List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4582788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086.	38.1	4,323
2	Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453, 638-641.	27.8	3,753
3	Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 2014, 43, 7787-7812.	38.1	2,125
4	Sulfur and Nitrogen Dualâ€Đoped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance. Angewandte Chemie - International Edition, 2012, 51, 11496-11500.	13.8	1,898
5	Hydrogen evolution by a metal-free electrocatalyst. Nature Communications, 2014, 5, 3783.	12.8	1,851
6	Metal–Organic Framework Derived Hybrid Co ₃ O ₄ -Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. Journal of the American Chemical Society, 2014, 136, 13925-13931.	13.7	1,744
7	Advancing the Electrochemistry of the Hydrogenâ€Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie - International Edition, 2015, 54, 52-65.	13.8	1,616
8	Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy and Environmental Science, 2012, 5, 6717.	30.8	1,552
9	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	47.7	1,552
10	Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8, 13907.	12.8	1,496
11	Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Advanced Materials, 2016, 28, 3423-3452.	21.0	1,256
12	Solvothermal Synthesis and Photoreactivity of Anatase TiO ₂ Nanosheets with Dominant {001} Facets. Journal of the American Chemical Society, 2009, 131, 4078-4083.	13.7	1,237
13	Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH ₃) under ambient conditions. Energy and Environmental Science, 2018, 11, 45-56.	30.8	1,217
14	Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H ₂ production. Energy and Environmental Science, 2015, 8, 3708-3717.	30.8	1,146
15	Molecule-Level g-C ₃ N ₄ Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. Journal of the American Chemical Society, 2017, 139, 3336-3339.	13.7	1,094
16	Roadmap for advanced aqueous batteries: From design of materials to applications. Science Advances, 2020, 6, eaba4098.	10.3	1,069
17	Cocatalysts in Semiconductorâ€based Photocatalytic CO ₂ Reduction: Achievements, Challenges, and Opportunities. Advanced Materials, 2018, 30, 1704649.	21.0	1,034
18	The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57, 7568-7579.	13.8	1,018

#	Article	IF	CITATIONS
19	Nanoporous Graphitic-C ₃ N ₄ @Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 20116-20119.	13.7	958
20	Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution. ACS Nano, 2014, 8, 5290-5296.	14.6	947
21	Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance. Journal of the American Chemical Society, 2014, 136, 4394-4403.	13.7	946
22	Activity origin and catalyst design principles forÂelectrocatalytic hydrogen evolution on heteroatom-dopedÂgraphene. Nature Energy, 2016, 1, .	39.5	927
23	Twoâ€Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angewandte Chemie - International Edition, 2013, 52, 3110-3116.	13.8	863
24	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 2016, 138, 16174-16181.	13.7	852
25	Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Materials, 2015, 14, 763-774.	27.5	838
26	Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Accounts of Chemical Research, 2017, 50, 915-923.	15.6	824
27	Efficient and Stable Bifunctional Electrocatalysts Ni/Ni <i>_x</i> M <i>_y</i> (M =) Tj ETQq1	1 0 7843 14.9	14 rgBT /O\ 820
28	Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015, 5, 5207-5234.	11.2	800
29	An Electrolytic Zn–MnO ₂ Battery for Highâ€Voltage and Scalable Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 7823-7828.	13.8	787
30	Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 2011, 47, 12578.	4.1	781
31	Extension of The Stöber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres. Angewandte Chemie - International Edition, 2011, 50, 5947-5951.	13.8	745
32	Graphitic Carbon Nitride Nanosheet–Carbon Nanotube Threeâ€Dimensional Porous Composites as Highâ€Performance Oxygen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2014, 53, 7281-7285.	13.8	737
33	Phosphorusâ€Doped Graphitic Carbon Nitrides Grown Inâ€Situ on Carbonâ€Fiber Paper: Flexible and Reversible Oxygen Electrodes. Angewandte Chemie - International Edition, 2015, 54, 4646-4650.	13.8	722
34	Understanding the Roadmap for Electrochemical Reduction of CO ₂ to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. Journal of the American Chemical Society, 2019, 141, 7646-7659.	13.7	711
35	Metalâ€Free 2D/2D Phosphorene/gâ€C ₃ N ₄ Van der Waals Heterojunction for Highly Enhanced Visibleâ€Light Photocatalytic H ₂ Production. Advanced Materials, 2018, 30, e1800128.	21.0	707
36	Superior electric double layer capacitors using ordered mesoporous carbons. Carbon, 2006, 44, 216-224.	10.3	690

#	Article	IF	CITATIONS
37	How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chemical Society Reviews, 2019, 48, 3166-3180.	38.1	670
38	Magnetic Nanocomposites with Mesoporous Structures: Synthesis and Applications. Small, 2011, 7, 425-443.	10.0	669
39	Porous C ₃ N ₄ Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution. ACS Nano, 2015, 9, 931-940.	14.6	655
40	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie - International Edition, 2017, 56, 1324-1328.	13.8	648
41	Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. Journal of the American Chemical Society, 2019, 141, 9664-9672.	13.7	642
42	Surface strategies for catalytic CO ₂ reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews, 2019, 48, 5310-5349.	38.1	607
43	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie - International Edition, 2016, 55, 1138-1142.	13.8	597
44	Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.	16.0	597
45	Nitrogen and Oxygen Dualâ€Doped Carbon Hydrogel Film as a Substrateâ€Free Electrode for Highly Efficient Oxygen Evolution Reaction. Advanced Materials, 2014, 26, 2925-2930.	21.0	594
46	Facile Oxygen Reduction on a Threeâ€Dimensionally Ordered Macroporous Graphitic C ₃ N ₄ /Carbon Composite Electrocatalyst. Angewandte Chemie - International Edition, 2012, 51, 3892-3896.	13.8	588
47	Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. CheM, 2018, 4, 1809-1831.	11.7	587
48	Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nature Communications, 2016, 7, 12876.	12.8	568
49	Nanostructured Metalâ€Free Electrochemical Catalysts for Highly Efficient Oxygen Reduction. Small, 2012, 8, 3550-3566.	10.0	559
50	A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4, .	12.8	555
51	Threeâ€Dimensional Nâ€Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2013, 52, 13567-13570.	13.8	547
52	Monodisperse Yolk–Shell Nanoparticles with a Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors. Angewandte Chemie - International Edition, 2010, 49, 4981-4985.	13.8	543
53	Design Strategies toward Advanced MOFâ€Derived Electrocatalysts for Energyâ€Conversion Reactions. Advanced Energy Materials, 2017, 7, 1700518.	19.5	539
54	2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy and Environmental Science, 2016, 9, 709-728.	30.8	529

#	Article	IF	CITATIONS
55	Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano, 2014, 8, 6856-6862.	14.6	519
56	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Lowâ€Cost Antisolvents. Angewandte Chemie - International Edition, 2021, 60, 7366-7375.	13.8	516
57	Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy, 2018, 43, 103-109.	16.0	515
58	Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. ACS Catalysis, 2016, 6, 4720-4728.	11.2	513
59	Hierarchically Porous Nitrogen-Doped Graphene–NiCo ₂ O ₄ Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material. ACS Nano, 2013, 7, 10190-10196.	14.6	506
60	Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 2011, 3, 2801.	5.6	501
61	High apacity Aqueous Potassiumâ€ion Batteries for Largeâ€Scale Energy Storage. Advanced Materials, 2017, 29, 1604007.	21.0	494
62	Fe–N Decorated Hybrids of CNTs Grown on Hierarchically Porous Carbon for Highâ€Performance Oxygen Reduction. Advanced Materials, 2014, 26, 6074-6079.	21.0	486
63	Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chemical Society Reviews, 2019, 48, 2518-2534.	38.1	483
64	Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. ACS Catalysis, 2019, 9, 2902-2908.	11.2	467
65	Mesoporous Co ₃ O ₄ and Au/Co ₃ O ₄ Catalysts for Low-Temperature Oxidation of Trace Ethylene. Journal of the American Chemical Society, 2010, 132, 2608-2613.	13.7	463
66	Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. Journal of the American Chemical Society, 2021, 143, 7819-7827.	13.7	463
67	Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. Journal of Materials Chemistry, 2011, 21, 3046.	6.7	456
68	Highly Ordered Mesoporous MoS ₂ with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage. Advanced Energy Materials, 2012, 2, 970-975.	19.5	455
69	Transitionâ€Metalâ€Doped Rulr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. Advanced Materials, 2019, 31, e1900510.	21.0	449
70	Protonâ€Functionalized Twoâ€Dimensional Graphitic Carbon Nitride Nanosheet: An Excellent Metalâ€fLabelâ€Free Biosensing Platform. Small, 2014, 10, 2382-2389.	10.0	441
71	Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO ₂ Reduction to Hydrocarbon/Alcohol. Journal of the American Chemical Society, 2017, 139, 18093-18100.	13.7	439
72	Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy and Environmental Science, 2012, 5, 7323.	30.8	434

#	Article	IF	CITATIONS
73	Preparation of capacitor's electrode from sunflower seed shell. Bioresource Technology, 2011, 102, 1118-1123.	9.6	404
74	Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. Advanced Materials, 2018, 30, e1800005.	21.0	394
75	Amorphous Ni(OH) ₂ @ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 13845-13853.	10.3	389
76	3D WS ₂ Nanolayers@Heteroatomâ€Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes. Advanced Materials, 2015, 27, 4234-4241.	21.0	389
77	Nâ€Doped Graphene Natively Grown on Hierarchical Ordered Porous Carbon for Enhanced Oxygen Reduction. Advanced Materials, 2013, 25, 6226-6231.	21.0	388
78	Nitrogen Vacancies on 2D Layered W ₂ N ₃ : A Stable and Efficient Active Site for Nitrogen Reduction Reaction. Advanced Materials, 2019, 31, e1902709.	21.0	387
79	Mesoporous LiFePO ₄ /C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance. Advanced Materials, 2010, 22, 4944-4948.	21.0	380
80	Coordination Tunes Selectivity: Twoâ€Electron Oxygen Reduction on High‣oading Molybdenum Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2020, 59, 9171-9176.	13.8	379
81	Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting. ACS Nano, 2016, 10, 8738-8745.	14.6	376
82	Nanoparticle synthesis in microreactors. Chemical Engineering Science, 2011, 66, 1463-1479.	3.8	362
83	Graphitic Carbon Nitride (g ₃ N ₄)â€Derived Nâ€Rich Graphene with Tuneable Interlayer Distance as a Highâ€Rate Anode for Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1901261.	21.0	362
84	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8, 1509.	12.8	361
85	Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano, 2017, 11, 7293-7300.	14.6	357
86	Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. CheM, 2019, 5, 445-459.	11.7	354
87	Yolk–Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. Advanced Functional Materials, 2012, 22, 591-599.	14.9	346
88	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie - International Edition, 2021, 60, 19572-19590.	13.8	341
89	A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1702524.	14.9	340
90	S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy, 2017, 40, 264-273.	16.0	335

#	Article	IF	CITATIONS
91	Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chemical Communications, 2017, 53, 10906-10909.	4.1	328
92	The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 2006, 27, 3396-3403.	11.4	327
93	Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbonâ€Based Catalysts for the Electrochemical Reduction of CO ₂ . Advanced Energy Materials, 2017, 7, 1700759.	19.5	327
94	Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Physical Chemistry Chemical Physics, 2013, 15, 12088.	2.8	323
95	Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 805-810.	17.4	323
96	Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. ACS Catalysis, 2018, 8, 6707-6732.	11.2	320
97	Polydopamineâ€Inspired, Dual Heteroatomâ€Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602068.	19.5	319
98	Single-Crystal Nitrogen-Rich Two-Dimensional Mo ₅ N ₆ Nanosheets for Efficient and Stable Seawater Splitting. ACS Nano, 2018, 12, 12761-12769.	14.6	317
99	Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy and Environmental Science, 2019, 12, 2443-2454.	30.8	315
100	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 8539-8543.	13.8	314
101	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.	30.8	314
102	2D MoNâ€VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium‣ulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 16703-16707.	13.8	313
103	Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7, 17590-17610.	5.6	312
104	N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy and Environmental Science, 2013, 6, 3693.	30.8	309
105	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	14.2	308
106	Phosphorene Coâ€catalyst Advancing Highly Efficient Visibleâ€Light Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2017, 56, 10373-10377.	13.8	307
107	Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nature Energy, 2021, 6, 904-912.	39.5	305
108	Advent of 2D Rhenium Disulfide (ReS ₂): Fundamentals to Applications. Advanced Functional Materials, 2017, 27, 1606129.	14.9	296

#	Article	IF	CITATIONS
109	Flexible SnO ₂ /N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. Small, 2016, 12, 853-859.	10.0	292
110	Atomic‣evel Reactive Sites for Semiconductorâ€Based Photocatalytic CO ₂ Reduction. Advanced Energy Materials, 2020, 10, 1903879.	19.5	291
111	Recent Advances in Atomic Metal Doping of Carbonâ€based Nanomaterials for Energy Conversion. Small, 2017, 13, 1700191.	10.0	290
112	Size Fractionation of Twoâ€Dimensional Subâ€Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. Angewandte Chemie - International Edition, 2016, 55, 3804-3808.	13.8	288
113	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 5201-5211.	13.7	287
114	Shape Control of Mn ₃ O ₄ Nanoparticles on Nitrogenâ€Doped Graphene for Enhanced Oxygen Reduction Activity. Advanced Functional Materials, 2014, 24, 2072-2078.	14.9	283
115	Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. Advanced Materials, 2021, 33, e2007508.	21.0	278
116	A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. Journal of Materials Chemistry, 2012, 22, 11173.	6.7	277
117	Na ₂ Ti ₃ O ₇ @Nâ€Doped Carbon Hollow Spheres for Sodiumâ€lon Batteries with Excellent Rate Performance. Advanced Materials, 2017, 29, 1700989.	21.0	275
118	Magnetic Hollow Spheres of Periodic Mesoporous Organosilica and Fe ₃ O ₄ Nanocrystals: Fabrication and Structure Control. Advanced Materials, 2008, 20, 805-809.	21.0	274
119	Rutheniumâ€Based Singleâ€Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution. Advanced Energy Materials, 2019, 9, 1803913.	19.5	270
120	Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2016, 19, 265-273.	14.2	268
121	Nanostructured morphology control for efficient supercapacitor electrodes. Journal of Materials Chemistry A, 2013, 1, 2941-2954.	10.3	267
122	Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. Energy and Environmental Science, 2020, 13, 1096-1131.	30.8	266
123	Charge State Manipulation of Cobalt Selenide Catalyst for Overall Seawater Electrolysis. Advanced Energy Materials, 2018, 8, 1801926.	19.5	264
124	Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness. Journal of the American Chemical Society, 2006, 128, 6320-6321.	13.7	262
125	Dendritic Silica Particles with Center-Radial Pore Channels: Promising Platforms for Catalysis and Biomedical Applications. Small, 2015, 11, 392-413.	10.0	261
126	Characterization of semiconductor photocatalysts. Chemical Society Reviews, 2019, 48, 5184-5206.	38.1	260

#	Article	IF	CITATIONS
127	Poly- <scp>l</scp> -lysine Functionalized Large Pore Cubic Mesostructured Silica Nanoparticles as Biocompatible Carriers for Gene Delivery. ACS Nano, 2012, 6, 2104-2117.	14.6	247
128	Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolicâ€Nitrogen arbon. Advanced Energy Materials, 2020, 10, 2000789.	19.5	247
129	Engineering of Carbonâ€Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality. Advanced Materials, 2015, 27, 5372-5378.	21.0	246
130	Dualâ€Function Electrolyte Additive for Highly Reversible Zn Anode. Advanced Energy Materials, 2021, 11, 2102010.	19.5	246
131	Ternary NiS/Zn <i>_x</i> Cd _{1â€<i>x</i>} S/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H ₂ â€Production Activity. Advanced Energy Materials, 2014, 4, 1301925.	19.5	244
132	Synthesis of high-reactive facets dominated anatase TiO2. Journal of Materials Chemistry, 2011, 21, 7052.	6.7	241
133	Mesoporous hybrid material composed of Mn ₃ O ₄ nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chemical Communications, 2013, 49, 7705-7707.	4.1	241
134	Mechanism for Zincophilic Sites on Zincâ€Metal Anode Hosts in Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2003419.	19.5	233
135	Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy, 2015, 11, 11-18.	16.0	232
136	Electronic and Structural Engineering of Carbonâ€Based Metalâ€Free Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1803625.	21.0	229
137	Selective Catalysis Remedies Polysulfide Shuttling in Lithiumâ€ S ulfur Batteries. Advanced Materials, 2021, 33, e2101006.	21.0	229
138	Critical role of small micropores in high CO2 uptake. Physical Chemistry Chemical Physics, 2013, 15, 2523.	2.8	228
139	Mesoporous MnCo ₂ O ₄ with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. Journal of Materials Chemistry A, 2014, 2, 8676-8682.	10.3	227
140	Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials, 2016, 91, 90-127.	11.4	224
141	Atomically and Electronically Coupled Pt and CoO Hybrid Nanocatalysts for Enhanced Electrocatalytic Performance. Advanced Materials, 2017, 29, 1604607.	21.0	224
142	Toward High-Voltage Aqueous Batteries: Super- or Low-Concentrated Electrolyte?. Joule, 2020, 4, 1846-1851.	24.0	223
143	Atomic Engineering Catalyzed MnO ₂ Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density. Advanced Materials, 2020, 32, e2001894.	21.0	221
144	Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nature Communications, 2019, 10, 4876.	12.8	220

#	Article	IF	CITATIONS
145	Regulating Electrocatalysts via Surface and Interface Engineering for Acidic Water Electrooxidation. ACS Energy Letters, 2019, 4, 2719-2730.	17.4	218
146	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy and Environmental Science, 2016, 9, 2563-2570.	30.8	216
147	Wellâ€Dispersed Nickel―and Zincâ€Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1807771.	21.0	216
148	Adsorption Study for Removal of Basic Red Dye Using Bentonite. Industrial & Engineering Chemistry Research, 2006, 45, 733-738.	3.7	214
149	NiO as a Bifunctional Promoter for RuO ₂ toward Superior Overall Water Splitting. Small, 2018, 14, e1704073.	10.0	214
150	A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. Journal of Materials Chemistry, 2010, 20, 4595.	6.7	208
151	2D Metal Organic Framework Nanosheet: A Universal Platform Promoting Highly Efficient Visibleâ€Lightâ€Induced Hydrogen Production. Advanced Energy Materials, 2019, 9, 1803402.	19.5	200
152	Developing Functionalized Dendrimerâ€Like Silica Nanoparticles with Hierarchical Pores as Advanced Delivery Nanocarriers. Advanced Materials, 2013, 25, 5981-5985.	21.0	199
153	Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nature Catalysis, 2020, 3, 743-753.	34.4	199
154	Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chemical Communications, 2011, 47, 2631.	4.1	195
155	Porous MoS ₂ /Carbon Spheres Anchored on 3D Interconnected Multiwall Carbon Nanotube Networks forÂUltrafast Na Storage. Advanced Energy Materials, 2018, 8, 1702909.	19.5	190
156	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. Angewandte Chemie - International Edition, 2021, 60, 14131-14137.	13.8	190
157	An Earthâ€Abundant Catalystâ€Based Seawater Photoelectrolysis System with 17.9% Solarâ€ŧoâ€Hydrogen Efficiency. Advanced Materials, 2018, 30, e1707261.	21.0	189
158	Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. Journal of Hazardous Materials, 2011, 186, 1615-1624.	12.4	188
159	Stabilizing Cu ²⁺ Ions by Solid Solutions to Promote CO ₂ Electroreduction to Methane. Journal of the American Chemical Society, 2022, 144, 2079-2084.	13.7	188
160	Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis. Microporous and Mesoporous Materials, 2004, 72, 33-42.	4.4	187
161	An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17437.	6.7	186
162	Topotactically Transformed Polygonal Mesopores on Ternary Layered Double Hydroxides Exposing Underâ€Coordinated Metal Centers for Accelerated Water Dissociation. Advanced Materials, 2020, 32, e2006784.	21.0	186

#	Article	IF	CITATIONS
163	In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction. Advanced Energy Materials, 2020, 10, 2001289.	19.5	184
164	A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. Angewandte Chemie - International Edition, 2018, 57, 6814-6818.	13.8	183
165	Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 1198-1204.	17.4	183
166	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. Angewandte Chemie - International Edition, 2020, 59, 8181-8186.	13.8	183
167	TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. Chemical Communications, 2010, 46, 8252.	4.1	181
168	Fabrication and Size‧elective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure. Advanced Functional Materials, 2008, 18, 3203-3212.	14.9	179
169	N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. Journal of Materials Chemistry A, 2014, 2, 18139-18146.	10.3	179
170	Shape-Controlled Synthesis of Cobalt-based Nanocubes, Nanodiscs, and Nanoflowers and Their Comparative Lithium-Storage Properties. ACS Applied Materials & Interfaces, 2010, 2, 3628-3635.	8.0	177
171	Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy, 2018, 53, 690-697.	16.0	175
172	Nonâ€metal Singleâ€Iodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 12252-12257.	13.8	175
173	lonic liquid self-combustion synthesis of BiOBr/Bi ₂₄ O ₃₁ Br ₁₀ heterojunctions with exceptional visible-light photocatalytic performances. Nanoscale, 2015, 7, 1116-1126.	5.6	173
174	Selectivity Control for Electrochemical CO ₂ Reduction by Charge Redistribution on the Surface of Copper Alloys. ACS Catalysis, 2019, 9, 9411-9417.	11.2	172
175	Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. Journal of Materials Chemistry, 2011, 21, 5687.	6.7	171
176	Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. Journal of Power Sources, 2011, 196, 4123-4127.	7.8	171
177	Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage. Angewandte Chemie - International Edition, 2018, 57, 8540-8544.	13.8	170
178	The Controllable Reconstruction of Biâ€MOFs for Electrochemical CO ₂ Reduction through Electrolyte and Potential Mediation. Angewandte Chemie - International Edition, 2021, 60, 18178-18184.	13.8	170
179	Engineering 2D Metal–Organic Framework/MoS ₂ Interface for Enhanced Alkaline Hydrogen Evolution. Small, 2019, 15, e1805511.	10.0	169
180	Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chemistry, 2011, 13, 300-306.	9.0	168

#	Article	IF	CITATIONS
181	Threeâ€Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction. Advanced Energy Materials, 2015, 5, 1500936.	19.5	168
182	Electrochemical Nitrogen Reduction: Identification and Elimination of Contamination in Electrolyte. ACS Energy Letters, 2019, 4, 2111-2116.	17.4	167
183	Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. Chemical Engineering Journal, 2009, 149, 281-288.	12.7	166
184	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie - International Edition, 2019, 58, 1484-1488.	ır 13.8	165
185	Enhanced Visibleâ€Light Photocatalytic H ₂ Production by Zn _{<i>x</i>} Cd _{1â^{^o}<i>x</i>} S Modified with Earthâ€Abundant Nickelâ€Based Cocatalysts. ChemSusChem, 2014, 7, 3426-3434.	6.8	164
186	Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Science Advances, 2018, 4, eaau6261.	10.3	164
187	Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution. CheM, 2020, 6, 2382-2394.	11.7	163
188	Isolated Boron Sites for Electroreduction of Dinitrogen to Ammonia. ACS Catalysis, 2020, 10, 1847-1854.	11.2	161
189	Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling. Nature Communications, 2022, 13, .	12.8	158
190	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie - International Edition, 2019, 58, 11796-11800.	13.8	155
191	Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy {001} and {100} facets. Chemical Communications, 2011, 47, 4400.	4.1	153
192	Highly ordered mesoporous Cr ₂ O ₃ materials with enhanced performance for gas sensors and lithium ion batteries. Chemical Communications, 2012, 48, 865-867.	4.1	152
193	Enzymeâ€Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie - International Edition, 2012, 51, 12486-12489.	13.8	151
194	Hierarchical mesoporous yolk–shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. Chemical Communications, 2015, 51, 2518-2521.	4.1	151
195	Disulfideâ€Bridged Organosilica Frameworks: Designed, Synthesis, Redoxâ€Triggered Biodegradation, and Nanobiomedical Applications. Advanced Functional Materials, 2018, 28, 1707325.	14.9	150
196	Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. CheM, 2019, 5, 2429-2441.	11.7	150
197	Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry A, 2019, 7, 8117-8121.	10.3	150
198	Electron‣tate Confinement of Polysulfides for Highly Stable Sodium–Sulfur Batteries. Advanced Materials, 2020, 32, e1907557.	21.0	150

#	Article	IF	CITATIONS
199	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbonâ€Based Catalysts for Electrocatalytic Nitrogen Reduction. Angewandte Chemie - International Edition, 2020, 59, 4525-4531.	13.8	149
200	Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies. Journal of the American Chemical Society, 2021, 143, 15475-15489.	13.7	148
201	Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale, 2012, 4, 970-975.	5.6	147
202	High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio. Journal of Materials Chemistry, 2012, 22, 23186.	6.7	145
203	Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges. Journal of Materials Chemistry A, 2018, 6, 1305-1322.	10.3	144
204	Hierarchical Structures of Single rystalline Anatase TiO ₂ Nanosheets Dominated by {001} Facets. Chemistry - A European Journal, 2011, 17, 1423-1427.	3.3	143
205	The Application of Hollow Structured Anodes for Sodiumâ€ŀon Batteries: From Simple to Complex Systems. Advanced Materials, 2019, 31, e1800492.	21.0	143
206	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020, 142, 2012-2022.	13.7	142
207	Metal-metal interactions in correlated single-atom catalysts. Science Advances, 2022, 8, eabo0762.	10.3	142
208	Catalytic oxidation of benzyl alcohol on Au or Au–Pd nanoparticles confined in mesoporous silica. Applied Catalysis B: Environmental, 2009, 92, 202-208.	20.2	140
209	Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate–Zinc Oxide Nanorod p–n Heterojunction. Chemistry - A European Journal, 2015, 21, 15360-15368.	3.3	139
210	Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. Microporous and Mesoporous Materials, 2009, 117, 213-219.	4.4	137
211	Functionalized Mesoporous Silica with Very Large Pores for Cellulase Immobilization. Journal of Physical Chemistry C, 2010, 114, 8353-8362.	3.1	137
212	Highly Ordered Mesoporous Cobalt Oxide Nanostructures: Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices. Chemistry - A European Journal, 2010, 16, 11020-11027.	3.3	136
213	Hybrid Hydrogels of Porous Graphene and Nickel Hydroxide as Advanced Supercapacitor Materials. Chemistry - A European Journal, 2013, 19, 7118-7124.	3.3	136
214	Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy, 2019, 60, 591-599.	16.0	136
215	Fabrication of uniform anatase TiO2 particles exposed by {001} facets. Chemical Communications, 2010, 46, 6608.	4.1	134
216	A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: new insight into the alkaline mechanism. Journal of Materials Chemistry A, 2019, 7, 3648-3654.	10.3	134

#	Article	IF	CITATIONS
217	Rational Design of Spinel Cobalt Vanadate Oxide Co ₂ VO ₄ for Superior Electrocatalysis. Advanced Materials, 2020, 32, e1907168.	21.0	134
218	Improving Adsorbent Properties of Cage-like Ordered Amine Functionalized Mesoporous Silica with Very Large Pores for Bioadsorption. Langmuir, 2009, 25, 6413-6424.	3.5	132
219	Multiscale Structural Engineering of Niâ€Doped CoO Nanosheets for Zinc–Air Batteries with High Power Density. Advanced Materials, 2018, 30, e1804653.	21.0	131
220	A 2D metal–organic framework/Ni(OH) ₂ heterostructure for an enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 3599-3605.	5.6	131
221	Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of Non-Crystalline Solids, 2005, 351, 3209-3217.	3.1	128
222	Mesoporous Silica Nanoparticles Act as a Selfâ€Adjuvant for Ovalbumin Model Antigen in Mice. Small, 2013, 9, 3138-3146.	10.0	128
223	Photocatalysts for Hydrogen Evolution Coupled with Production of Valueâ€Added Chemicals. Small Methods, 2020, 4, 2000063.	8.6	124
224	Main-group elements boost electrochemical nitrogen fixation. CheM, 2021, 7, 3232-3255.	11.7	123
225	Facile Fabrication of Core–Shellâ€Structured Ag@Carbon and Mesoporous Yolk–Shellâ€Structured Ag@Carbon@Silica by an Extended Stöber Method. Chemistry - A European Journal, 2013, 19, 6942-6945.	3.3	122
226	Molecularâ€Level Hybridization of Nafion with Quantum Dots for Highly Enhanced Proton Conduction. Advanced Materials, 2018, 30, e1707516.	21.0	122
227	Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie - International Edition, 2020, 59, 19649-19653.	13.8	122
228	Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2445-2452.	10.3	121
229	3D Synergistically Active Carbon Nanofibers for Improved Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1602928.	19.5	120
230	Identification of pH-dependent synergy on Ru/MoS ₂ interface: a comparison of alkaline and acidic hydrogen evolution. Nanoscale, 2017, 9, 16616-16621.	5.6	120
231	Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. Nano Energy, 2020, 71, 104601.	16.0	116
232	A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride. Advanced Functional Materials, 2017, 27, 1702384.	14.9	115
233	Unveiling the Advances of 2D Materials for Li/Na-S Batteries Experimentally and Theoretically. Matter, 2020, 2, 323-344.	10.0	115
234	An Electrolytic Zn–MnO ₂ Battery for Highâ€Voltage and Scalable Energy Storage. Angewandte Chemie, 2019, 131, 7905-7910.	2.0	114

#	Article	IF	CITATIONS
235	Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO ₂ Reduction. Small Methods, 2017, 1, 1600006.	8.6	112
236	Significant Enhancement of Water Splitting Activity of N arbon Electrocatalyst by Trace Level Co Doping. Small, 2016, 12, 3703-3711.	10.0	111
237	Hollow Carbon Nanospheres with Tunable Hierarchical Pores for Drug, Gene, and Photothermal Synergistic Treatment. Small, 2017, 13, 1602592.	10.0	111
238	From titanium oxydifluoride (TiOF2) to titania (TiO2): phase transition and non-metal doping with enhanced photocatalytic hydrogen (H2) evolution properties. Chemical Communications, 2011, 47, 6138.	4.1	110
239	Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy and Environmental Science, 2022, 15, 2732-2752.	30.8	110
240	Hydrolytically Stable Phosphorylated Hybrid Silicas for Proton Conduction. Advanced Functional Materials, 2007, 17, 3304-3311.	14.9	109
241	1D Subâ€Nanotubes with Anatase/Bronze TiO ₂ Nanocrystal Wall for Highâ€Rate and Longâ€Life Sodiumâ€lon Batteries. Advanced Materials, 2018, 30, e1804116.	21.0	109
242	Nickel nanoparticles prepared by hydrazine hydrate reduction and their application in supercapacitor. Powder Technology, 2012, 224, 162-167.	4.2	108
243	An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction. Chemical Communications, 2015, 51, 7516-7519.	4.1	107
244	Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. Chemical Communications, 2018, 54, 463-466.	4.1	107
245	Opportunities of Aqueous Manganeseâ€Based Batteries with Deposition and Stripping Chemistry. Advanced Energy Materials, 2021, 11, 2002904.	19.5	107
246	Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. Journal of Power Sources, 2008, 185, 664-669.	7.8	106
247	Enhanced electrochemical catalytic activity by copper oxide grown on nitrogen-doped reduced graphene oxide. Journal of Materials Chemistry A, 2013, 1, 13179.	10.3	105
248	Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale, 2015, 7, 12598-12605.	5.6	104
249	Molecular Scalpel to Chemically Cleave Metal–Organic Frameworks for Induced Phase Transition. Journal of the American Chemical Society, 2021, 143, 6681-6690.	13.7	103
250	Nitrogenâ€Doped CN <i>_x</i> /CNTs Heteroelectrocatalysts for Highly Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1602276.	19.5	102
251	Silver/Nitrogen-Doped Graphene Interaction and Its Effect on Electrocatalytic Oxygen Reduction. Chemistry of Materials, 2014, 26, 5868-5873.	6.7	101
252	Recent Progress in Engineering the Atomic and Electronic Structure of Electrocatalysts via Cation Exchange Reactions. Advanced Materials, 2020, 32, e2001866.	21.0	101

#	Article	IF	CITATIONS
253	Synthesis and Bio-adsorptive Properties of Large-Pore Periodic Mesoporous Organosilica Rods. Chemistry of Materials, 2005, 17, 6172-6176.	6.7	100
254	Coordination Tunes Selectivity: Twoâ€Electron Oxygen Reduction on High‣oading Molybdenum Singleâ€Atom Catalysts. Angewandte Chemie, 2020, 132, 9256-9261.	2.0	98
255	Polyiodide Confinement by Starch Enables Shuttleâ€Free Zn–Iodine Batteries. Advanced Materials, 2022, 34, e2201716.	21.0	98
256	Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer. Journal of Membrane Science, 2009, 341, 279-285.	8.2	97
257	Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery. Journal of Materials Chemistry B, 2014, 2, 718-726.	5.8	97
258	Metastable Two-Dimensional Materials for Electrocatalytic Energy Conversions. Accounts of Materials Research, 2021, 2, 559-573.	11.7	97
259	Enhanced Water Retention by Using Polymeric Microcapsules to Confer High Proton Conductivity on Membranes at Low Humidity. Advanced Functional Materials, 2011, 21, 971-978.	14.9	96
260	Magnetic Core–Shell Silica Nanoparticles with Large Radial Mesopores for siRNA Delivery. Small, 2016, 12, 4735-4742.	10.0	96
261	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie, 2016, 128, 1150-1154.	2.0	96
262	Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible‣ight Photoelectrochemical Hydrogen Evolution. Advanced Materials, 2016, 28, 4935-4942.	21.0	95
263	Study of Hexane Adsorption in Nanoporous MCM-41 Silica. Langmuir, 2004, 20, 389-395.	3.5	94
264	Single-Atom Photocatalysts for Emerging Reactions. ACS Central Science, 2021, 7, 39-54.	11.3	94
265	Highly Selective Twoâ€Electron Electrocatalytic CO ₂ Reduction on Singleâ€Atom Cu Catalysts. Small Structures, 2021, 2, 2000058.	12.0	93
266	Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation. Small, 2018, 14, e1800195.	10.0	91
267	Cancer ell‧pecific Nuclearâ€Targeted Drug Delivery by Dualâ€Ligandâ€Modified Mesoporous Silica Nanoparticles. Small, 2015, 11, 5919-5926.	10.0	90
268	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low ost Antisolvents. Angewandte Chemie, 2021, 133, 7442-7451.	2.0	87
269	Nearâ€Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Postâ€5ynthesis Ligand Exchange, and Applications in Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 5202-5224.	13.8	86
270	Targeted Synergy between Adjacent Co Atoms on Graphene Oxide as an Efficient New Electrocatalyst for Li–CO ₂ Batteries. Advanced Functional Materials, 2019, 29, 1904206.	14.9	86

#	Article	IF	CITATIONS
271	Hydrophobic Functional Group Initiated Helical Mesostructured Silica for Controlled Drug Release. Advanced Functional Materials, 2008, 18, 3834-3842.	14.9	85
272	Three-dimensional MnO ₂ ultrathin nanosheet aerogels for high-performance Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 2559-2563.	10.3	85
273	pHâ€Responsive Nutraceutical–Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. Angewandte Chemie - International Edition, 2013, 52, 2318-2322.	13.8	84
274	Acid–Base Bifunctional Periodic Mesoporous Metal Phosphonates for Synergistically and Heterogeneously Catalyzing CO2 Conversion. ACS Catalysis, 2014, 4, 3847-3855.	11.2	84
275	Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2021, 60, 25114-25121.	13.8	84
276	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Science Advances, 2020, 6, eaaz8447.	10.3	83
277	Polypyrrole Shell@3Dâ€Ni Metal Core Structured Electrodes for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2015, 21, 4614-4621.	3.3	82
278	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 332-371.	25.5	82
279	Metal organic framework (MOF) in aqueous energy devices. Materials Today, 2021, 48, 270-284.	14.2	82
280	3D Hollow αâ€MnO ₂ Framework as an Efficient Electrocatalyst for Lithium–Oxygen Batteries. Small, 2019, 15, e1804958.	10.0	82
281	Effective removal and fixation of Cr(VI) from aqueous solution with Friedel's salt. Journal of Hazardous Materials, 2009, 170, 1086-1092.	12.4	81
282	Revealing the Origin of Improved Reversible Capacity of Dual-Shell Bismuth Boxes Anode for Potassium-Ion Batteries. Matter, 2019, 1, 1681-1693.	10.0	81
283	Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores. Chemistry of Materials, 2007, 19, 1870-1876.	6.7	80
284	Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Alâ^'S batteries. Nature Communications, 2021, 12, 5714.	12.8	80
285	A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries. Nature Communications, 2021, 12, 7195.	12.8	80
286	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie, 2017, 129, 1344-1348.	2.0	79
287	Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials, 2012, 33, 970-978.	11.4	78
288	Die Wasserstoffentwicklungsreaktion in alkalischer Lösung: Von der Theorie und Einkristallmodellen zu praktischen Elektrokatalysatoren. Angewandte Chemie, 2018, 130, 7690-7702.	2.0	78

#	Article	IF	CITATIONS
289	A graphene–MnO2framework as a new generation of three-dimensional oxygen evolution promoter. Chemical Communications, 2014, 50, 207-209.	4.1	77
290	Tungsten Nitride Nanodots Embedded Phosphorous Modified Carbon Fabric as Flexible and Robust Electrode for Asymmetric Pseudocapacitor. Small, 2019, 15, e1804104.	10.0	77
291	Enhanced removal of triphosphate by MgCaFe-Cl-LDH: Synergism of precipitation with intercalation and surface uptake. Journal of Hazardous Materials, 2011, 189, 586-594.	12.4	74
292	Role of oxygen-bound reaction intermediates in selective electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3912-3930.	30.8	74
293	A novel color removal adsorbent from heterocoagulation of cationic and anionic clays. Journal of Colloid and Interface Science, 2007, 308, 191-199.	9.4	73
294	Pd coated MoS 2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. Journal of Power Sources, 2015, 284, 68-76.	7.8	73
295	Molecular Cleavage of Metalâ€Organic Frameworks and Application to Energy Storage and Conversion. Advanced Materials, 2021, 33, e2104341.	21.0	73
296	Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. Chemical Communications, 2011, 47, 10443.	4.1	72
297	Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores. Microporous and Mesoporous Materials, 2003, 65, 287-298.	4.4	69
298	Nitrogenâ€Ðoped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 3808-3817.	3.7	69
299	Modest Oxygenâ€Defective Amorphous Manganeseâ€Based Nanoparticle Mullite with Superior Overall Electrocatalytic Performance for Oxygen Reduction Reaction. Small, 2017, 13, 1603903.	10.0	69
300	Impact of Interfacial Electron Transfer on Electrochemical CO ₂ Reduction on Graphitic Carbon Nitride/Doped Graphene. Small, 2019, 15, e1804224.	10.0	69
301	Effective removal of selenate from aqueous solutions by the Friedel phase. Journal of Hazardous Materials, 2010, 176, 193-198.	12.4	68
302	Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon, 2015, 86, 235-244.	10.3	68
303	Strongly interactive 0D/2D hetero-structure of a Zn _x Cd _{1â^'x} S nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H ₂ production. Chemical Communications, 2017, 53, 9882-9885.	4.1	68
304	Paperâ€Based Nâ€Doped Carbon Films for Enhanced Oxygen Evolution Electrocatalysis. Advanced Science, 2015, 2, 1400015.	11.2	67
305	H ₂ purification by functionalized graphdiyne – role of nitrogen doping. Journal of Materials Chemistry A, 2015, 3, 6767-6771.	10.3	67
306	Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and Zn–air batteries. Energy Storage Materials, 2015, 1, 17-24.	18.0	67

#	Article	IF	CITATIONS
307	Catalytic ammonia decomposition over CMK-3 supported Ru catalysts: Effects of surface treatments of supports. Carbon, 2007, 45, 11-20.	10.3	66
308	Ordered Mesoporous Core/Shell SnO ₂ /C Nanocomposite as High apacity Anode Material for Lithiumâ€ion Batteries. Chemistry - A European Journal, 2013, 19, 16897-16901.	3.3	66
309	Enhanced Visibleâ€Light Hydrogenâ€Production Activity of Copperâ€Modified Zn _{<i>x</i>} Cd _{1â^²<i>x</i>} S. ChemSusChem, 2013, 6, 2009-2015.	6.8	66
310	Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. Journal of Materials Chemistry B, 2015, 3, 1712-1721.	5.8	66
311	Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: a DFT study. Journal of Materials Chemistry A, 2017, 5, 7184-7190.	10.3	66
312	ReS ₂ Nanosheets with In Situ Formed Sulfur Vacancies for Efficient and Highly Selective Photocatalytic CO ₂ Reduction. Small Science, 2021, 1, 2000052.	9.9	66
313	Surface-Functionalized Periodic Mesoporous Organosilica Hollow Spheres. Journal of Physical Chemistry C, 2009, 113, 8673-8682.	3.1	65
314	Atomic-Level Insights into the Edge Active ReS ₂ Ultrathin Nanosheets for High-Efficiency Light-to-Hydrogen Conversion. , 2020, 2, 1484-1494.		65
315	Porous Graphitized Carbon for Adsorptive Removal of Benzene and the Electrothermal Regeneration. Environmental Science & Technology, 2012, 46, 12648-12654.	10.0	64
316	Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance. Journal of Materials Chemistry A, 2013, 1, 9409.	10.3	64
317	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie, 2019, 131, 1498-1502.	^{Ir} 2.0	63
318	Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery. Biomaterials, 2014, 35, 5580-5590.	11.4	62
319	Syngas production from electrocatalytic CO ₂ reduction with high energetic efficiency and current density. Journal of Materials Chemistry A, 2019, 7, 7675-7682.	10.3	62
320	Effective Self-Purification of Polynary Metal Electroplating Wastewaters through Formation of Layered Double Hydroxides. Environmental Science & Technology, 2010, 44, 8884-8890.	10.0	61
321	Hierarchical 1T-MoS ₂ nanotubular structures for enhanced supercapacitive performance. Journal of Materials Chemistry A, 2017, 5, 23704-23711.	10.3	61
322	Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica. Progress in Solid State Chemistry, 2006, 34, 249-256.	7.2	59
323	Intracellular Microenvironmentâ€Responsive Dendrimerâ€Like Mesoporous Nanohybrids for Traceable, Effective, and Safe Gene Delivery. Advanced Functional Materials, 2014, 24, 7627-7637.	14.9	59
324	An investigation on the adsorption of acid dyes on bentonite based composite adsorbent. Separation and Purification Technology, 2009, 67, 218-225.	7.9	58

#	Article	IF	CITATIONS
325	Pyrite nanorod arrays as an efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 11828.	10.3	58
326	Softâ€Templating Synthesis of <i>N</i> â€Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2015, 10, 1546-1553.	3.3	57
327	Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. National Science Review, 2018, 5, 626-627.	9.5	57
328	Adsorption Study of Benzene in Ink-Bottle-Like MCM-41. Industrial & Engineering Chemistry Research, 2001, 40, 862-867.	3.7	56
329	Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst. Water Science and Technology, 2003, 47, 211-217.	2.5	56
330	Synthesis of nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. Journal of Materials Chemistry, 2011, 21, 10641.	6.7	56
331	Excellent Capacitive Performance of a Threeâ€Dimensional Hierarchical Porous Graphene/Carbon Composite with a Superhigh Surface Area. Chemistry - A European Journal, 2014, 20, 13314-13320.	3.3	56
332	Highly active nickel–cobalt/nanocarbon thin films as efficient water splitting electrodes. Nanoscale, 2016, 8, 18507-18515.	5.6	56
333	3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Longâ€Term Stability. Advanced Functional Materials, 2017, 27, 1605703.	14.9	56
334	Nanoconfined Nickel@Carbon Core–Shell Cocatalyst Promoting Highly Efficient Visible‣ight Photocatalytic H ₂ Production. Small, 2018, 14, e1801705.	10.0	56
335	MXene Analogue: A 2D Nitridene Solid Solution for Highâ€Rate Hydrogen Production. Angewandte Chemie - International Edition, 2022, 61, .	13.8	56
336	Control of ordered structure and morphology of large-pore periodic mesoporous organosilicas by inorganic salt. Microporous and Mesoporous Materials, 2006, 91, 59-69.	4.4	55
337	Scalable synthesis of hollow Cu ₂ O nanocubes with unique optical properties via a simple hydrolysis-based approach. Journal of Materials Chemistry A, 2013, 1, 302-307.	10.3	55
338	Catalytically active and chemically inert CdIn ₂ S ₄ coating on a CdS photoanode for efficient and stable water splitting. Nanoscale, 2017, 9, 6296-6301.	5.6	55
339	Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability. RSC Advances, 2013, 3, 22008.	3.6	54
340	γâ€PGAâ€Coated Mesoporous Silica Nanoparticles with Covalently Attached Prodrugs for Enhanced Cellular Uptake and Intracellular GSHâ€Responsive Release. Advanced Healthcare Materials, 2015, 4, 771-781.	7.6	54
341	Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. Nanoscale Horizons, 2016, 1, 41-44.	8.0	54
342	Suppressing Al dendrite growth towards a long-life Al-metal battery. Energy Storage Materials, 2021, 34, 194-202.	18.0	54

#	Article	IF	CITATIONS
343	In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles. Nanoscale, 2014, 6, 6617-6626.	5.6	53
344	Synthesis of multi-functional large pore mesoporous silica nanoparticles as gene carriers. Nanotechnology, 2014, 25, 055701.	2.6	53
345	Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability. Journal of Materials Chemistry A, 2017, 5, 21560-21569.	10.3	53
346	Catalytic Oxidation of K ₂ S via Atomic Co and Pyridinic N Synergy in Potassium–Sulfur Batteries. Journal of the American Chemical Society, 2021, 143, 16902-16907.	13.7	53
347	MoO ₂ –CoO coupled with a macroporous carbon hybrid electrocatalyst for highly efficient oxygen evolution. Nanoscale, 2015, 7, 16704-16714.	5.6	51
348	Phosphonic acid functionalized silicas for intermediate temperature proton conduction. Journal of Materials Chemistry, 2009, 19, 2363.	6.7	50
349	1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901146.	19.5	50
350	Surface P atom grafting of g-C ₃ N ₄ for improved local spatial charge separation and enhanced photocatalytic H ₂ production. Journal of Materials Chemistry A, 2019, 7, 7628-7635.	10.3	50
351	Catalytic combustion of benzene on Co/CeO2/SBA-15 and Co/SBA-15 catalysts. Catalysis Communications, 2008, 9, 1874-1877.	3.3	49
352	Efficient Elimination of Trace Ethylene over Nano-Gold Catalyst under Ambient Conditions. Environmental Science & Technology, 2008, 42, 8947-8951.	10.0	49
353	Electrocatalytic Activity of a 2D Phosphoreneâ€Based Heteroelectrocatalyst for Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2018, 57, 2644-2647.	13.8	48
354	Tuning Spin State of Rockâ€Saltâ€Based Oxides by Manipulation of Crystallinity for Efficient Oxygen Electrocatalysis. Advanced Energy Materials, 2018, 8, 1703469.	19.5	48
355	Size Fractionation of Twoâ€Ðimensional Subâ€Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. Angewandte Chemie, 2016, 128, 3868-3872.	2.0	47
356	Creating compressive stress at the NiOOH/NiO interface for water oxidation. Journal of Materials Chemistry A, 2020, 8, 10747-10754.	10.3	47
357	Co (II) Boron Imidazolate Framework with Rigid Auxiliary Linkers for Stable Electrocatalytic Oxygen Evolution Reaction. Advanced Science, 2019, 6, 1801920.	11.2	46
358	Diluted Magnetic Semiconductor Nanowires Prepared by the Solution–Liquid–Solid Method. Angewandte Chemie - International Edition, 2010, 49, 2777-2781.	13.8	45
359	A mesoporous organosilica nano-bowl with high DNA loading capacity – a potential gene delivery carrier. Nanoscale, 2016, 8, 17446-17450.	5.6	45
360	Porous Silica Nanospheres Functionalized with Phosphonic Acid as Intermediate-Temperature Proton Conductors. Journal of Physical Chemistry C, 2009, 113, 3157-3163.	3.1	44

#	Article	IF	CITATIONS
361	Comparison of ZnO and TiO2 nanowires for photoanode of dye-sensitized solar cells. Journal of Alloys and Compounds, 2013, 546, 307-313.	5.5	44
362	A boron imidazolate framework with mechanochromic and electrocatalytic properties. Materials Horizons, 2018, 5, 1151-1155.	12.2	44
363	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. Angewandte Chemie, 2021, 133, 14250-14256.	2.0	44
364	Effective Cr(VI) Removal from Simulated Groundwater through the Hydrotalcite-Derived Adsorbent. Industrial & Engineering Chemistry Research, 2010, 49, 2752-2758.	3.7	43
365	Bronze alloys with tin surface sites for selective electrochemical reduction of CO ₂ . Chemical Communications, 2018, 54, 13965-13968.	4.1	43
366	Synthesis of Highly Active and Stable Spinelâ€Type Oxygen Evolution Electrocatalysts by a Rapid Inorganic Selfâ€Templating Method. Chemistry - A European Journal, 2014, 20, 12669-12676.	3.3	42
367	Cuprous ions embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to ethylene. Journal of Materials Chemistry A, 2018, 6, 9373-9377.	10.3	42
368	Direct synthesis of lanthanide-containing SBA-15 under weak acidic conditions and its catalytic study. Microporous and Mesoporous Materials, 2008, 113, 72-80.	4.4	41
369	Photo Fenton degradation of high concentration Orange II (2mM) using catalysts containing Fe: A comparative study. Separation and Purification Technology, 2009, 67, 213-217.	7.9	41
370	Counteracting Blueshift Optical Absorption and Maximizing Photon Harvest in Carbon Nitride Nanosheet Photocatalyst. Small, 2017, 13, 1700376.	10.0	41
371	Test factors affecting the performance of zinc–air battery. Journal of Energy Chemistry, 2020, 44, 1-7.	12.9	41
372	Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction. Chemical Engineering Science, 2022, 257, 117735.	3.8	41
373	Cooperative self-assembly of silica-based mesostructures templated by cationic fluorocarbon/hydrocarbon mixed-surfactants. Microporous and Mesoporous Materials, 2009, 126, 253-261.	4.4	40
374	Template Design and Economical Strategy for the Synthesis of SSZâ€13 (CHAâ€Type) Zeolite as an Excellent Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} by Ammonia. ChemCatChem, 2015, 7, 3842-3847.	3.7	40
375	CdS Nanoflake Arrays for Highly Efficient Light Trapping. Advanced Materials, 2015, 27, 740-745.	21.0	40
376	Large-pore mesoporous RuNi-doped TiO2–Al2O3 nanocomposites for highly efficient selective CO methanation in hydrogen-rich reformate gases. Applied Catalysis B: Environmental, 2015, 165, 752-762.	20.2	40
377	Recent Progress of 3d Transition Metal Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction. Advanced Materials Interfaces, 2021, 8, 2001904.	3.7	40
378	Porous and dense Ni hollow fibre membranes. Journal of Alloys and Compounds, 2009, 470, 461-464.	5.5	38

#	Article	IF	CITATIONS
379	Graphene oxide coupled carbon nitride homo-heterojunction photocatalyst for enhanced hydrogen production. Materials Chemistry Frontiers, 2017, 1, 562-571.	5.9	38
380	True or False in Electrochemical Nitrogen Reduction. Joule, 2019, 3, 1573-1575.	24.0	38
381	Significantly Raised Visibleâ€Light Photocatalytic H ₂ Evolution on a 2D/2D ReS ₂ /In ₂ ZnS ₄ van der Waals Heterostructure. Small, 2021, 17, e2100296.	10.0	38
382	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H ₂ production. Journal of Materials Chemistry A, 2018, 6, 23278-23282.	10.3	37
383	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie, 2017, 129, 8659-8663.	2.0	36
384	Phosphorene Coâ€catalyst Advancing Highly Efficient Visible‣ight Photocatalytic Hydrogen Production. Angewandte Chemie, 2017, 129, 10509-10513.	2.0	36
385	Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage. Angewandte Chemie, 2018, 130, 8676-8680.	2.0	36
386	Synthesis and Characterization of Colloidal Core–Shell Semiconductor Nanowires. European Journal of Inorganic Chemistry, 2010, 2010, 4325-4331.	2.0	35
387	Highly Conductive CdS Inverse Opals for Photochemical Solar Cells. Advanced Functional Materials, 2014, 24, 707-715.	14.9	34
388	A Threeâ€Component Nanocomposite with Synergistic Reactivity for Oxygen Reduction Reaction in Alkaline Solution. Advanced Energy Materials, 2015, 5, 1401186.	19.5	34
389	Revealing the Magnesiumâ€Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Abâ€Initio Simulations. Angewandte Chemie - International Edition, 2020, 59, 21728-21735.	13.8	34
390	Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2021, 133, 25318-25325.	2.0	34
391	Chemical-Mechanical Effects in Ni-Rich Cathode Materials. Chemistry of Materials, 2022, 34, 1509-1523.	6.7	34
392	Photocatalytic CO ₂ Reduction: Identification and Elimination of False-Positive Results. ACS Energy Letters, 2022, 7, 1611-1617.	17.4	34
393	Comparative Analysis of Structural and Morphological Properties of Large-Pore Periodic Mesoporous Organosilicas and Pure Silicas. Journal of Physical Chemistry B, 2004, 108, 16441-16450.	2.6	33
394	Electrochemical hydrogen storage properties of the ball-milled PrMg12â^'Ni + 150 wt% Ni (x= 1 and 2) composites. International Journal of Hydrogen Energy, 2008, 33, 5066-5072.	7.1	33
395	Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. Materials Research Bulletin, 2008, 43, 2599-2606.	5.2	33
396	Molecules interface engineering derived external electric field for effective charge separation in photoelectrocatalysis. Nano Energy, 2017, 42, 90-97.	16.0	33

#	Article	IF	CITATIONS
397	Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie, 2020, 132, 19817-19821.	2.0	33
398	CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites. Applied Surface Science, 2021, 540, 148293.	6.1	33
399	NIPAM-based Microgel Microenvironment Regulates the Therapeutic Function of Cardiac Stromal Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 37783-37796.	8.0	32
400	Using Local IAST with Micropore Size Distribution To Predict Multicomponent Adsorption Equilibrium of Gases in Activated Carbon. Langmuir, 2000, 16, 1292-1298.	3.5	30
401	A new and generic preparation method of mesoporous clay composites containing dispersed metal oxide nanoparticles. Microporous and Mesoporous Materials, 2008, 114, 214-221.	4.4	30
402	Role of polymeric surfactants on the growth of manganese ferrite nanoparticles. Chemical Engineering Journal, 2012, 210, 157-165.	12.7	30
403	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie, 2021, 133, 19724-19742.	2.0	30
404	Hierarchical porous S-doped Fe–N–C electrocatalyst for high-power-density zinc–air battery. Materials Today Energy, 2021, 19, 100624.	4.7	30
405	Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials. Journal of Hazardous Materials, 2009, 164, 1205-1212.	12.4	29
406	Hydrophobic micro/mesoporous silica spheres assembled from zeolite precursors in acidic media for aromatics adsorption. Microporous and Mesoporous Materials, 2010, 133, 115-123.	4.4	28
407	Intracellular Microenvironmentâ€Responsive Labelâ€Free Autofluorescent Nanogels for Traceable Gene Delivery. Advanced Healthcare Materials, 2014, 3, 1839-1848.	7.6	28
408	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. Angewandte Chemie, 2020, 132, 8258-8263.	2.0	28
409	Pulsed laser deposition of porous N-carbon supported cobalt (oxide) thin films for highly efficient oxygen evolution. Chemical Communications, 2016, 52, 11947-11950.	4.1	27
410	Customizing the microenvironment of CO ₂ electrocatalysis via threeâ€phase interface engineering. SmartMat, 2022, 3, 111-129.	10.7	27
411	A two-dimensional metal–organic framework accelerating visible-light-driven H ₂ production. Nanoscale, 2019, 11, 8304-8309.	5.6	26
412	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
413	Study of Binary Adsorption Equilibrium of Hydrocarbons in Activated Carbon Using Micropore Size Distribution. Langmuir, 2000, 16, 5130-5136.	3.5	25
414	Fabrication and Biosensing with CNT/Aligned Mesostructured Silica Coreâ^'Shell Nanowires. ACS Applied Materials & Interfaces, 2010, 2, 2767-2772.	8.0	25

#	Article	IF	CITATIONS
415	Triphosphate removal processes over ternary CaMgAl-layered double hydroxides. Applied Clay Science, 2011, 54, 196-201.	5.2	25
416	Directing the selectivity of CO ₂ electroreduction to target C ₂ products <i>via</i> non-metal doping on Cu surfaces. Journal of Materials Chemistry A, 2021, 9, 6345-6351.	10.3	25
417	Study of isosteric heat of adsorption and activation energy for surface diffusion of gases on activated carbon using equilibrium and kinetics information. Separation and Purification Technology, 2004, 34, 165-176.	7.9	24
418	Direct Growth of Well-Aligned MOF Arrays onto Various Substrates. CheM, 2017, 2, 751-752.	11.7	24
419	Efficient Surface Modulation of Single-Crystalline Na ₂ Ti ₃ O ₇ Nanotube Arrays with Ti ³⁺ Self-Doping toward Superior Sodium Storage. , 2019, 1, 389-398.		24
420	Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. Journal of Materials Chemistry A, 2019, 7, 13635-13640.	10.3	24
421	Laser synthesis of clean mesocrystal of cupric oxide for efficient gas sensing. Journal of Materials Chemistry A, 2016, 4, 2699-2704.	10.3	23
422	Versatile PbS Quantum Dot Ligand Exchange Systems in the Presence of Pbâ€Thiolates. Small, 2017, 13, 1602956.	10.0	23
423	Nonâ€metal Singleâ€lodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 12380-12385.	2.0	23
424	Graphene-encapsulated nickel–copper bimetallic nanoparticle catalysts for electrochemical reduction of CO ₂ to CO. Chemical Communications, 2020, 56, 11275-11278.	4.1	23
425	Oxidation Stability of Nanographite Materials. Advanced Energy Materials, 2013, 3, 1176-1179.	19.5	22
426	Freeze-drying of ovalbumin loaded mesoporous silica nanoparticle vaccine formulation increases antigen stability under ambient conditions. International Journal of Pharmaceutics, 2014, 465, 325-332.	5.2	22
427	Scalable Self-Supported Graphene Foam for High-Performance Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 41980-41987.	8.0	22
428	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie, 2019, 131, 11922-11926.	2.0	22
429	Spatial-confinement induced electroreduction of CO and CO ₂ to diols on densely-arrayed Cu nanopyramids. Chemical Science, 2021, 12, 8079-8087.	7.4	22
430	Effect of micropore size distribution induced heterogeneity on binary adsorption kinetics of hydrocarbons in activated carbon. Chemical Engineering Science, 2000, 55, 1533-1544.	3.8	21
431	On the performance of HIAST and IAST in the prediction of multicomponent adsorption equilibria. Separation and Purification Technology, 2000, 20, 243-249.	7.9	21
432	Diffusion of n-decane in mesoporous MCM-41 silicas. Microporous and Mesoporous Materials, 2005, 86, 112-123.	4.4	21

#	Article	IF	CITATIONS
433	Fabrication of a magnetic helical mesostructured silica rod. Nanotechnology, 2008, 19, 435608.	2.6	21
434	Intracellular Microenvironment Responsive Polymers: A Multipleâ€stage Transport Platform for Highâ€Performance Gene Delivery. Small, 2014, 10, 871-877.	10.0	21
435	A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. Angewandte Chemie, 2018, 130, 6930-6934.	2.0	21
436	Realizing large-scale and controllable fabrication of active cobalt oxide nanorod catalysts for zinc-air battery. Chemical Engineering Science, 2019, 194, 127-133.	3.8	21
437	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO ₂ electroreduction. Nanoscale Horizons, 2019, 4, 1411-1415.	8.0	21
438	Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. Advanced Science, 2022, 9, e2104363.	11.2	21
439	Double Open-Circuit Voltage of Three-Dimensional ZnO/CdTe Solar Cells by a Balancing Depletion Layer. ACS Applied Materials & amp; Interfaces, 2014, 6, 14718-14723.	8.0	20
440	Mechanistic insight into the nucleation and growth of oleic acid capped lead sulphide quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 14055-14062.	2.8	20
441	The Controllable Reconstruction of Biâ€MOFs for Electrochemical CO ₂ Reduction through Electrolyte and Potential Mediation. Angewandte Chemie, 2021, 133, 18326-18332.	2.0	20
442	Key to C ₂ production: selective C–C coupling for electrochemical CO ₂ reduction on copper alloy surfaces. Chemical Communications, 2021, 57, 9526-9529.	4.1	20
443	Multicomponent Adsorption Kinetics of Gases in Activated Carbon:Â Effect of Pore Size Distribution. Langmuir, 1999, 15, 6428-6437.	3.5	19
444	Application of IAST in the Prediction of Multicomponent Adsorption Equilibrium of Gases in Heterogeneous Solids:Â Micropore Size Distribution versus Energy Distribution. Industrial & Engineering Chemistry Research, 2000, 39, 527-532.	3.7	19
445	Chitosan membranes filled with biomimetic mineralized hydroxyapatite for enhanced proton conductivity. Solid State Ionics, 2011, 187, 33-38.	2.7	18
446	Enhancing the Conversion Efficiency of Semiconductor Sensitized Solar Cells via the Cosensitization of Dual-Sized Quantum Dots. Industrial & Engineering Chemistry Research, 2012, 51, 10074-10078.	3.7	18
447	Diffusion of Linear Paraffins in Nanoporous Silica. Industrial & Engineering Chemistry Research, 2005, 44, 6477-6484.	3.7	17
448	Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity. Journal of Colloid and Interface Science, 2009, 339, 160-167.	9.4	17
449	Smart surface-enhanced Raman scattering traceable drug delivery systems. Nanoscale, 2016, 8, 12803-12811.	5.6	17
450	Unprecedented carbon sub-microspheres with a porous hierarchy for highly efficient oxygen electrochemistry. Nanoscale, 2017, 9, 18731-18736.	5.6	17

#	Article	IF	CITATIONS
451	N-doping goes sp-hybridized. Nature Chemistry, 2018, 10, 900-902.	13.6	17
452	2D Atomically Thin Electrocatalysts: From Graphene to Metallene. Matter, 2019, 1, 1454-1455.	10.0	17
453	Destabilizing Alkaline Water with 3dâ€Metal (Oxy)(Hydr)Oxides for Improved Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 553-564.	3.3	17
454	Pure gold nanocages by galvanic replacement reaction of magnesium nanoparticles. RSC Advances, 2014, 4, 1185-1188.	3.6	16
455	Anomalous Câ^'C Coupling on Under oordinated Cu (111): A Case Study of Cu Nanopyramids for CO ₂ Reduction Reaction by Molecular Modelling. ChemSusChem, 2021, 14, 671-678.	6.8	16
456	Titanate–silica mesostructured nanocables: synthesis, structural analysis and biomedical applications. Nanotechnology, 2010, 21, 065604.	2.6	15
457	Cobalt-doped cadmium selenide colloidal nanowires. Chemical Communications, 2011, 47, 11894.	4.1	15
458	Modeling of a pilot-scale trickle bed reactor for the catalytic oxidation of phenol. Separation and Purification Technology, 2009, 67, 158-165.	7.9	14
459	Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation. Journal of Materials Chemistry A, 2020, 8, 15829-15833.	10.3	14
460	Two-dimensional building blocks for photocatalytic ammonia production. Journal of Materials Chemistry A, 2021, 9, 18733-18745.	10.3	14
461	Effect of pore size distribution shape on the prediction of binary adsorption equilibrium and kinetics of gases in activated carbon. Separation and Purification Technology, 2004, 34, 177-190.	7.9	13
462	Structural and morphological transformations of mesostructured titanium phosphate through hydrothermal treatment. Journal of Colloid and Interface Science, 2007, 316, 954-961.	9.4	13
463	Three-dimensional networks of ITO/CdS coaxial nanofibers for photovoltaic applications. Journal of Materials Chemistry, 2012, 22, 13057.	6.7	13
464	2D MoNâ€VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium‣ulfur Batteries. Angewandte Chemie, 2018, 130, 16945-16949.	2.0	13
465	Graphene Hybrids: Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER (Adv. Mater. 23/2018). Advanced Materials, 2018, 30, 1870164.	21.0	13
466	Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation. PLoS ONE, 2015, 10, e0141870.	2.5	12
467	NiMo/NiCo2O4 as synergy catalyst supported on nickel foam for efficient overall water splitting. Molecular Catalysis, 2022, 518, 112086.	2.0	12
468	Binary adsorption kinetics of ethane and propane in a large heterogeneous microporous particle. Separation and Purification Technology, 1999, 16, 261-271.	7.9	11

#	Article	IF	CITATIONS
469	Use IAST with MPSD to predict binary adsorption kinetics on activated carbon. AICHE Journal, 2000, 46, 1743-1752.	3.6	11
470	Gain High-Quality Colloidal Quantum Dots Directly from Natural Minerals. Langmuir, 2015, 31, 2251-2255.	3.5	11
471	CdTe nanoflake arrays on a conductive substrate: template synthesis and photoresponse property. Journal of Materials Chemistry A, 2014, 2, 957-961.	10.3	10
472	Atomically Dispersed Single Co Sites in Zeolitic Imidazole Frameworks Promoting Highâ€Efficiency Visibleâ€Lightâ€Driven Hydrogen Production. Chemistry - A European Journal, 2019, 25, 9670-9677.	3.3	10
473	Synthetic Chemistry of Nanomaterials. , 2011, , 479-506.		9
474	Interface-dominated galvanic replacement reactions in the Zn/Cu ²⁺ system. Nanotechnology, 2012, 23, 365601.	2.6	9
475	Laserâ€Induced Pyridinicâ€Nitrogenâ€Rich Defective Carbon Nanotubes for Efficient Oxygen Electrocatalysis. ChemCatChem, 2019, 11, 6131-6138.	3.7	9
476	Synchrotron Xâ€ray Spectroscopic Investigations of In‣ituâ€Formed Alloy Anodes for Magnesium Batteries. Advanced Materials, 2022, 34, e2108688.	21.0	9
477	Electrocatalytic Activity of a 2D Phosphoreneâ€Based Heteroelectrocatalyst for Photoelectrochemical Cells. Angewandte Chemie, 2018, 130, 2674-2677.	2.0	8
478	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbonâ€Based Catalysts for Electrocatalytic Nitrogen Reduction. Angewandte Chemie, 2020, 132, 4555-4561.	2.0	8
479	Formation energies of low-indexed surfaces of tin dioxide terminated by nonmetals. Solid State Communications, 2010, 150, 957-960.	1.9	7
480	Modify the morphology of colloidal Ag2Se nanostructures by laser irradiation. CrystEngComm, 2013, 15, 1685.	2.6	7
481	Laser-driven absorption/desorption of catalysts for producing nanowire arrays in solution. Journal of Materials Chemistry A, 2016, 4, 379-383.	10.3	7
482	Contemporaneous oxidation state manipulation to accelerate intermediate desorption for overall water electrolysis. Chemical Communications, 2019, 55, 8313-8316.	4.1	7
483	MXene Analogue: A 2D Nitridene Solid Solution for Highâ€Rate Hydrogen Production. Angewandte Chemie, 2022, 134, .	2.0	7
484	Role of Pore Size Distribution in the Binary Adsorption Kinetics of Gases in Activated Carbon. Studies in Surface Science and Catalysis, 2000, 128, 401-410.	1.5	6
485	Title is missing!. Adsorption, 2001, 7, 51-63.	3.0	6
486	Rücktitelbild: Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance (Angew. Chem. 46/2012). Angewandte Chemie, 2012, 124, 11808-11808.	2.0	6

#	Article	IF	CITATIONS
487	Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Frontiers of Chemical Science and Engineering, 2014, 8, 114-122.	4.4	6
488	Functionalised silica/epoxy nanocomposites with enhanced fracture toughness for large-scale applications. Journal of Composite Materials, 2015, 49, 1439-1447.	2.4	6
489	Synthesis of cadmium chalcogenides nanowires via laser-activated gold catalysts in solution. Materials Chemistry and Physics, 2018, 212, 408-414.	4.0	6
490	Synergistic synthesis of quasi-monocrystal CdS nanoboxes with high-energy facets. Journal of Materials Chemistry A, 2015, 3, 23106-23112.	10.3	5
491	The Ampoule Method: A Pathway towards Controllable Synthesis of Electrocatalysts for Water Electrolysis. Chemistry - A European Journal, 2020, 26, 3898-3905.	3.3	5
492	Strategy to utilize amorphous phase of semiconductor toward excellent and reliable photochemical water splitting performance: Roles of interface dipole moment and reaction parallelization. International Journal of Energy Research, 2022, 46, 3674-3685.	4.5	5
493	CNTs/mesostructured silica core-shell nanowires via interfacial surfactant templating. Science Bulletin, 2009, 54, 516-520.	9.0	4
494	Magnetic Nanocomposites: Magnetic Nanocomposites with Mesoporous Structures: Synthesis and Applications (Small 4/2011). Small, 2011, 7, 418-418.	10.0	4
495	Study on oxygen activation and methane oxidation over La0.8Sr0.2MnO3 electrode in single-chamber solid oxide fuel cells via an electrochemical approach. International Journal of Hydrogen Energy, 2012, 37, 4328-4338.	7.1	4
496	Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn). Frontiers of Chemical Science and Engineering, 2014, 8, 378-385.	4.4	4
497	A Robust Strategy for "Living―Growth of Lead Sulfide Quantum Dots. ChemNanoMat, 2016, 2, 49-53.	2.8	4
498	Nahinfrarotaktive Bleichalkogenidâ€Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen. Angewandte Chemie, 2019, 131, 5256-5279.	2.0	4
499	Sodiumâ€lon Batteries: 1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€lon Batteries (Adv. Energy Mater. 30/2019). Advanced Energy Materials, 2019, 9, 1970117.	19.5	4
500	Revealing the Magnesiumâ€Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Abâ€Initio Simulations. Angewandte Chemie, 2020, 132, 21912-21919.	2.0	4
501	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , .	2.0	4
502	Using local IAST with micropore size distribution to predict desorption and displacement kinetics of mixed gases in activated carbon. Separation and Purification Technology, 2003, 31, 19-30.	7.9	3
503	Bovine serum albumin adsorption in large pore amine functionalized mesoporous silica. Studies in Surface Science and Catalysis, 2007, 165, 425-428.	1.5	3
504	Inside Cover: Extension of The Stöber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres (Angew. Chem. Int. Ed. 26/2011). Angewandte Chemie - International Edition, 2011, 50, 5774-5774.	13.8	3

#	Article	IF	CITATIONS
505	Engineering hollow electrodes for hybrid solar cells for efficient light harvesting and carrier collection. Journal of Materials Chemistry A, 2016, 4, 17260-17266.	10.3	3
506	Plasmonic Materials: 3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Longâ€Term Stability (Adv. Funct. Mater. 10/2017). Advanced Functional Materials, 2017, 27, .	14.9	3
507	Hybrid Aqueous Batteries: Atomic Engineering Catalyzed MnO ₂ Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density (Adv. Mater. 25/2020). Advanced Materials, 2020, 32, 2070191.	21.0	3
508	Promoted and Controllable Self-Assembly of Hydrolyzed Siloxane and Triblock Copolymer under Organic Polyhydroxy Acids. Industrial & Engineering Chemistry Research, 2009, 48, 6308-6314.	3.7	2
509	Nanoreactors: Yolk-Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation (Adv. Funct. Mater. 3/2012). Advanced Functional Materials, 2012, 22, 661-661.	14.9	2
510	Multiferroics and electronic structure of (1â^'x)PbTiO3–xBi(Ni1/2Ti1/2)O3 thin films. Thin Solid Films, 2013, 542, 155-159.	1.8	2
511	Graphene: Nâ€Đoped Graphene Natively Grown on Hierarchical Ordered Porous Carbon for Enhanced Oxygen Reduction (Adv. Mater. 43/2013). Advanced Materials, 2013, 25, 6150-6150.	21.0	2
512	Titelbild: Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis (Angew. Chem. 5/2017). Angewandte Chemie, 2017, 129, 1181-1181.	2.0	2
513	Titelbild: A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation (Angew. Chem. 23/2018). Angewandte Chemie, 2018, 130, 6819-6819.	2.0	2
514	Electrocatalysis: Wellâ€Dispersed Nickel―and Zincâ€Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction (Adv. Mater. 16/2019). Advanced Materials, 2019, 31, 1970113.	21.0	2
515	Editorial: Electrocatalysis ―From Batteries to Clean Energy Conversion. ChemCatChem, 2019, 11, 5835-5837.	3.7	2
516	Microwave activated gold nanoparticles for catalytic growth of monocrystal CdSe nanowires in solution. New Journal of Chemistry, 2017, 41, 14822-14825.	2.8	1
517	Titelbild: 2D MoNâ€VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithiumâ€Sulfur Batteries (Angew. Chem. 51/2018). Angewandte Chemie, 2018, 130, 16809-16809.	2.0	1
518	Special Issue on nanomaterials for catalysis and electrochemical processes. Chemical Engineering Science, 2019, 194, 1.	3.8	1
519	Significantly Raised Visibleâ€Light Photocatalytic H ₂ Evolution on a 2D/2D ReS ₂ /In ₂ ZnS ₄ van der Waals Heterostructure (Small 32/2021). Small, 2021, 17, 2170168.	10.0	1
520	Mild synthesis for defect-switchable photocatalysts for hydrogen evolution. Chem Catalysis, 2022, 2, 434-436.	6.1	1
521	Inorganic thin films self-assembled from lamellar TiO/sub 2/ and layered double hydroxide and their electrochemical behaviour. , 2006, , .		0
522	Synthesis of Highly Ordered Large-Pore Periodic Mesoporous Organosilica Rods. Solid State Phenomena, 2007, 121-123, 381-384.	0.3	0

#	Article	IF	CITATIONS
523	Proton conduction of ordered mesoporous silica-methanesulfonic acid hybrids. Studies in Surface Science and Catalysis, 2007, , 817-820.	1.5	0
524	Nanoflake Arrays: CdS Nanoflake Arrays for Highly Efficient Light Trapping (Adv. Mater. 4/2015). Advanced Materials, 2015, 27, 772-772.	21.0	0
525	Water Splitting: Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution (Adv. Mater. 24/2016). Advanced Materials, 2016, 28, 4943-4943.	21.0	0
526	Innentitelbild: Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate (Angew. Chem. 44/2020). Angewandte Chemie, 2020, 132, 19530-19530.	2.0	0
527	Interview: Shizhang Qiao. , 2020, 2, 306-307.		0
528	USING LOCAL IAS THEORY AND PORE SIZE DISTRIBUTION CONCEPT TO PREDICT BINARY ADSORPTION KINETICS OF GASES ON ACTIVATED CARBON. , 2000, , .		0
529	Nanoscale Enrichment Effect Boosts Electrocatalytic Carbon Dioxide Reduction. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	0
530	Frontispiece: The Ampoule Method: A Pathway towards Controllable Synthesis of Electrocatalysts for Water Electrolysis. Chemistry - A European Journal, 2020, 26, .	3.3	0