCd(1-x)S. <i>ChemSusChem</i> , 2013 , 6, 2009-15	8.3	60
150	Graphene: N-Doped Graphene Natively Grown on Hierarchical Ordered Porous Carbon for Enhanced Oxygen Reduction (Adv. Mater. 43/2013). <i>Advanced Materials</i> , 2013 , 25, 6150-6150	24	1
149	pH-Responsive Nutraceutical Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. <i>Angewandte Chemie</i> , 2013 , 125, 2374-2378	3.6	21
148	Three-Dimensional N-Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for Highly Efficient Oxygen Evolution. <i>Angewandte Chemie</i> , 2013 , 125, 13812-13815	3.6	62
147	Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. <i>Biomaterials</i> , 2012 , 33, 970-8	15.6	71
146	Nickel nanoparticles prepared by hydrazine hydrate reduction and their application in supercapacitor. <i>Powder Technology</i> , 2012 , 224, 162-167	5.2	83
145	YolkBhell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. <i>Advanced Functional Materials</i> , 2012 , 22, 591-599	15.6	330
144	Nanoreactors: YolkBhell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation (Adv. Funct. Mater. 3/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 661-661	15.6	2
143	Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. <i>Energy and Environmental Science</i> , 2012 , 5, 7323	35.4	371
142	Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. <i>Energy and Environmental Science</i> , 2012 , 5, 6717	35.4	1385
141	High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23186		125
140	Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. <i>Angewandte Chemie</i> , 2012 , 124, 12654-12657	3.6	28
139	Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance. <i>Angewandte Chemie</i> , 2012 , 124, 11664-11668	3.6	234
138	Rāktitelbild: Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance (Angew. Chem. 46/2012). <i>Angewandte Chemie</i> , 2012 , 124, 11808-11808	3.6	6
137	Enzyme-responsive controlled release of covalently bound prodrug from functional mesoporous silica nanospheres. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12486-9	16.4	146
136	Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11496-500	16.4	1726

135	Role of polymeric surfactants on the growth of manganese ferrite nanoparticles. <i>Chemical Engineering Journal</i> , 2012 , 210, 157-165	14.7	26
134	Porous graphitized carbon for adsorptive removal of benzene and the electrothermal regeneration. <i>Environmental Science & Environmental Science & Envi</i>	10.3	48
133	A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. Journal of Materials Chemistry, 2012 , 22, 11173		227
132	Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. <i>Small</i> , 2012 , 8, 3550-66	11	518
131	Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. <i>Chemical Communications</i> , 2012 , 48, 865-7	5.8	141
130	Enhancing the Conversion Efficiency of Semiconductor Sensitized Solar Cells via the Cosensitization of Dual-Sized Quantum Dots. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 10074-10078	3.9	16
129	Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. <i>ACS Nano</i> , 2012 , 6, 2104-17	16.7	227
128	Adsorption and release of biocides with mesoporous silica nanoparticles. <i>Nanoscale</i> , 2012 , 4, 970-5	7.7	125
127	Three-dimensional networks of ITO/CdS coaxial nanofibers for photovoltaic applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13057		13
126	An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17437		173
125	Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage. <i>Advanced Energy Materials</i> , 2012 , 2, 970-975	21.8	420
124	Facile Oxygen Reduction on a Three-Dimensionally Ordered Macroporous Graphitic C3N4/Carbon Composite Electrocatalyst. <i>Angewandte Chemie</i> , 2012 , 124, 3958-3962	3.6	146
123	Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3892-6	16.4	549
122	Study on oxygen activation and methane oxidation over La0.8Sr0.2MnO3 electrode in single-chamber solid oxide fuel cells via an electrochemical approach. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 4328-4338	6.7	3
121	Interface-dominated galvanic replacement reactions in the Zn/Cu2+ system. <i>Nanotechnology</i> , 2012 , 23, 365601	3.4	7
120	Cobalt-doped cadmium selenide colloidal nanowires. <i>Chemical Communications</i> , 2011 , 47, 11894-6	5.8	15
119	Synthesis of high-reactive facets dominated anatase TiO2. Journal of Materials Chemistry, 2011, 21, 705	52	223
118	Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3046		423

117	Triphosphate removal processes over ternary CaMgAl-layered double hydroxides. <i>Applied Clay Science</i> , 2011 , 54, 196-201	5.2	17
116	Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. <i>Chemical Communications</i> , 2011 , 47, 12578-91	5.8	727
115	Innentitelbild: Extension of The StBer Method to the Preparation of Monodisperse ResorcinolBormaldehyde Resin Polymer and Carbon Spheres (Angew. Chem. 26/2011). <i>Angewandte Chemie</i> , 2011 , 123, 5894-5894	3.6	2
114	Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy {001} and {100} facets. <i>Chemical Communications</i> , 2011 , 47, 4400-2	5.8	141
113	Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. <i>Chemical Communications</i> , 2011 , 47, 2631-3	5.8	189
112	Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. <i>Chemical Communications</i> , 2011 , 47, 10443-5	5.8	68
111	Synthetic Chemistry of Nanomaterials 2011 , 479-506		4
110	Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. <i>Nanoscale</i> , 2011 , 3, 2801-18	7.7	449
109	Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20116-9	16.4	869
108	Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. <i>Journal of Hazardous Materials</i> , 2011 , 186, 1615-24	12.8	160
107	Nanoparticle synthesis in microreactors. <i>Chemical Engineering Science</i> , 2011 , 66, 1463-1479	4.4	298
106	Magnetic nanocomposites with mesoporous structures: synthesis and applications. <i>Small</i> , 2011 , 7, 425-	43 1	612
105	Magnetic Nanocomposites: Magnetic Nanocomposites with Mesoporous Structures: Synthesis and Applications (Small 4/2011). <i>Small</i> , 2011 , 7, 418-418	11	2
104	Enhanced Water Retention by Using Polymeric Microcapsules to Confer High Proton Conductivity on Membranes at Low Humidity. <i>Advanced Functional Materials</i> , 2011 , 21, 971-978	15.6	88
103	Extension of The StBer Method to the Preparation of Monodisperse Resorcinol Bormaldehyde Resin Polymer and Carbon Spheres. <i>Angewandte Chemie</i> , 2011 , 123, 6069-6073	3.6	91
102	Extension of the StBer method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5947-51	16.4	623
101	Inside Cover: Extension of The StBer Method to the Preparation of Monodisperse Resorcinol B ormaldehyde Resin Polymer and Carbon Spheres (Angew. Chem. Int. Ed. 26/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5774-5774	16.4	2
100	Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets. <i>Chemistry - A European Journal</i> , 2011 , 17, 1423-7	4.8	135

99	Preparation of capacitor's electrode from sunflower seed shell. <i>Bioresource Technology</i> , 2011 , 102, 111	8 <u>121</u> 3	330
98	From titanium oxydifluoride (TiOF2) to titania (TiO2): phase transition and non-metal doping with enhanced photocatalytic hydrogen (H2) evolution properties. <i>Chemical Communications</i> , 2011 , 47, 6138	8- 4 0 ⁸	107
97	Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. <i>Green Chemistry</i> , 2011 , 13, 300-306	10	153
96	Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5687		158
95	Synthesis of nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10641		53
94	Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. <i>Journal of Power Sources</i> , 2011 , 196, 4123-4127	8.9	140
93	Enhanced removal of triphosphate by MgCaFe-Cl-LDH: synergism of precipitation with intercalation and surface uptake. <i>Journal of Hazardous Materials</i> , 2011 , 189, 586-94	12.8	62
92	Chitosan membranes filled with biomimetic mineralized hydroxyapatite for enhanced proton conductivity. <i>Solid State Ionics</i> , 2011 , 187, 33-38	3.3	16
91	Titanate-silica mesostructured nanocables: synthesis, structural analysis and biomedical applications. <i>Nanotechnology</i> , 2010 , 21, 065604	3.4	15
90	Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. <i>ACS Applied Materials & District Comparative Lithium</i> 2, 3628-35	9.5	166
89	Effective Cr(VI) Removal from Simulated Groundwater through the Hydrotalcite-Derived Adsorbent. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 2752-2758	3.9	38
88	TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. <i>Chemical Communications</i> , 2010 , 46, 8252-4	5.8	176
87	A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4595		199
86	Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society, 2010 , 132, 2608-13	16.4	406
85	Fabrication and biosensing with CNT/aligned mesostructured silica core-shell nanowires. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 2, 2767-72	9.5	25
84	Functionalized Mesoporous Silica with Very Large Pores for Cellulase Immobilization. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8353-8362	3.8	123
83	Fabrication of uniform anatase TiO(2) particles exposed by {001} facets. <i>Chemical Communications</i> , 2010 , 46, 6608-10	5.8	128
82	Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides. <i>Environmental Science & Environmental Science & Envi</i>	10.3	44

(2009-2010)

81	Effective removal of selenate from aqueous solutions by the Friedel phase. <i>Journal of Hazardous Materials</i> , 2010 , 176, 193-8	12.8	60
80	Synthesis and Characterization of Colloidal CoreBhell Semiconductor Nanowires. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4325-4331	2.3	34
79	Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. <i>Advanced Materials</i> , 2010 , 22, 4944-8	24	352
78	Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. <i>Chemistry - A European Journal</i> , 2010 , 16, 11020-7	4.8	126
77	Diluted Magnetic Semiconductor Nanowires Prepared by the SolutionLiquidBolid Method. <i>Angewandte Chemie</i> , 2010 , 122, 2837-2841	3.6	6
76	Diluted magnetic semiconductor nanowires prepared by the solution-liquid-solid method. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2777-81	16.4	44
75	Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4981-5	16.4	510
74	Hydrophobic micro/mesoporous silica spheres assembled from zeolite precursors in acidic media for aromatics adsorption. <i>Microporous and Mesoporous Materials</i> , 2010 , 133, 115-123	5.3	25
73	Formation energies of low-indexed surfaces of tin dioxide terminated by nonmetals. <i>Solid State Communications</i> , 2010 , 150, 957-960	1.6	6
72	Modeling of a pilot-scale trickle bed reactor for the catalytic oxidation of phenol. <i>Separation and Purification Technology</i> , 2009 , 67, 158-165	8.3	10
71	CNTs/mesostructured silica core-shell nanowires via interfacial surfactant templating. <i>Science Bulletin</i> , 2009 , 54, 516-520	10.6	4
70	Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer. <i>Journal of Membrane Science</i> , 2009 , 341, 279-285	9.6	89
69	Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. <i>Microporous and Mesoporous Materials</i> , 2009 , 117, 213-219	5.3	125
68	Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials. <i>Journal of Hazardous Materials</i> , 2009 , 164, 1205-12	12.8	27
67	Effective removal and fixation of Cr(VI) from aqueous solution with Friedel's salt. <i>Journal of Hazardous Materials</i> , 2009 , 170, 1086-92	12.8	65
66	Cooperative self-assembly of silica-based mesostructures templated by cationic fluorocarbon/hydrocarbon mixed-surfactants. <i>Microporous and Mesoporous Materials</i> , 2009 , 126, 253-26	5 ^{5.3}	39
65	Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity. <i>Journal of Colloid and Interface Science</i> , 2009 , 339, 160-7	9.3	16
64	An investigation on the adsorption of acid dyes on bentonite based composite adsorbent. <i>Separation and Purification Technology</i> , 2009 , 67, 218-225	8.3	50

63	Photo Fenton degradation of high concentration Orange II (2mM) using catalysts containing Fe: A comparative study. <i>Separation and Purification Technology</i> , 2009 , 67, 213-217	8.3	37
62	Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. <i>Chemical Engineering Journal</i> , 2009 , 149, 281-288	14.7	148
61	Catalytic oxidation of benzyl alcohol on Au or Au P d nanoparticles confined in mesoporous silica. <i>Applied Catalysis B: Environmental</i> , 2009 , 92, 202-208	21.8	127
60	Promoted and Controllable Self-Assembly of Hydrolyzed Siloxane and Triblock Copolymer under Organic Polyhydroxy Acids. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 6308-6314	3.9	2
59	Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption. <i>Langmuir</i> , 2009 , 25, 6413-24	4	125
58	Porous and dense Ni hollow fibre membranes. <i>Journal of Alloys and Compounds</i> , 2009 , 470, 461-464	5.7	33
57	Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4078-83	16.4	1149
56	Surface-Functionalized Periodic Mesoporous Organosilica Hollow Spheres. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 8673-8682	3.8	64
55	Phosphonic acid functionalized silicas for intermediate temperature proton conduction. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2363		46
54	Porous Silica Nanospheres Functionalized with Phosphonic Acid as Intermediate-Temperature Proton Conductors. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3157-3163	3.8	41
53	Anatase TiO2 single crystals with a large percentage of reactive facets. <i>Nature</i> , 2008 , 453, 638-41	50.4	3391
52	Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. <i>Materials Research Bulletin</i> , 2008 , 43, 2599-2606	5.1	27
51	Catalytic combustion of benzene on Co/CeO2/SBA-15 and Co/SBA-15 catalysts. <i>Catalysis Communications</i> , 2008 , 9, 1874-1877	3.2	48
50	Fabrication of a magnetic helical mesostructured silica rod. <i>Nanotechnology</i> , 2008 , 19, 435608	3.4	21
49	Efficient elimination of trace ethylene over nano-gold catalyst under ambient conditions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	39
48	Fabrication and Size-Selective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure. <i>Advanced Functional Materials</i> , 2008 , 18, 3203-3212	15.6	170
47	Hydrophobic Functional Group Initiated Helical Mesostructured Silica for Controlled Drug Release. <i>Advanced Functional Materials</i> , 2008 , 18, 3834-3842	15.6	78
46	Magnetic Hollow Spheres of Periodic Mesoporous Organosilica and Fe3O4 Nanocrystals: Fabrication and Structure Control. <i>Advanced Materials</i> , 2008 , 20, 805-809	24	266

(2006-2008)

45	Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. Journal of Power Sources, 2008 , 185, 664-669	8.9	94
44	Electrochemical hydrogen storage properties of the ball-milled PrMg12 \square Nix + 150 wt% Ni (x = 1 and 2) composites. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 5066-5072	6.7	32
43	Direct synthesis of lanthanide-containing SBA-15 under weak acidic conditions and its catalytic study. <i>Microporous and Mesoporous Materials</i> , 2008 , 113, 72-80	5.3	37
42	A new and generic preparation method of mesoporous clay composites containing dispersed metal oxide nanoparticles. <i>Microporous and Mesoporous Materials</i> , 2008 , 114, 214-221	5.3	27
41	Hydrolytically Stable Phosphorylated Hybrid Silicas for Proton Conduction. <i>Advanced Functional Materials</i> , 2007 , 17, 3304-3311	15.6	100
40	Catalytic ammonia decomposition over CMK-3 supported Ru catalysts: Effects of surface treatments of supports. <i>Carbon</i> , 2007 , 45, 11-20	10.4	56
39	A novel color removal adsorbent from heterocoagulation of cationic and anionic clays. <i>Journal of Colloid and Interface Science</i> , 2007 , 308, 191-9	9.3	60
38	Structural and morphological transformations of mesostructured titanium phosphate through hydrothermal treatment. <i>Journal of Colloid and Interface Science</i> , 2007 , 316, 954-61	9.3	11
37	Bovine serum albumin adsorption in large pore amine functionalized mesoporous silica. <i>Studies in Surface Science and Catalysis</i> , 2007 , 165, 425-428	1.8	3
36	Synthesis of Highly Ordered Large-Pore Periodic Mesoporous Organosilica Rods. <i>Solid State Phenomena</i> , 2007 , 121-123, 381-384	0.4	
35	Proton conduction of ordered mesoporous silica-methanesulfonic acid hybrids. <i>Studies in Surface Science and Catalysis</i> , 2007 , 817-820	1.8	
34	Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores. <i>Chemistry of Materials</i> , 2007 , 19, 1870-1876	9.6	77
33	Periodic mesoporous organosilica hollow spheres with tunable wall thickness. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6320-1	16.4	252
32	Adsorption Study for Removal of Basic Red Dye Using Bentonite. <i>Industrial & Dye Logineering Chemistry Research</i> , 2006 , 45, 733-738	3.9	181
31	Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica. <i>Progress in Solid State Chemistry</i> , 2006 , 34, 249-256	8	57
30	Superior electric double layer capacitors using ordered mesoporous carbons. <i>Carbon</i> , 2006 , 44, 216-22-	4 10.4	634
29	The in-vitro bioactivity of mesoporous bioactive glasses. <i>Biomaterials</i> , 2006 , 27, 3396-403	15.6	290
28	Control of ordered structure and morphology of large-pore periodic mesoporous organosilicas by inorganic salt. <i>Microporous and Mesoporous Materials</i> , 2006 , 91, 59-69	5.3	53

27	Mesoporous bioactive glasses. I. Synthesis and structural characterization. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 3209-3217	3.9	112
26	Diffusion of Linear Paraffins in Nanoporous Silica. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 6477-6484	3.9	15
25	Synthesis and Bio-adsorptive Properties of Large-Pore Periodic Mesoporous Organosilica Rods. <i>Chemistry of Materials</i> , 2005 , 17, 6172-6176	9.6	95
24	Diffusion of n-decane in mesoporous MCM-41 silicas. <i>Microporous and Mesoporous Materials</i> , 2005 , 86, 112-123	5.3	19
23	Study of isosteric heat of adsorption and activation energy for surface diffusion of gases on activated carbon using equilibrium and kinetics information. <i>Separation and Purification Technology</i> , 2004 , 34, 165-176	8.3	21
22	Effect of pore size distribution shape on the prediction of binary adsorption equilibrium and kinetics of gases in activated carbon. <i>Separation and Purification Technology</i> , 2004 , 34, 177-190	8.3	12
21	Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis. <i>Microporous and Mesoporous Materials</i> , 2004 , 72, 33-42	5.3	179
20	Study of hexane adsorption in nanoporous MCM-41 silica. <i>Langmuir</i> , 2004 , 20, 389-95	4	88
19	Comparative Analysis of Structural and Morphological Properties of Large-Pore Periodic Mesoporous Organosilicas and Pure Silicas. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 16441-16450	3.4	33
18	Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst. <i>Water Science and Technology</i> , 2003 , 47, 211-217	2.2	50
17	Using local IAST with micropore size distribution to predict desorption and displacement kinetics of mixed gases in activated carbon. <i>Separation and Purification Technology</i> , 2003 , 31, 19-30	8.3	3
16	Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores. <i>Microporous and Mesoporous Materials</i> , 2003 , 65, 287-298	5.3	62
15	Discrimination of Adsorption Kinetic Models for the Description of Hydrocarbon Adsorption in Activated Carbon. <i>Adsorption</i> , 2001 , 7, 51-63	2.6	6
14	Adsorption Study of Benzene in Ink-Bottle-Like MCM-41. <i>Industrial & Discrete Ingineering Chemistry Research</i> , 2001 , 40, 862-867	3.9	53
13	Use IAST with MPSD to predict binary adsorption kinetics on activated carbon. <i>AICHE Journal</i> , 2000 , 46, 1743-1752	3.6	10
12	Effect of micropore size distribution induced heterogeneity on binary adsorption kinetics of hydrocarbons in activated carbon. <i>Chemical Engineering Science</i> , 2000 , 55, 1533-1544	4.4	20
11	On the performance of HIAST and IAST in the prediction of multicomponent adsorption equilibria. <i>Separation and Purification Technology</i> , 2000 , 20, 243-249	8.3	19
10	Role of Pore Size Distribution in the Binary Adsorption Kinetics of Gases in Activated Carbon. <i>Studies in Surface Science and Catalysis</i> , 2000 , 128, 401-410	1.8	3

LIST OF PUBLICATIONS

9	Using Local IAST with Micropore Size Distribution To Predict Multicomponent Adsorption Equilibrium of Gases in Activated Carbon. <i>Langmuir</i> , 2000 , 16, 1292-1298	4	28	
8	Study of Binary Adsorption Equilibrium of Hydrocarbons in Activated Carbon Using Micropore Size Distribution. <i>Langmuir</i> , 2000 , 16, 5130-5136	4	24	
7	Application of IAST in the Prediction of Multicomponent Adsorption Equilibrium of Gases in Heterogeneous Solids: Micropore Size Distribution versus Energy Distribution. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 527-532	3.9	18	
6	Binary adsorption kinetics of ethane and propane in a large heterogeneous microporous particle. <i>Separation and Purification Technology</i> , 1999 , 16, 261-271	8.3	10	
5	Multicomponent Adsorption Kinetics of Gases in Activated Carbon: ☐Effect of Pore Size Distribution. <i>Langmuir</i> , 1999 , 15, 6428-6437	4	19	
4	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. <i>Energy and Environmental Science</i> ,	35.4	75	
3	Studying conversion mechanism to broaden cathode options in aqueous Zn-ion batteries. <i>Angewandte Chemie</i> ,	3.6	12	
2	Strategy to utilize amorphous phase of semiconductor toward excellent and reliable photochemical water splitting performance: Roles of interface dipole moment and reaction parallelization. <i>International Journal of Energy Research</i> ,	4.5	O	
1	Photocatalytic CO2 Reduction: Identification and Elimination of False-Positive Results. <i>ACS Energy</i> Letters.1611-1617	20.1	2	