Shi Zhang Qiao

List of Publications by Citations

Source: https://exaly.com/author-pdf/4582788/shi-zhang-qiao-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

530	87,157 citations	148	285
papers		h-index	g-index
564	101,051 ext. citations	13.3	8.93
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
530	Anatase TiO2 single crystals with a large percentage of reactive facets. <i>Nature</i> , 2008 , 453, 638-41	50.4	3391
529	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. <i>Chemical Society Reviews</i> , 2015 , 44, 2060-86	58.5	3275
528	Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. <i>Chemical Society Reviews</i> , 2014 , 43, 7787-812	58.5	1751
527	Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11496-500	16.4	1726
526	Hydrogen evolution by a metal-free electrocatalyst. <i>Nature Communications</i> , 2014 , 5, 3783	17.4	1572
525	Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13925-31	16.4	1512
524	Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. <i>Energy and Environmental Science</i> , 2012 , 5, 6717	35.4	1385
523	Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 52-65	16.4	1282
522	Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4078-83	16.4	1149
521	TiC MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. <i>Nature Communications</i> , 2017 , 8, 13907	17.4	1073
520	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. <i>Chemical Reviews</i> , 2018 , 118, 6337-6408	8 68.1	1057
519	Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. <i>Advanced Materials</i> , 2016 , 28, 3423-52	24	933
518	Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. <i>Energy and Environmental Science</i> , 2015 , 8, 3708-3717	35.4	903
517	Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. <i>Energy and Environmental Science</i> , 2018 , 11, 45-56	35.4	887
516	Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20116-9	16.4	869
515	Molecule-Level g-CN Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3336-3339	16.4	816
514	Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. <i>ACS Nano</i> , 2014 , 8, 5290-6	16.7	802

513	Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4394-403	16.4	794
512	Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3110-6	16.4	776
511	Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. <i>Chemical Communications</i> , 2011 , 47, 12578-91	5.8	727
510	Molecular-based design and emerging applications of nanoporous carbon spheres. <i>Nature Materials</i> , 2015 , 14, 763-74	27	712
509	Activity origin and catalyst design principles for lelectrocatalytic hydrogen evolution on heteroatom-doped graphene. <i>Nature Energy</i> , 2016 , 1,	62.3	703
508	Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting. <i>Advanced Functional Materials</i> , 2016 , 26, 3314-3323	15.6	690
507	Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. <i>ACS Catalysis</i> , 2015 , 5, 5207-5234	13.1	675
506	Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. <i>Accounts of Chemical Research</i> , 2017 , 50, 915-923	24.3	672
505	The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7568-7579	16.4	659
504	Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4646-50	16.4	654
503	Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7281-5	16.4	651
502	Superior electric double layer capacitors using ordered mesoporous carbons. <i>Carbon</i> , 2006 , 44, 216-224	10.4	634
501	Extension of the StBer method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5947-51	16.4	623
500	Cocatalysts in Semiconductor-based Photocatalytic CO Reduction: Achievements, Challenges, and Opportunities. <i>Advanced Materials</i> , 2018 , 30, 1704649	24	614
499	Magnetic nanocomposites with mesoporous structures: synthesis and applications. <i>Small</i> , 2011 , 7, 425-4	13 1	612
498	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16174-16181	16.4	586
497	Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. <i>ACS Nano</i> , 2015 , 9, 931-40	16.7	569
496	Self-Templating Synthesis of Hollow Co O Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie - International Edition, 2017 , 56, 1324-1328	16.4	558

495	Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3892-6	16.4	549
494	Metal-Free 2D/2D Phosphorene/g-C N Van der Waals Heterojunction for Highly Enhanced Visible-Light Photocatalytic H Production. <i>Advanced Materials</i> , 2018 , 30, e1800128	24	521
493	Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. <i>Advanced Materials</i> , 2014 , 26, 2925-30	24	521
492	Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. <i>Small</i> , 2012 , 8, 3550-66	11	518
491	Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4981-5	16.4	510
490	Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. <i>Nano Energy</i> , 2016 , 19, 373-381	17.1	499
489	Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13567-70	16.4	498
488	Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1138-42	16.4	478
487	A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. <i>Nature Communications</i> , 2013 , 4,	17.4	475
486	Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. <i>Nature Communications</i> , 2016 , 7, 12876	17.4	471
485	An Electrolytic Zn-MnO Battery for High-Voltage and Scalable Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7823-7828	16.4	464
484	Hierarchically porous nitrogen-doped graphene-NiCo(2)O(4) hybrid paper as an advanced electrocatalytic water-splitting material. <i>ACS Nano</i> , 2013 , 7, 10190-6	16.7	457
483	Roadmap for advanced aqueous batteries: From design of materials to applications. <i>Science Advances</i> , 2020 , 6, eaba4098	14.3	455
482	Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. <i>Nanoscale</i> , 2011 , 3, 2801-18	7.7	449
481	Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. <i>ACS Nano</i> , 2014 , 8, 6856-62	16.7	445
480	Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. <i>Advanced Materials</i> , 2014 , 26, 6074-9	24	439
479	Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3046		423
478	2D phosphorene as a water splitting photocatalyst: fundamentals to applications. <i>Energy and Environmental Science</i> , 2016 , 9, 709-728	35.4	420

(2012-2012)

477	Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage. <i>Advanced Energy Materials</i> , 2012 , 2, 970-975	21.8	420	
476	Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions. <i>Advanced Energy Materials</i> , 2017 , 7, 1700518	21.8	406	
475	Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society, 2010 , 132, 2608-13	16.4	406	
474	Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9664-9672	16.4	390	
473	High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage. <i>Advanced Materials</i> , 2017 , 29, 1604007	24	379	
472	How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. <i>Chemical Society Reviews</i> , 2019 , 48, 3166-3180	58.5	377	
471	Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. <i>CheM</i> , 2018 , 4, 1809-1831	16.2	372	
470	Understanding the Roadmap for Electrochemical Reduction of CO to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7646-76	5 ^{16.4}	371	
469	Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. <i>Energy and Environmental Science</i> , 2012 , 5, 7323	35.4	371	
468	Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. <i>Nano Energy</i> , 2018 , 43, 103-109	17.1	366	
467	Surface strategies for catalytic CO reduction: from two-dimensional materials to nanoclusters to single atoms. <i>Chemical Society Reviews</i> , 2019 , 48, 5310-5349	58.5	365	
466	Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. <i>Small</i> , 2014 , 10, 2382-9	11	359	
465	N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. <i>Advanced Materials</i> , 2013 , 25, 6226-31	24	358	
464	Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. <i>Advanced Materials</i> , 2010 , 22, 4944-8	24	352	
463	3D WS2 Nanolayers@Heteroatom-Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes. <i>Advanced Materials</i> , 2015 , 27, 4234-41	24	350	
462	Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO Reduction to Hydrocarbon/Alcohol. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18093-18100	16.4	341	
461	Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 3192-3198	3.6	332	
460	YolkBhell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. <i>Advanced Functional Materials</i> , 2012 , 22, 591-599	15.6	330	

459	Preparation of capacitor's electrode from sunflower seed shell. <i>Bioresource Technology</i> , 2011 , 102, 111	81213	330
458	Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. <i>ACS Catalysis</i> , 2019 , 9, 2902-2908	13.1	329
457	Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. <i>ACS Catalysis</i> , 2016 , 6, 4720-4728	13.1	327
456	Amorphous Ni(OH)2 @ three-dimensional Ni corellhell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13845-138	8 53	323
455	Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting. <i>ACS Nano</i> , 2016 , 10, 8738-45	16.7	310
454	Nanoparticle synthesis in microreactors. <i>Chemical Engineering Science</i> , 2011 , 66, 1463-1479	4.4	298
453	The in-vitro bioactivity of mesoporous bioactive glasses. <i>Biomaterials</i> , 2006 , 27, 3396-403	15.6	290
452	N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. <i>Energy and Environmental Science</i> , 2013 , 6, 3693	35.4	282
451	Identifying the Key Role of Pyridinic-N-Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. <i>Advanced Materials</i> , 2018 , 30, e1800005	24	279
450	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. <i>Nature Communications</i> , 2017 , 8, 1509	17.4	276
449	Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12088-94	3.6	274
448	Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. <i>ACS Nano</i> , 2017 , 11, 7293-7300	16.7	271
447	Magnetic Hollow Spheres of Periodic Mesoporous Organosilica and Fe3O4 Nanocrystals: Fabrication and Structure Control. <i>Advanced Materials</i> , 2008 , 20, 805-809	24	266
446	A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1702524	15.6	265
445	Flexible SnO2/N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. <i>Small</i> , 2016 , 12, 853-9	11	264
444	Transition-Metal-Doped RuIr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. <i>Advanced Materials</i> , 2019 , 31, e1900510	24	261
443	Shape Control of Mn3O4 Nanoparticles on Nitrogen-Doped Graphene for Enhanced Oxygen Reduction Activity. <i>Advanced Functional Materials</i> , 2014 , 24, 2072-2078	15.6	261
442	Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. <i>Nanoscale</i> , 2015 , 7, 17590-610	7.7	259

(2016-2019)

441	Nitrogen Vacancies on 2D Layered W N : A Stable and Efficient Active Site for Nitrogen Reduction Reaction. <i>Advanced Materials</i> , 2019 , 31, e1902709	24	258
440	S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. <i>Nano Energy</i> , 2017 , 40, 264-273	17.1	258
439	Polydopamine-Inspired, Dual Heteroatom-Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1602068	21.8	256
438	Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8539-8543	16.4	254
437	Periodic mesoporous organosilica hollow spheres with tunable wall thickness. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6320-1	16.4	252
436	Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO2. <i>Advanced Energy Materials</i> , 2017 , 7, 1700759	21.8	250
435	Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10373-10377	16.4	247
434	Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. <i>ACS Catalysis</i> , 2018 , 8, 6707-6732	13.1	240
433	Recent Advances in Atomic Metal Doping of Carbon-based Nanomaterials for Energy Conversion. Small, 2017 , 13, 1700191	11	235
432	Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance. <i>Angewandte Chemie</i> , 2012 , 124, 11664-11668	3.6	234
431	Graphitic Carbon Nitride (g-C N)-Derived N-Rich Graphene with Tuneable Interlayer Distance as a High-Rate Anode for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1901261	24	232
430	Nanostructured morphology control for efficient supercapacitor electrodes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2941-2954	13	232
429	Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. <i>Chemical Society Reviews</i> , 2019 , 48, 2518-2534	58.5	227
428	A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. Journal of Materials Chemistry, 2012 , 22, 11173		227
427	Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. <i>ACS Nano</i> , 2012 , 6, 2104-17	16.7	227
426	Na Ti O @N-Doped Carbon Hollow Spheres for Sodium-Ion Batteries with Excellent Rate Performance. <i>Advanced Materials</i> , 2017 , 29, 1700989	24	226
425	Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. <i>Chemical Communications</i> , 2013 , 49, 7705-7	5.8	226
424	Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3804-8	16.4	225

423	Advent of 2D Rhenium Disulfide (ReS2): Fundamentals to Applications. <i>Advanced Functional Materials</i> , 2017 , 27, 1606129	15.6	224
422	2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16703-16707	16.4	224
421	Synthesis of high-reactive facets dominated anatase TiO2. Journal of Materials Chemistry, 2011, 21, 705	2	223
420	Ternary NiS/ZnxCd1-xS/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H2-Production Activity. <i>Advanced Energy Materials</i> , 2014 , 4, 1301925	21.8	218
419	Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. <i>Chemical Communications</i> , 2017 , 53, 10906-10909	5.8	218
418	Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications. <i>Small</i> , 2015 , 11, 392-413	11	217
417	Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality. <i>Advanced Materials</i> , 2015 , 27, 5372-8	24	216
416	Self-supported electrocatalysts for advanced energy conversion processes. <i>Materials Today</i> , 2016 , 19, 265-273	21.8	212
415	Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. <i>Nano Energy</i> , 2015 , 11, 11-18	17.1	209
414	Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9171-9176	16.4	206
413	Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. <i>CheM</i> , 2019 , 5, 445-459	16.2	205
412	Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. <i>Biomaterials</i> , 2016 , 91, 90-127	15.6	199
411	A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4595		199
410	Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8676-8682	13	196
409	Atomically and Electronically Coupled Pt and CoO Hybrid Nanocatalysts for Enhanced Electrocatalytic Performance. <i>Advanced Materials</i> , 2017 , 29, 1604607	24	194
408	Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. <i>Chemical Communications</i> , 2011 , 47, 2631-3	5.8	189
407	Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. <i>ACS Energy Letters</i> , 2019 , 4, 805-810	20.1	188
406	Critical role of small micropores in high CO2 uptake. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2523	-9 .6	184

(2018-2016)

405	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. <i>Energy and Environmental Science</i> , 2016 , 9, 2563-2570	35.4	183
404	Adsorption Study for Removal of Basic Red Dye Using Bentonite. <i>Industrial & Dye Logineering Chemistry Research</i> , 2006 , 45, 733-738	3.9	181
403	Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis. <i>Microporous and Mesoporous Materials</i> , 2004 , 72, 33-42	5.3	179
402	TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. <i>Chemical Communications</i> , 2010 , 46, 8252-4	5.8	176
401	Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers. <i>Advanced Materials</i> , 2013 , 25, 5981-5	24	173
400	An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17437		173
399	Advantageous crystalline\(\text{Imorphous phase boundary for enhanced electrochemical water oxidation. \(\text{Energy and Environmental Science, \text{2019}, 12, 2443-2454 \)	35.4	172
398	Single-Crystal Nitrogen-Rich Two-Dimensional MoN Nanosheets for Efficient and Stable Seawater Splitting. <i>ACS Nano</i> , 2018 , 12, 12761-12769	16.7	171
397	Fabrication and Size-Selective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure. <i>Advanced Functional Materials</i> , 2008 , 18, 3203-3212	15.6	170
396	N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18139-18146	13	168
395	Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. <i>ACS Applied Materials & District Comparative Lithium Storage</i> , 2010, 2, 3628-35	9.5	166
394	Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting. <i>Advanced Materials</i> , 2019 , 31, e1803625	24	163
393	Atomic-Level Reactive Sites for Semiconductor-Based Photocatalytic CO2 Reduction. <i>Advanced Energy Materials</i> , 2020 , 10, 1903879	21.8	162
392	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7366-7375	16.4	161
391	Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. <i>Journal of Hazardous Materials</i> , 2011 , 186, 1615-24	12.8	160
390	Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5687		158
389	Three-Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction. <i>Advanced Energy Materials</i> , 2015 , 5, 1500936	21.8	155
388	Porous MoS2/Carbon Spheres Anchored on 3D Interconnected Multiwall Carbon Nanotube Networks for Ultrafast Na Storage. <i>Advanced Energy Materials</i> , 2018 , 8, 1702909	21.8	153

387	Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. <i>Green Chemistry</i> , 2011 , 13, 300-306	10	153
386	Ruthenium-Based Single-Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution. <i>Advanced Energy Materials</i> , 2019 , 9, 1803913	21.8	152
385	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. <i>Materials Today</i> , 2020 , 36, 125-138	21.8	152
384	Ionic liquid self-combustion synthesis of BiOBr/Bi24O31Br10 heterojunctions with exceptional visible-light photocatalytic performances. <i>Nanoscale</i> , 2015 , 7, 1116-26	7.7	151
383	Well-Dispersed Nickel- and Zinc-Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2019 , 31, e1807771	24	149
382	Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. <i>Chemical Engineering Journal</i> , 2009 , 149, 281-288	14.7	148
381	NiO as a Bifunctional Promoter for RuO toward Superior Overall Water Splitting. Small, 2018, 14, e170	407/3	147
380	Enhanced visible-light photocatalytic H2 production by Znx Cd1-x S modified with earth-abundant nickel-based cocatalysts. <i>ChemSusChem</i> , 2014 , 7, 3426-34	8.3	147
379	Enzyme-responsive controlled release of covalently bound prodrug from functional mesoporous silica nanospheres. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12486-9	16.4	146
378	Facile Oxygen Reduction on a Three-Dimensionally Ordered Macroporous Graphitic C3N4/Carbon Composite Electrocatalyst. <i>Angewandte Chemie</i> , 2012 , 124, 3958-3962	3.6	146
377	2D Metal Organic Framework Nanosheet: A Universal Platform Promoting Highly Efficient Visible-Light-Induced Hydrogen Production. <i>Advanced Energy Materials</i> , 2019 , 9, 1803402	21.8	144
376	Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. <i>Chemical Communications</i> , 2012 , 48, 865-7	5.8	141
375	Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy {001} and {100} facets. <i>Chemical Communications</i> , 2011 , 47, 4400-2	5.8	141
374	Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8540-8544	16.4	140
373	Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. <i>Journal of Power Sources</i> , 2011 , 196, 4123-4127	8.9	140
372	Charge State Manipulation of Cobalt Selenide Catalyst for Overall Seawater Electrolysis. <i>Advanced Energy Materials</i> , 2018 , 8, 1801926	21.8	140
371	Elektrochemie der Wasserstoffentwicklungsreaktion: Optimierung durch Korrelation von Experiment und Theorie. <i>Angewandte Chemie</i> , 2015 , 127, 52-66	3.6	137
370	Hierarchical mesoporous yolk-shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. <i>Chemical Communications</i> , 2015 , 51, 2518-21	5.8	136

(2018-2020)

369	Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. <i>Energy and Environmental Science</i> , 2020 , 13, 1096-1131	35.4	135
368	Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets. <i>Chemistry - A European Journal</i> , 2011 , 17, 1423-7	4.8	135
367	Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. <i>Science Advances</i> , 2018 , 4, eaau6261	14.3	130
366	Graphitic Carbon Nitride Nanosheet¶arbon Nanotube Three-Dimensional Porous Composites as High-Performance Oxygen Evolution Electrocatalysts. <i>Angewandte Chemie</i> , 2014 , 126, 7409-7413	3.6	128
365	Fabrication of uniform anatase TiO(2) particles exposed by {001} facets. <i>Chemical Communications</i> , 2010 , 46, 6608-10	5.8	128
364	Non-metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12252-12257	16.4	127
363	Catalytic oxidation of benzyl alcohol on Au or AuPd nanoparticles confined in mesoporous silica. <i>Applied Catalysis B: Environmental</i> , 2009 , 92, 202-208	21.8	127
362	Characterization of semiconductor photocatalysts. <i>Chemical Society Reviews</i> , 2019 , 48, 5184-5206	58.5	126
361	Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. <i>Chemistry - A European Journal</i> , 2013 , 19, 7118-24	4.8	126
360	Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. <i>Chemistry - A European Journal</i> , 2010 , 16, 11020-7	4.8	126
359	Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7819-7827	16.4	126
358	Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. <i>Nano Energy</i> , 2018 , 53, 690-697	17.1	126
357	Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1305-1322	13	125
356	High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23186		125
355	Adsorption and release of biocides with mesoporous silica nanoparticles. <i>Nanoscale</i> , 2012 , 4, 970-5	7.7	125
354	Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. <i>Microporous and Mesoporous Materials</i> , 2009 , 117, 213-219	5.3	125
353	Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption. <i>Langmuir</i> , 2009 , 25, 6413-24	4	125
352	Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. <i>ACS Energy Letters</i> , 2018 , 3, 1198-1204	20.1	124

351	Regulating Electrocatalysts via Surface and Interface Engineering for Acidic Water Electrooxidation. <i>ACS Energy Letters</i> , 2019 , 4, 2719-2730	20.1	124
350	Atomic Engineering Catalyzed MnO Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density. <i>Advanced Materials</i> , 2020 , 32, e2001894	24	123
349	Functionalized Mesoporous Silica with Very Large Pores for Cellulase Immobilization. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8353-8362	3.8	123
348	A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6814-6818	16.4	121
347	Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. <i>Nature Communications</i> , 2019 , 10, 4876	17.4	118
346	Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate-Zinc Oxide Nanorod p-n Heterojunction. <i>Chemistry - A European Journal</i> , 2015 , 21, 15360-8	4.8	117
345	Facile fabrication of core-shell-structured Ag@carbon and mesoporous yolk-shell-structured Ag@carbon@silica by an extended StBer method. <i>Chemistry - A European Journal</i> , 2013 , 19, 6942-5	4.8	115
344	Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1484-1488	16.4	113
343	Mesoporous bioactive glasses. I. Synthesis and structural characterization. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 3209-3217	3.9	112
342	3D Synergistically Active Carbon Nanofibers for Improved Oxygen Evolution. <i>Advanced Energy Materials</i> , 2017 , 7, 1602928	21.8	111
341	An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency. <i>Advanced Materials</i> , 2018 , 30, e1707261	24	110
340	Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. <i>Advanced Energy Materials</i> , 2020 , 10, 2000789	21.8	108
339	From titanium oxydifluoride (TiOF2) to titania (TiO2): phase transition and non-metal doping with enhanced photocatalytic hydrogen (H2) evolution properties. <i>Chemical Communications</i> , 2011 , 47, 6138-	- 40 8	107
338	Selectivity Control for Electrochemical CO2 Reduction by Charge Redistribution on the Surface of Copper Alloys. <i>ACS Catalysis</i> , 2019 , 9, 9411-9417	13.1	106
337	Disulfide-Bridged Organosilica Frameworks: Designed, Synthesis, Redox-Triggered Biodegradation, and Nanobiomedical Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1707325	15.6	106
336	Engineering 2D Metal-Organic Framework/MoS Interface for Enhanced Alkaline Hydrogen Evolution. <i>Small</i> , 2019 , 15, e1805511	11	105
335	Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2445-2452	13	105
334	Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. <i>Small</i> , 2013 , 9, 3138-46	11	105

333	An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction. <i>Chemical Communications</i> , 2015 , 51, 7516-9	5.8	103
332	Toward High-Voltage Aqueous Batteries: Super- or Low-Concentrated Electrolyte?. <i>Joule</i> , 2020 , 4, 1846	5-1 9 .51	102
331	Negative Charging of Transition-Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11796-11800	16.4	101
330	Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. <i>Nano Energy</i> , 2019 , 60, 591-599	17.1	100
329	Electrochemical Nitrogen Reduction: Identification and Elimination of Contamination in Electrolyte. <i>ACS Energy Letters</i> , 2019 , 4, 2111-2116	20.1	100
328	Hydrolytically Stable Phosphorylated Hybrid Silicas for Proton Conduction. <i>Advanced Functional Materials</i> , 2007 , 17, 3304-3311	15.6	100
327	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8181-8186	16.4	99
326	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5201-52	2116.4	98
325	Polydopamine-graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. <i>Nanoscale</i> , 2015 , 7, 12598-605	7.7	96
324	The Application of Hollow Structured Anodes for Sodium-Ion Batteries: From Simple to Complex Systems. <i>Advanced Materials</i> , 2019 , 31, e1800492	24	96
323	Identification of pH-dependent synergy on Ru/MoS interface: a comparison of alkaline and acidic hydrogen evolution. <i>Nanoscale</i> , 2017 , 9, 16616-16621	7.7	95
322	Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. <i>CheM</i> , 2019 , 5, 2429-2441	16.2	95
321	Synthesis and Bio-adsorptive Properties of Large-Pore Periodic Mesoporous Organosilica Rods. <i>Chemistry of Materials</i> , 2005 , 17, 6172-6176	9.6	95
320	A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride. <i>Advanced Functional Materials</i> , 2017 , 27, 1702384	15.6	94
319	Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. Journal of Power Sources, 2008 , 185, 664-669	8.9	94
318	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19572-19590	16.4	93
317	Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping. <i>Small</i> , 2016 , 12, 3703-11	11	93
316	Multiscale Structural Engineering of Ni-Doped CoO Nanosheets for Zinc-Air Batteries with High Power Density. <i>Advanced Materials</i> , 2018 , 30, e1804653	24	93

315	Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO2 Reduction. <i>Small Methods</i> , 2017 , 1, 1600006	12.8	92
314	Hollow Carbon Nanospheres with Tunable Hierarchical Pores for Drug, Gene, and Photothermal Synergistic Treatment. <i>Small</i> , 2017 , 13, 1602592	11	92
313	Extension of The StBer Method to the Preparation of Monodisperse Resorcinol Bormaldehyde Resin Polymer and Carbon Spheres. <i>Angewandte Chemie</i> , 2011 , 123, 6069-6073	3.6	91
312	Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. <i>Chemical Communications</i> , 2018 , 54, 463-466	5.8	91
311	Molecular-Level Hybridization of Nafion with Quantum Dots for Highly Enhanced Proton Conduction. <i>Advanced Materials</i> , 2018 , 30, e1707516	24	90
310	Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 718-726	7.3	90
309	Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer. <i>Journal of Membrane Science</i> , 2009 , 341, 279-285	9.6	89
308	Nitrogen-Doped CNx/CNTs Heteroelectrocatalysts for Highly Efficient Dye-Sensitized Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1602276	21.8	88
307	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon-Based Catalysts for Electrocatalytic Nitrogen Reduction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4525-4531	16.4	88
306	Silver/Nitrogen-Doped Graphene Interaction and Its Effect on Electrocatalytic Oxygen Reduction. <i>Chemistry of Materials</i> , 2014 , 26, 5868-5873	9.6	88
305	Enhanced Water Retention by Using Polymeric Microcapsules to Confer High Proton Conductivity on Membranes at Low Humidity. <i>Advanced Functional Materials</i> , 2011 , 21, 971-978	15.6	88
304	Study of hexane adsorption in nanoporous MCM-41 silica. <i>Langmuir</i> , 2004 , 20, 389-95	4	88
303	Electron-State Confinement of Polysulfides for Highly Stable Sodium-Sulfur Batteries. <i>Advanced Materials</i> , 2020 , 32, e1907557	24	87
302	Enhanced electrochemical catalytic activity by copper oxide grown on nitrogen-doped reduced graphene oxide. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13179	13	87
301	Phosphorus-Doped Graphitic Carbon Nitrides Grown In Situ on Carbon-Fiber Paper: Flexible and Reversible Oxygen Electrodes. <i>Angewandte Chemie</i> , 2015 , 127, 4729-4733	3.6	87
300	A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: new insight into the alkaline mechanism. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3648-3654	13	86
299	A 2D metal-organic framework/Ni(OH) heterostructure for an enhanced oxygen evolution reaction. <i>Nanoscale</i> , 2019 , 11, 3599-3605	7.7	86
298	Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8117-8121	13	86

(2016-2018)

297	1D Sub-Nanotubes with Anatase/Bronze TiO Nanocrystal Wall for High-Rate and Long-Life Sodium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1804116	24	85
296	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020 , 142, 2012-2022	16.4	84
295	Nickel nanoparticles prepared by hydrazine hydrate reduction and their application in supercapacitor. <i>Powder Technology</i> , 2012 , 224, 162-167	5.2	83
294	Isolated Boron Sites for Electroreduction of Dinitrogen to Ammonia. <i>ACS Catalysis</i> , 2020 , 10, 1847-1854	13.1	82
293	In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction. <i>Advanced Energy Materials</i> , 2020 , 10, 2001289	21.8	81
292	Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. <i>Advanced Materials</i> , 2021 , 33, e2007508	24	81
291	Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution. <i>Angewandte Chemie</i> , 2016 , 128, 1150-1154	3.6	80
290	Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors. <i>Chemistry - A European Journal</i> , 2015 , 21, 4614-21	4.8	80
289	Three-dimensional MnO2 ultrathin nanosheet aerogels for high-performance LiD2 batteries. Journal of Materials Chemistry A, 2015 , 3, 2559-2563	13	79
288	pH-responsive nutraceutical-mesoporous silica nanoconjugates with enhanced colloidal stability. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2318-22	16.4	79
287	Mechanism for Zincophilic Sites on Zinc-Metal Anode Hosts in Aqueous Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003419	21.8	79
286	Unveiling the Advances of 2D Materials for Li/Na-S Batteries Experimentally and Theoretically. <i>Matter</i> , 2020 , 2, 323-344	12.7	78
285	Hydrophobic Functional Group Initiated Helical Mesostructured Silica for Controlled Drug Release. <i>Advanced Functional Materials</i> , 2008 , 18, 3834-3842	15.6	78
284	Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores. <i>Chemistry of Materials</i> , 2007 , 19, 1870-1876	9.6	77
283	Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 4935-42	24	75
282	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. <i>Energy and Environmental Science</i> ,	35.4	75
281	A graphene-MnO2 framework as a new generation of three-dimensional oxygen evolution promoter. <i>Chemical Communications</i> , 2014 , 50, 207-9	5.8	74
280	Magnetic Core-Shell Silica Nanoparticles with Large Radial Mesopores for siRNA Delivery. <i>Small</i> , 2016 , 12, 4735-42	11	74

279	Rational Design of Spinel Cobalt Vanadate Oxide Co VO for Superior Electrocatalysis. <i>Advanced Materials</i> , 2020 , 32, e1907168	24	72
278	Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. <i>Biomaterials</i> , 2012 , 33, 970-8	15.6	71
277	Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. <i>Nature Catalysis</i> , 2020 , 3, 743-753	36.5	71
276	Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis. <i>Angewandte Chemie</i> , 2017 , 129, 1344-1348	3.6	68
275	Acid B ase Bifunctional Periodic Mesoporous Metal Phosphonates for Synergistically and Heterogeneously Catalyzing CO2 Conversion. <i>ACS Catalysis</i> , 2014 , 4, 3847-3855	13.1	68
274	Cancer-Cell-Specific Nuclear-Targeted Drug Delivery by Dual-Ligand-Modified Mesoporous Silica Nanoparticles. <i>Small</i> , 2015 , 11, 5919-26	11	68
273	Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. <i>Chemical Communications</i> , 2011 , 47, 10443-5	5.8	68
272	Topotactically Transformed Polygonal Mesopores on Ternary Layered Double Hydroxides Exposing Under-Coordinated Metal Centers for Accelerated Water Dissociation. <i>Advanced Materials</i> , 2020 , 32, e2006784	24	67
271	Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution. <i>CheM</i> , 2020 , 6, 2382-2394	16.2	67
270	Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. <i>Nano Energy</i> , 2020 , 71, 104601	17.1	65
269	Effective removal and fixation of Cr(VI) from aqueous solution with Friedel's salt. <i>Journal of Hazardous Materials</i> , 2009 , 170, 1086-92	12.8	65
268	Die Wasserstoffentwicklungsreaktion in alkalischer L\(\bar{\text{U}}\)ung: Von der Theorie und Einkristallmodellen zu praktischen Elektrokatalysatoren. <i>Angewandte Chemie</i> , 2018 , 130, 7690-7702	3.6	64
267	Surface-Functionalized Periodic Mesoporous Organosilica Hollow Spheres. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 8673-8682	3.8	64
266	3D Hollow EMnO Framework as an Efficient Electrocatalyst for Lithium-Oxygen Batteries. <i>Small</i> , 2019 , 15, e1804958	11	64
265	Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation. <i>Small</i> , 2018 , 14, e1800195	11	63
264	Ordered mesoporous core/shell SnO2/C nanocomposite as high-capacity anode material for lithium-ion batteries. <i>Chemistry - A European Journal</i> , 2013 , 19, 16897-901	4.8	63
263	Revealing the Origin of Improved Reversible Capacity of Dual-Shell Bismuth Boxes Anode for Potassium-Ion Batteries. <i>Matter</i> , 2019 , 1, 1681-1693	12.7	62
262	Photocatalysts for Hydrogen Evolution Coupled with Production of Value-Added Chemicals. <i>Small Methods</i> , 2020 , 4, 2000063	12.8	62

261	Three-Dimensional N-Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for Highly Efficient Oxygen Evolution. <i>Angewandte Chemie</i> , 2013 , 125, 13812-13815	3.6	62
260	Enhanced removal of triphosphate by MgCaFe-Cl-LDH: synergism of precipitation with intercalation and surface uptake. <i>Journal of Hazardous Materials</i> , 2011 , 189, 586-94	12.8	62
259	Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores. <i>Microporous and Mesoporous Materials</i> , 2003 , 65, 287-298	5.3	62
258	Pd coated MoS 2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. Journal of Power Sources, 2015 , 284, 68-76	8.9	61
257	Electrochemical Reduction of CO to Ethane through Stabilization of an Ethoxy Intermediate. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19649-19653	16.4	61
256	Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9409	13	61
255	Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. <i>Carbon</i> , 2015 , 86, 235-244	10.4	60
254	Enhanced visible-light hydrogen-production activity of copper-modified ZnxCd(1-x)S. <i>ChemSusChem</i> , 2013 , 6, 2009-15	8.3	60
253	Effective removal of selenate from aqueous solutions by the Friedel phase. <i>Journal of Hazardous Materials</i> , 2010 , 176, 193-8	12.8	60
252	A novel color removal adsorbent from heterocoagulation of cationic and anionic clays. <i>Journal of Colloid and Interface Science</i> , 2007 , 308, 191-9	9.3	60
251	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. <i>Electrochemical Energy Reviews</i> , 2019 , 2, 332-371	29.3	59
250	Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and ZnBir batteries. <i>Energy Storage Materials</i> , 2015 , 1, 17-24	19.4	59
249	Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. <i>Angewandte Chemie</i> , 2020 , 132, 9256-9261	3.6	59
248	Nitrogen-Doped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction. <i>ChemCatChem</i> , 2015 , 7, 3808-3817	5.2	59
247	Strongly interactive 0D/2D hetero-structure of a ZnCdS nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H production. <i>Chemical Communications</i> , 2017 , 53, 9882-9885	5.8	58
246	Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica. <i>Progress in Solid State Chemistry</i> , 2006 , 34, 249-256	8	57
245	Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. <i>Nature Energy</i> , 2021 , 6, 904-9	162.3	57
244	Impact of Interfacial Electron Transfer on Electrochemical CO Reduction on Graphitic Carbon Nitride/Doped Graphene. <i>Small</i> , 2019 , 15, e1804224	11	56

243	H2 purification by functionalized graphdiyne Irole of nitrogen doping. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6767-6771	13	56
242	Paper-Based N-Doped Carbon Films for Enhanced Oxygen Evolution Electrocatalysis. <i>Advanced Science</i> , 2015 , 2, 1400015	13.6	56
241	Catalytic ammonia decomposition over CMK-3 supported Ru catalysts: Effects of surface treatments of supports. <i>Carbon</i> , 2007 , 45, 11-20	10.4	56
240	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14131-14137	16.4	56
239	Selective Catalysis Remedies Polysulfide Shuttling in Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2021 , 33, e2101006	24	55
238	Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery. Biomaterials, 2014 , 35, 5580-90	15.6	54
237	Tungsten Nitride Nanodots Embedded Phosphorous Modified Carbon Fabric as Flexible and Robust Electrode for Asymmetric Pseudocapacitor. <i>Small</i> , 2019 , 15, e1804104	11	54
236	Modest Oxygen-Defective Amorphous Manganese-Based Nanoparticle Mullite with Superior Overall Electrocatalytic Performance for Oxygen Reduction Reaction. <i>Small</i> , 2017 , 13, 1603903	11	53
235	Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1712-1721	7.3	53
234	Intracellular Microenvironment-Responsive Dendrimer-Like Mesoporous Nanohybrids for Traceable, Effective, and Safe Gene Delivery. <i>Advanced Functional Materials</i> , 2014 , 24, 7627-7637	15.6	53
233	Synthesis of nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10641		53
232	Control of ordered structure and morphology of large-pore periodic mesoporous organosilicas by inorganic salt. <i>Microporous and Mesoporous Materials</i> , 2006 , 91, 59-69	5.3	53
231	Adsorption Study of Benzene in Ink-Bottle-Like MCM-41. <i>Industrial & Discrete Like MCM-41</i> . <i>Industrial & Discrete Like MC</i>	3.9	53
230	Encapsulation of lipase in mesoporous silica yolk@hell spheres with enhanced enzyme stability. <i>RSC Advances</i> , 2013 , 3, 22008	3.7	52
229	Pyrite nanorod arrays as an efficient counter electrode for dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11828	13	52
228	Soft-Templating Synthesis of N-Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1546-53	4.5	52
227	Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area. <i>Chemistry - A European Journal</i> , 2014 , 20, 13314-20	4.8	52
226	An investigation on the adsorption of acid dyes on bentonite based composite adsorbent. <i>Separation and Purification Technology</i> , 2009 , 67, 218-225	8.3	50

(2013-2003)

225	Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst. <i>Water Science and Technology</i> , 2003 , 47, 211-217	2.2	50
224	Long-Life Room-Temperature SodiumBulfur Batteries by Virtue of Transition-Metal-NanoclusterBulfur Interactions. <i>Angewandte Chemie</i> , 2019 , 131, 1498-1502	3.6	50
223	Targeted Synergy between Adjacent Co Atoms on Graphene Oxide as an Efficient New Electrocatalyst for LittO2 Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1904206	15.6	49
222	An Electrolytic ZnMnO2 Battery for High-Voltage and Scalable Energy Storage. <i>Angewandte Chemie</i> , 2019 , 131, 7905-7910	3.6	49
221	3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability. <i>Advanced Functional Materials</i> , 2017 , 27, 1605703	15.6	48
220	Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: a DFT study. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7184-7190	13	48
219	Porous graphitized carbon for adsorptive removal of benzene and the electrothermal regeneration. <i>Environmental Science & Environmental Science & Envi</i>	10.3	48
218	Catalytic combustion of benzene on Co/CeO2/SBA-15 and Co/SBA-15 catalysts. <i>Catalysis Communications</i> , 2008 , 9, 1874-1877	3.2	48
217	Hierarchical 1T-MoS2 nanotubular structures for enhanced supercapacitive performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23704-23711	13	47
216	Syngas production from electrocatalytic CO2 reduction with high energetic efficiency and current density. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7675-7682	13	47
215	Near-Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Post-Synthesis Ligand Exchange, and Applications in Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5202-522	<u>4</u> 6.4	47
214	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. <i>Science Advances</i> , 2020 , 6, eaaz8447	14.3	47
213	Highly active nickel-cobalt/nanocarbon thin films as efficient water splitting electrodes. <i>Nanoscale</i> , 2016 , 8, 18507-18515	7.7	47
212	Dual-Function Electrolyte Additive for Highly Reversible Zn Anode. <i>Advanced Energy Materials</i> , 2021 , 11, 2102010	21.8	47
211	Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. <i>Nanoscale Horizons</i> , 2016 , 1, 41-44	10.8	46
210	In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles. <i>Nanoscale</i> , 2014 , 6, 6617-26	7.7	46
209	Phosphonic acid functionalized silicas for intermediate temperature proton conduction. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2363		46
208	Scalable synthesis of hollow Cu2O nanocubes with unique optical properties via a simple hydrolysis-based approach. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 302-307	13	45

207	Recent Progress in Engineering the Atomic and Electronic Structure of Electrocatalysts via Cation Exchange Reactions. <i>Advanced Materials</i> , 2020 , 32, e2001866	24	45
206	Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides. <i>Environmental Science & Environmental Science & Envi</i>	10.3	44
205	Diluted magnetic semiconductor nanowires prepared by the solution-liquid-solid method. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2777-81	16.4	44
204	Highly Selective Two-Electron Electrocatalytic CO2 Reduction on Single-Atom Cu Catalysts. <i>Small Structures</i> , 2021 , 2, 2000058	8.7	44
203	Synthesis of multi-functional large pore mesoporous silica nanoparticles as gene carriers. <i>Nanotechnology</i> , 2014 , 25, 055701	3.4	43
202	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents. <i>Angewandte Chemie</i> , 2021 , 133, 7442-7451	3.6	43
201	EPGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for enhanced cellular uptake and intracellular GSH-responsive release. <i>Advanced Healthcare Materials</i> , 2015 , 4, 771-8	1 10.1	42
200	Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. <i>Angewandte Chemie</i> , 2016 , 128, 3868-3872	3.6	42
199	Catalytically active and chemically inert CdInS coating on a CdS photoanode for efficient and stable water splitting. <i>Nanoscale</i> , 2017 , 9, 6296-6301	7.7	41
198	Comparison of ZnO and TiO2 nanowires for photoanode of dye-sensitized solar cells. <i>Journal of Alloys and Compounds</i> , 2013 , 546, 307-313	5.7	41
197	Porous Silica Nanospheres Functionalized with Phosphonic Acid as Intermediate-Temperature Proton Conductors. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3157-3163	3.8	41
196	MoO2-CoO coupled with a macroporous carbon hybrid electrocatalyst for highly efficient oxygen evolution. <i>Nanoscale</i> , 2015 , 7, 16704-14	7.7	40
195	Electrocatalytic Activity of a 2D Phosphorene-Based Heteroelectrocatalyst for Photoelectrochemical Cells. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2644-2647	16.4	39
194	Cooperative self-assembly of silica-based mesostructures templated by cationic fluorocarbon/hydrocarbon mixed-surfactants. <i>Microporous and Mesoporous Materials</i> , 2009 , 126, 253-26	5∮·3	39
193	Efficient elimination of trace ethylene over nano-gold catalyst under ambient conditions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	39
192	Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. <i>National Science Review</i> , 2018 , 5, 626-627	10.8	38
191	Synthesis of highly active and stable spinel-type oxygen evolution electrocatalysts by a rapid inorganic self-templating method. <i>Chemistry - A European Journal</i> , 2014 , 20, 12669-76	4.8	38
190	Effective Cr(VI) Removal from Simulated Groundwater through the Hydrotalcite-Derived Adsorbent. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 2752-2758	3.9	38

(2004-2015)

189	CdS nanoflake arrays for highly efficient light trapping. <i>Advanced Materials</i> , 2015 , 27, 740-5	24	37
188	Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21560-21569	13	37
187	Photo Fenton degradation of high concentration Orange II (2mM) using catalysts containing Fe: A comparative study. <i>Separation and Purification Technology</i> , 2009 , 67, 213-217	8.3	37
186	Direct synthesis of lanthanide-containing SBA-15 under weak acidic conditions and its catalytic study. <i>Microporous and Mesoporous Materials</i> , 2008 , 113, 72-80	5.3	37
185	Opportunities of Aqueous Manganese-Based Batteries with Deposition and Stripping Chemistry. <i>Advanced Energy Materials</i> , 2021 , 11, 2002904	21.8	37
184	Bronze alloys with tin surface sites for selective electrochemical reduction of CO. <i>Chemical Communications</i> , 2018 , 54, 13965-13968	5.8	37
183	Nanoconfined Nickel@Carbon Core-Shell Cocatalyst Promoting Highly Efficient Visible-Light Photocatalytic H Production. <i>Small</i> , 2018 , 14, e1801705	11	36
182	A mesoporous organosilica nano-bowl with high DNA loading capacity - a potential gene delivery carrier. <i>Nanoscale</i> , 2016 , 8, 17446-17450	7:7	36
181	A boron imidazolate framework with mechanochromic and electrocatalytic properties. <i>Materials Horizons</i> , 2018 , 5, 1151-1155	14.4	36
180	Atomic-Level Insights into the Edge Active ReS2 Ultrathin Nanosheets for High-Efficiency Light-to-Hydrogen Conversion 2020 , 2, 1484-1494		35
180 179		16.4	35 35
	Light-to-Hydrogen Conversion 2020 , 2, 1484-1494 The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte	16.4	
179	Light-to-Hydrogen Conversion 2020 , 2, 1484-1494 The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte and Potential Mediation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18178-18184 Surface P atom grafting of g-C3N4 for improved local spatial charge separation and enhanced		35
179 178	Light-to-Hydrogen Conversion 2020, 2, 1484-1494 The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte and Potential Mediation. <i>Angewandte Chemie - International Edition</i> , 2021, 60, 18178-18184 Surface P atom grafting of g-C3N4 for improved local spatial charge separation and enhanced photocatalytic H2 production. <i>Journal of Materials Chemistry A</i> , 2019, 7, 7628-7635 Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen	13	35
179 178 177	Light-to-Hydrogen Conversion 2020, 2, 1484-1494 The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte and Potential Mediation. Angewandte Chemie - International Edition, 2021, 60, 18178-18184 Surface P atom grafting of g-C3N4 for improved local spatial charge separation and enhanced photocatalytic H2 production. Journal of Materials Chemistry A, 2019, 7, 7628-7635 Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production. Angewandte Chemie, 2017, 129, 10509-10513 Synthesis and Characterization of Colloidal CoreBhell Semiconductor Nanowires. European Journal	3.6	35 34 34
179 178 177 176	Light-to-Hydrogen Conversion 2020, 2, 1484-1494 The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte and Potential Mediation. Angewandte Chemie - International Edition, 2021, 60, 18178-18184 Surface P atom grafting of g-C3N4 for improved local spatial charge separation and enhanced photocatalytic H2 production. Journal of Materials Chemistry A, 2019, 7, 7628-7635 Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production. Angewandte Chemie, 2017, 129, 10509-10513 Synthesis and Characterization of Colloidal CoreBhell Semiconductor Nanowires. European Journal of Inorganic Chemistry, 2010, 2010, 4325-4331	3.6 2.3	35343434
179 178 177 176	Light-to-Hydrogen Conversion 2020, 2, 1484-1494 The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte and Potential Mediation. Angewandte Chemie - International Edition, 2021, 60, 18178-18184 Surface P atom grafting of g-C3N4 for improved local spatial charge separation and enhanced photocatalytic H2 production. Journal of Materials Chemistry A, 2019, 7, 7628-7635 Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production. Angewandte Chemie, 2017, 129, 10509-10513 Synthesis and Characterization of Colloidal Coreßhell Semiconductor Nanowires. European Journal of Inorganic Chemistry, 2010, 2010, 4325-4331 Single-Atom Photocatalysts for Emerging Reactions. ACS Central Science, 2021, 7, 39-54 Co (II) Boron Imidazolate Framework with Rigid Auxiliary Linkers for Stable Electrocatalytic Oxygen	3.6 2.3 16.8	3534343434

171	Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis. <i>Angewandte Chemie</i> , 2017 , 129, 8659-8663	3.6	32
170	1T?-ReS2 Confined in 2D-Honeycombed Carbon Nanosheets as New Anode Materials for High-Performance Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901146	21.8	32
169	Electrochemical hydrogen storage properties of the ball-milled PrMg12 \square Nix + 150 wt% Ni (x = 1 and 2) composites. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 5066-5072	6.7	32
168	Counteracting Blueshift Optical Absorption and Maximizing Photon Harvest in Carbon Nitride Nanosheet Photocatalyst. <i>Small</i> , 2017 , 13, 1700376	11	31
167	Large-pore mesoporous RuNi-doped TiO2Al2O3 nanocomposites for highly efficient selective CO methanation in hydrogen-rich reformate gases. <i>Applied Catalysis B: Environmental</i> , 2015 , 165, 752-762	21.8	31
166	A Three-Component Nanocomposite with Synergistic Reactivity for Oxygen Reduction Reaction in Alkaline Solution. <i>Advanced Energy Materials</i> , 2015 , 5, 1401186	21.8	31
165	Highly Conductive CdS Inverse Opals for Photochemical Solar Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 707-715	15.6	31
164	Stabilizing Cu Ions by Solid Solutions to Promote CO Electroreduction to Methane <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	31
163	Template Design and Economical Strategy for the Synthesis of SSZ-13 (CHA-Type) Zeolite as an Excellent Catalyst for the Selective Catalytic Reduction of NOx by Ammonia. <i>ChemCatChem</i> , 2015 , 7, 3842-3847	5.2	30
162	ReS2 Nanosheets with In Situ Formed Sulfur Vacancies for Efficient and Highly Selective Photocatalytic CO2 Reduction. <i>Small Science</i> , 2021 , 1, 2000052		30
161	Tuning Spin State of Rock-Salt-Based Oxides by Manipulation of Crystallinity for Efficient Oxygen Electrocatalysis. <i>Advanced Energy Materials</i> , 2018 , 8, 1703469	21.8	30
160	Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage. <i>Angewandte Chemie</i> , 2018 , 130, 8676-8680	3.6	29
159	Cuprous ions embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to ethylene. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9373-9377	13	28
158	Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. <i>Angewandte Chemie</i> , 2012 , 124, 12654-12657	3.6	28
157	Using Local IAST with Micropore Size Distribution To Predict Multicomponent Adsorption Equilibrium of Gases in Activated Carbon. <i>Langmuir</i> , 2000 , 16, 1292-1298	4	28
156	Main-group elements boost electrochemical nitrogen fixation. <i>CheM</i> , 2021 ,	16.2	28
155	Graphene oxide coupled carbon nitride homo-heterojunction photocatalyst for enhanced hydrogen production. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 562-571	7.8	27
154	Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials. Journal of Hazardous Materials, 2009 , 164, 1205-12	12.8	27

(2014-2008)

153	Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. <i>Materials Research Bulletin</i> , 2008 , 43, 2599-2606	5.1	27
152	A new and generic preparation method of mesoporous clay composites containing dispersed metal oxide nanoparticles. <i>Microporous and Mesoporous Materials</i> , 2008 , 114, 214-221	5.3	27
151	Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction. <i>Energy and Environmental Science</i> , 2021 , 14, 3912-3930	35.4	27
150	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H2 production. Journal of Materials Chemistry A, 2018 , 6, 23278-23282	13	27
149	Role of polymeric surfactants on the growth of manganese ferrite nanoparticles. <i>Chemical Engineering Journal</i> , 2012 , 210, 157-165	14.7	26
148	Molecular Scalpel to Chemically Cleave Metal-Organic Frameworks for Induced Phase Transition. Journal of the American Chemical Society, 2021 , 143, 6681-6690	16.4	26
147	Pulsed laser deposition of porous N-carbon supported cobalt (oxide) thin films for highly efficient oxygen evolution. <i>Chemical Communications</i> , 2016 , 52, 11947-11950	5.8	26
146	True or False in Electrochemical Nitrogen Reduction. <i>Joule</i> , 2019 , 3, 1573-1575	27.8	25
145	Intracellular microenvironment-responsive label-free autofluorescent nanogels for traceable gene delivery. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1839-48	10.1	25
144	Fabrication and biosensing with CNT/aligned mesostructured silica core-shell nanowires. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1. Page 1.	9.5	25
143	Hydrophobic micro/mesoporous silica spheres assembled from zeolite precursors in acidic media for aromatics adsorption. <i>Microporous and Mesoporous Materials</i> , 2010 , 133, 115-123	5.3	25
142	Metastable Two-Dimensional Materials for Electrocatalytic Energy Conversions. <i>Accounts of Materials Research</i> , 2021 , 2, 559-573	7.5	25
141	Study of Binary Adsorption Equilibrium of Hydrocarbons in Activated Carbon Using Micropore Size Distribution. <i>Langmuir</i> , 2000 , 16, 5130-5136	4	24
140	Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15475-15489	16.4	23
139	Molecules interface engineering derived external electric field for effective charge separation in photoelectrocatalysis. <i>Nano Energy</i> , 2017 , 42, 90-97	17.1	22
138	Suppressing Al dendrite growth towards a long-life Al-metal battery. <i>Energy Storage Materials</i> , 2021 , 34, 194-202	19.4	22
137	Recent Progress of 3d Transition Metal Single-Atom Catalysts for Electrochemical CO2 Reduction. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001904	4.6	22
136	Freeze-drying of ovalbumin loaded mesoporous silica nanoparticle vaccine formulation increases antigen stability under ambient conditions. <i>International Journal of Pharmaceutics</i> , 2014 , 465, 325-32	6.5	21

135	pH-Responsive Nutraceutical Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. <i>Angewandte Chemie</i> , 2013 , 125, 2374-2378	3.6	21
134	Fabrication of a magnetic helical mesostructured silica rod. <i>Nanotechnology</i> , 2008 , 19, 435608	3.4	21
133	Study of isosteric heat of adsorption and activation energy for surface diffusion of gases on activated carbon using equilibrium and kinetics information. <i>Separation and Purification Technology</i> , 2004 , 34, 165-176	8.3	21
132	Creating compressive stress at the NiOOH/NiO interface for water oxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10747-10754	13	20
131	Intracellular microenvironment responsive polymers: a multiple-stage transport platform for high-performance gene delivery. <i>Small</i> , 2014 , 10, 871-7	11	20
130	Effect of micropore size distribution induced heterogeneity on binary adsorption kinetics of hydrocarbons in activated carbon. <i>Chemical Engineering Science</i> , 2000 , 55, 1533-1544	4.4	20
129	Non-metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 12380-12385	3.6	19
128	Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13635-13640	13	19
127	A two-dimensional metal-organic framework accelerating visible-light-driven H production. <i>Nanoscale</i> , 2019 , 11, 8304-8309	7.7	19
126	Laser synthesis of clean mesocrystal of cupric oxide for efficient gas sensing. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2699-2704	13	19
125	Double open-circuit voltage of three-dimensional ZnO/CdTe solar cells by a balancing depletion layer. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 14718-23	9.5	19
124	Diffusion of n-decane in mesoporous MCM-41 silicas. <i>Microporous and Mesoporous Materials</i> , 2005 , 86, 112-123	5.3	19
123	On the performance of HIAST and IAST in the prediction of multicomponent adsorption equilibria. <i>Separation and Purification Technology</i> , 2000 , 20, 243-249	8.3	19
122	Multicomponent Adsorption Kinetics of Gases in Activated Carbon:□Effect of Pore Size Distribution. <i>Langmuir</i> , 1999 , 15, 6428-6437	4	19
121	NIPAM-based Microgel Microenvironment Regulates the Therapeutic Function of Cardiac Stromal Cells. <i>ACS Applied Materials & Data Cells. ACS Applied Materials & Data Cells</i> . 10, 37783-37796	9.5	19
120	Scalable Self-Supported Graphene Foam for High-Performance Electrocatalytic Oxygen Evolution. <i>ACS Applied Materials & District Materia</i>	9.5	18
119	Application of IAST in the Prediction of Multicomponent Adsorption Equilibrium of Gases in Heterogeneous Solids: Micropore Size Distribution versus Energy Distribution. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 527-532	3.9	18
118	Test factors affecting the performance of zincBir battery. <i>Journal of Energy Chemistry</i> , 2020 , 44, 1-7	12	18

117	Metal-metal interactions in correlated single-atom catalysts Science Advances, 2022, 8, eabo0762	14.3	18
116	Direct Growth of Well-Aligned MOF Arrays onto Various Substrates. <i>CheM</i> , 2017 , 2, 751-752	16.2	17
115	A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. <i>Angewandte Chemie</i> , 2018 , 130, 6930-6934	3.6	17
114	Oxidation Stability of Nanographite Materials. <i>Advanced Energy Materials</i> , 2013 , 3, 1176-1179	21.8	17
113	Triphosphate removal processes over ternary CaMgAl-layered double hydroxides. <i>Applied Clay Science</i> , 2011 , 54, 196-201	5.2	17
112	Molecular Cleavage of Metal-Organic Frameworks and Application to Energy Storage and Conversion. <i>Advanced Materials</i> , 2021 , e2104341	24	17
111	Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25114-25121	16.4	17
110	Enhancing the Conversion Efficiency of Semiconductor Sensitized Solar Cells via the Cosensitization of Dual-Sized Quantum Dots. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 10074-10078	3.9	16
109	Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity. Journal of Colloid and Interface Science, 2009 , 339, 160-7	9.3	16
108	Chitosan membranes filled with biomimetic mineralized hydroxyapatite for enhanced proton conductivity. <i>Solid State Ionics</i> , 2011 , 187, 33-38	3.3	16
107	Metal organic framework (MOF) in aqueous energy devices. <i>Materials Today</i> , 2021 , 48, 270-270	21.8	16
106	Efficient Surface Modulation of Single-Crystalline Na2Ti3O7 Nanotube Arrays with Ti3+ Self-Doping toward Superior Sodium Storage 2019 , 1, 389-398		15
105	Cobalt-doped cadmium selenide colloidal nanowires. <i>Chemical Communications</i> , 2011 , 47, 11894-6	5.8	15
104	Titanate-silica mesostructured nanocables: synthesis, structural analysis and biomedical applications. <i>Nanotechnology</i> , 2010 , 21, 065604	3.4	15
103	Diffusion of Linear Paraffins in Nanoporous Silica. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 6477-6484	3.9	15
102	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. <i>Angewandte Chemie</i> , 2021 , 133, 14250-14256	3.6	15
101	Smart surface-enhanced Raman scattering traceable drug delivery systems. <i>Nanoscale</i> , 2016 , 8, 12803-	1 1 7.7	15
100	CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites. <i>Applied Surface Science</i> , 2021 , 540, 148293	6.7	15

99	Electrochemical Reduction of CO2 to Ethane through Stabilization of an Ethoxy Intermediate. <i>Angewandte Chemie</i> , 2020 , 132, 19817-19821	3.6	14
98	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO2 electroreduction. <i>Nanoscale Horizons</i> , 2019 , 4, 1411-1415	10.8	14
97	Mechanistic insight into the nucleation and growth of oleic acid capped lead sulphide quantum dots. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14055-62	3.6	14
96	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. <i>Angewandte Chemie</i> , 2020 , 132, 8258-8263	3.6	13
95	Realizing large-scale and controllable fabrication of active cobalt oxide nanorod catalysts for zinc-air battery. <i>Chemical Engineering Science</i> , 2019 , 194, 127-133	4.4	13
94	Pure gold nanocages by galvanic replacement reaction of magnesium nanoparticles. <i>RSC Advances</i> , 2014 , 4, 1185-1188	3.7	13
93	Unprecedented carbon sub-microspheres with a porous hierarchy for highly efficient oxygen electrochemistry. <i>Nanoscale</i> , 2017 , 9, 18731-18736	7.7	13
92	Versatile PbS Quantum Dot Ligand Exchange Systems in the Presence of Pb-Thiolates. <i>Small</i> , 2017 , 13, 1602956	11	13
91	Three-dimensional networks of ITO/CdS coaxial nanofibers for photovoltaic applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13057		13
90	Graphene-encapsulated nickel-copper bimetallic nanoparticle catalysts for electrochemical reduction of CO to CO. <i>Chemical Communications</i> , 2020 , 56, 11275-11278	5.8	13
89	Hierarchical porous S-doped FeNC electrocatalyst for high-power-density zinclir battery. <i>Materials Today Energy</i> , 2021 , 19, 100624	7	13
88	Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al-S batteries. <i>Nature Communications</i> , 2021 , 12, 5714	17.4	13
87	Negative Charging of Transition-Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. <i>Angewandte Chemie</i> , 2019 , 131, 11922-11926	3.6	12
86	N-doping goes sp-hybridized. <i>Nature Chemistry</i> , 2018 , 10, 900-902	17.6	12
85	Effect of pore size distribution shape on the prediction of binary adsorption equilibrium and kinetics of gases in activated carbon. <i>Separation and Purification Technology</i> , 2004 , 34, 177-190	8.3	12
84	Studying conversion mechanism to broaden cathode options in aqueous Zn-ion batteries. <i>Angewandte Chemie</i> ,	3.6	12
83	Directing the selectivity of CO2 electroreduction to target C2 products via non-metal doping on Cu surfaces. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6345-6351	13	12
82	Structural and morphological transformations of mesostructured titanium phosphate through hydrothermal treatment. <i>Journal of Colloid and Interface Science</i> , 2007 , 316, 954-61	9.3	11

81	Catalytic Oxidation of KS via Atomic Co and Pyridinic N Synergy in Potassium-Sulfur Batteries. Journal of the American Chemical Society, 2021 , 143, 16902-16907	16.4	11
80	Gain high-quality colloidal quantum dots directly from natural minerals. <i>Langmuir</i> , 2015 , 31, 2251-5	4	10
79	Modeling of a pilot-scale trickle bed reactor for the catalytic oxidation of phenol. <i>Separation and Purification Technology</i> , 2009 , 67, 158-165	8.3	10
78	Use IAST with MPSD to predict binary adsorption kinetics on activated carbon. <i>AICHE Journal</i> , 2000 , 46, 1743-1752	3.6	10
77	Binary adsorption kinetics of ethane and propane in a large heterogeneous microporous particle. <i>Separation and Purification Technology</i> , 1999 , 16, 261-271	8.3	10
76	Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation. <i>PLoS ONE</i> , 2015 , 10, e0141870	3.7	10
75	Revealing the Magnesium-Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Ab-Initio Simulations. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21728-21735	16.4	10
74	2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 16945-16949	3.6	10
73	CdTe nanoflake arrays on a conductive substrate: template synthesis and photoresponse property. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 957-961	13	9
72	Significantly Raised Visible-Light Photocatalytic H Evolution on a 2D/2D ReS /In ZnS van der Waals Heterostructure. <i>Small</i> , 2021 , 17, e2100296	11	9
71	A MoN electrocatalyst for efficient NaS electrodeposition in room-temperature sodium-sulfur batteries. <i>Nature Communications</i> , 2021 , 12, 7195	17.4	9
70	Electrocatalytic Activity of a 2D Phosphorene-Based Heteroelectrocatalyst for Photoelectrochemical Cells. <i>Angewandte Chemie</i> , 2018 , 130, 2674-2677	3.6	8
69	Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. <i>Advanced Science</i> , 2021 , e2104363	13.6	8
68	Contemporaneous oxidation state manipulation to accelerate intermediate desorption for overall water electrolysis. <i>Chemical Communications</i> , 2019 , 55, 8313-8316	5.8	7
67	Atomically Dispersed Single Co Sites in Zeolitic Imidazole Frameworks Promoting High-Efficiency Visible-Light-Driven Hydrogen Production. <i>Chemistry - A European Journal</i> , 2019 , 25, 9670-9677	4.8	7
66	Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15829-15833	13	7
65	Laser-driven absorption/desorption of catalysts for producing nanowire arrays in solution. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 379-383	13	7
64	Interface-dominated galvanic replacement reactions in the Zn/Cu2+ system. <i>Nanotechnology</i> , 2012 , 23, 365601	3.4	7

63	Destabilizing Alkaline Water with 3d-Metal (Oxy)(Hydr)Oxides for Improved Hydrogen Evolution. <i>Chemistry - A European Journal</i> , 2021 , 27, 553-564	4.8	7
62	Spatial-confinement induced electroreduction of CO and CO to diols on densely-arrayed Cu nanopyramids. <i>Chemical Science</i> , 2021 , 12, 8079-8087	9.4	7
61	Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries <i>Advanced Materials</i> , 2022 , e2201716	24	7
60	RElktitelbild: Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance (Angew. Chem. 46/2012). <i>Angewandte Chemie</i> , 2012 , 124, 11808-11808	3.6	6
59	Diluted Magnetic Semiconductor Nanowires Prepared by the SolutionLiquidBolid Method. <i>Angewandte Chemie</i> , 2010 , 122, 2837-2841	3.6	6
58	Formation energies of low-indexed surfaces of tin dioxide terminated by nonmetals. <i>Solid State Communications</i> , 2010 , 150, 957-960	1.6	6
57	Discrimination of Adsorption Kinetic Models for the Description of Hydrocarbon Adsorption in Activated Carbon. <i>Adsorption</i> , 2001 , 7, 51-63	2.6	6
56	Two-dimensional building blocks for photocatalytic ammonia production. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18733-18745	13	6
55	Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction. <i>Chemical Engineering Science</i> , 2022 , 117735	4.4	6
54	Functionalised silica/epoxy nanocomposites with enhanced fracture toughness for large-scale applications. <i>Journal of Composite Materials</i> , 2015 , 49, 1439-1447	2.7	5
53	Synthesis of cadmium chalcogenides nanowires via laser-activated gold catalysts in solution. <i>Materials Chemistry and Physics</i> , 2018 , 212, 408-414	4.4	5
52	Laser-Induced Pyridinic-Nitrogen-Rich Defective Carbon Nanotubes for Efficient Oxygen Electrocatalysis. <i>ChemCatChem</i> , 2019 , 11, 6131-6138	5.2	5
51	Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. <i>Frontiers of Chemical Science and Engineering</i> , 2014 , 8, 114-122	4.5	5
50	Modify the morphology of colloidal Ag2Se nanostructures by laser irradiation. <i>CrystEngComm</i> , 2013 , 15, 1685	3.3	5
49	The Ampoule Method: A Pathway towards Controllable Synthesis of Electrocatalysts for Water Electrolysis. <i>Chemistry - A European Journal</i> , 2019 , 26, 3898	4.8	5
48	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. <i>Angewandte Chemie</i> , 2021 , 133, 19724-19742	3.6	5
47	2D Atomically Thin Electrocatalysts: From Graphene to Metallene. <i>Matter</i> , 2019 , 1, 1454-1455	12.7	5
46	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon-Based Catalysts for Electrocatalytic Nitrogen Reduction. <i>Angewandte Chemie</i> , 2020 , 132, 4555-4561	3.6	4

Synthetic Chemistry of Nanomaterials 2011, 479-506 45 4 CNTs/mesostructured silica core-shell nanowires via interfacial surfactant templating. Science 10.6 44 Bulletin, 2009, 54, 516-520 Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic 16.4 43 4 Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2021, A Robust Strategy for Living Growth of Lead Sulfide Quantum Dots. ChemNanoMat, 2016, 2, 49-53 42 3.5 4 Anomalous C-C Coupling on Under-Coordinated Cu (111): A Case Study of Cu Nanopyramids for CO 8.3 41 4 Reduction Reaction by Molecular Modelling. ChemSusChem, 2021, 14, 671-678 Synergistic synthesis of quasi-monocrystal CdS nanoboxes with high-energy facets. Journal of 40 13 Materials Chemistry A, **2015**, 3, 23106-23112 Engineering hollow electrodes for hybrid solar cells for efficient light harvesting and carrier 39 13 3 collection. Journal of Materials Chemistry A, 2016, 4, 17260-17266 Sodium-Ion Batteries: 1T?-ReS2 Confined in 2D-Honeycombed Carbon Nanosheets as New Anode 38 Materials for High-Performance Sodium-Ion Batteries (Adv. Energy Mater. 30/2019). Advanced 21.8 Energy Materials, **2019**, 9, 1970117 Study on oxygen activation and methane oxidation over La0.8Sr0.2MnO3 electrode in single-chamber solid oxide fuel cells via an electrochemical approach. International Journal of 6.7 3 37 Hydrogen Energy, 2012, 37, 4328-4338 Bovine serum albumin adsorption in large pore amine functionalized mesoporous silica. Studies in 1.8 36 Surface Science and Catalysis, 2007, 165, 425-428 Using local IAST with micropore size distribution to predict desorption and displacement kinetics of 35 8.3 3 mixed gases in activated carbon. Separation and Purification Technology, 2003, 31, 19-30 Role of Pore Size Distribution in the Binary Adsorption Kinetics of Gases in Activated Carbon. 1.8 34 Studies in Surface Science and Catalysis, **2000**, 128, 401-410 Revealing the Magnesium-Storage Mechanism in Mesoporous Bismuth via Spectroscopy and 3.6 33 3 Ab-Initio Simulations. Angewandte Chemie, 2020, 132, 21912-21919 Graphene Hybrids: Identifying the Key Role of Pyridinic-Nato Bonding in Synergistic 32 Electrocatalysis for Reversible ORR/OER (Adv. Mater. 23/2018). Advanced Materials, 2018, 30, 1870164 $^{-24}$ Titelbild: Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water 3.6 2 31 Electrolysis (Angew. Chem. 5/2017). Angewandte Chemie, 2017, 129, 1181-1181 Electrocatalysis: Well-Dispersed Nickel- and Zinc-Tailored Electronic Structure of a Transition Metal 30 Oxide for Highly Active Alkaline Hydrogen Evolution Reaction (Adv. Mater. 16/2019). Advanced 24 Materials, **2019**, 31, 1970113 Hybrid Aqueous Batteries: Atomic Engineering Catalyzed MnO2 Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density (Adv. Mater. 25/2020). Advanced Materials, 29 24 2 2020, 32, 2070191 Titelbild: A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics 28 3.6 2 Permeation (Angew. Chem. 23/2018). Angewandte Chemie, 2018, 130, 6819-6819

27	Nanoreactors: YolkBhell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation (Adv. Funct. Mater. 3/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 661-661	15.6	2
26	Multiferroics and electronic structure of (1日)PbTiO3日Bi(Ni1/2Ti1/2)O3 thin films. <i>Thin Solid Films</i> , 2013 , 542, 155-159	2.2	2
25	Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn). <i>Frontiers of Chemical Science and Engineering</i> , 2014 , 8, 378-385	4.5	2
24	Innentitelbild: Extension of The StBer Method to the Preparation of Monodisperse ResorcinolEormaldehyde Resin Polymer and Carbon Spheres (Angew. Chem. 26/2011). <i>Angewandte Chemie</i> , 2011 , 123, 5894-5894	3.6	2
23	Magnetic Nanocomposites: Magnetic Nanocomposites with Mesoporous Structures: Synthesis and Applications (Small 4/2011). <i>Small</i> , 2011 , 7, 418-418	11	2
22	Inside Cover: Extension of The StBer Method to the Preparation of Monodisperse Resorcinol Flormal dehyde Resin Polymer and Carbon Spheres (Angew. Chem. Int. Ed. 26/2011). Angewandte Chemie - International Edition, 2011, 50, 5774-5774	16.4	2
21	Promoted and Controllable Self-Assembly of Hydrolyzed Siloxane and Triblock Copolymer under Organic Polyhydroxy Acids. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 6308-6314	3.9	2
20	Synchrotron X-ray Spectroscopic Investigations of In-Situ Formed Alloy Anodes for Magnesium Batteries <i>Advanced Materials</i> , 2021 , e2108688	24	2
19	NiMo/NiCo2O4 as synergy catalyst supported on nickel foam for efficient overall water splitting. <i>Molecular Catalysis</i> , 2022 , 518, 112086	3.3	2
18	Customizing the microenvironment of CO 2 electrocatalysis via three-phase interface engineering. <i>SmartMat</i> , 2022 , 3, 111-129	22.8	2
17	Photocatalytic CO2 Reduction: Identification and Elimination of False-Positive Results. <i>ACS Energy Letters</i> ,1611-1617	20.1	2
16	Nahinfrarotaktive Bleichalkogenid-Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen. <i>Angewandte Chemie</i> , 2019 , 131, 5256-5279	3.6	1
15	Microwave activated gold nanoparticles for catalytic growth of monocrystal CdSe nanowires in solution. <i>New Journal of Chemistry</i> , 2017 , 41, 14822-14825	3.6	1
14	Graphene: N-Doped Graphene Natively Grown on Hierarchical Ordered Porous Carbon for Enhanced Oxygen Reduction (Adv. Mater. 43/2013). <i>Advanced Materials</i> , 2013 , 25, 6150-6150	24	1
13	The Controllable Reconstruction of Bi-MOFs for Electrochemical CO2 Reduction through Electrolyte and Potential Mediation. <i>Angewandte Chemie</i> , 2021 , 133, 18326-18332	3.6	1
12	Carbon-Based Electrochemical Oxygen Reduction and Hydrogen Evolution Catalysts 2018 , 403-455		1
11	Significantly Raised Visible-Light Photocatalytic H2 Evolution on a 2D/2D ReS2/In2ZnS4 van der Waals Heterostructure (Small 32/2021). <i>Small</i> , 2021 , 17, 2170168	11	1
10	Key to C production: selective C-C coupling for electrochemical CO reduction on copper alloy surfaces. <i>Chemical Communications</i> , 2021 , 57, 9526-9529	5.8	1

LIST OF PUBLICATIONS

9	Mild synthesis for defect-switchable photocatalysts for hydrogen evolution. <i>Chem Catalysis</i> , 2022 , 2, 434-436		1
8	Titelbild: 2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries (Angew. Chem. 51/2018). <i>Angewandte Chemie</i> , 2018 , 130, 16809-16809	3.6	O
7	Strategy to utilize amorphous phase of semiconductor toward excellent and reliable photochemical water splitting performance: Roles of interface dipole moment and reaction parallelization. <i>International Journal of Energy Research</i> ,	4.5	0
6	Nanoflake Arrays: CdS Nanoflake Arrays for Highly Efficient Light Trapping (Adv. Mater. 4/2015). <i>Advanced Materials</i> , 2015 , 27, 772-772	24	
5	Heteroatom-Doped Nanoporous Carbon for Electrocatalysis 2015 , 43-74		
4	Synthesis of Highly Ordered Large-Pore Periodic Mesoporous Organosilica Rods. <i>Solid State Phenomena</i> , 2007 , 121-123, 381-384	0.4	
3	Proton conduction of ordered mesoporous silica-methanesulfonic acid hybrids. <i>Studies in Surface Science and Catalysis</i> , 2007 , 817-820	1.8	
2	Innentitelbild: Electrochemical Reduction of CO2 to Ethane through Stabilization of an Ethoxy Intermediate (Angew. Chem. 44/2020). <i>Angewandte Chemie</i> , 2020 , 132, 19530-19530	3.6	
1	Water Splitting: Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution (Adv. Mater. 24/2016). <i>Advanced Materials</i> . 2016 . 28, 4943	24	