Stephan Rudykh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4582785/publications.pdf

Version: 2024-02-01

172386 233338 2,209 64 29 45 citations g-index h-index papers 67 67 67 1336 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Magnetoelastic instabilities in soft laminates with ferromagnetic hyperelastic phases. International Journal of Mechanical Sciences, 2022, 213, 106862.	3.6	13
2	Deformation activated negative group velocity state in soft laminates. Extreme Mechanics Letters, 2022, 51, 101592.	2.0	8
3	Structural and material electro-mechanical instabilities in microstructured dielectric elastomer plates. European Journal of Mechanics, A/Solids, 2022, 94, 104534.	2.1	8
4	Magneto-deformation and transverse elastic waves in hard-magnetic soft laminates. Mechanics of Materials, 2022, 169, 104325.	1.7	18
5	Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials, 2022, 8, .	3.5	7
6	Tunable buckling configurations via in-plane periodicity in soft 3D-fiber composites: Simulations and experiments. International Journal of Solids and Structures, 2022, 250, 111711.	1.3	4
7	Low-frequency tunable topological interface states in soft phononic crystal cylinders. International Journal of Mechanical Sciences, 2021, 191, 106098.	3.6	46
8	Elastic instabilities, microstructure transformations, and pattern formations in soft materials. Current Opinion in Solid State and Materials Science, 2021, 25, 100898.	5.6	22
9	Multiscale analysis of elastic waves in soft materials: From molecular chain networks to fiber composites. International Journal of Mechanical Sciences, 2021, 200, 106433.	3.6	9
10	3D printed recoverable honeycomb composites reinforced by continuous carbon fibers. Composite Structures, 2021, 268, 113974.	3.1	30
11	Macro- and micro-instabilities in incompressible bioinspired composite materials with nacre-like microstructure. Composite Structures, 2021, 269, 114004.	3.1	27
12	Research on drop-weight impact of continuous carbon fiber reinforced 3D printed honeycomb structure. Materials Today Communications, 2021, 29, 102869.	0.9	12
13	Mechanical behavior of bio-inspired nacre-like composites: A hybrid multiscale modeling approach. Composite Structures, 2020, 233, 111625.	3.1	65
14	Fault-tolerant elastic–plastic lattice material. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190107.	1.6	11
15	Microscopic and long-wave instabilities in 3D fiber composites with non-Gaussian hyperelastic phases. International Journal of Engineering Science, 2020, 157, 103408.	2.7	13
16	Mechanical characterization and constitutive modeling of visco-hyperelasticity of photocured polymers. Additive Manufacturing, 2020, 36, 101511.	1.7	8
17	Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites. Materials, 2020, 13, 3850.	1.3	85
18	Tunable permittivity in dielectric elastomer composites under finite strains: Periodicity, randomness, and instabilities International Journal of Mechanical Sciences, 2020, 186, 105880.	3.6	18

#	Article	IF	Citations
19	Rupture of 3D-printed hyperelastic composites: Experiments and phase field fracture modeling. Journal of the Mechanics and Physics of Solids, 2020, 140, 103941.	2.3	45
20	Instability-Induced Pattern Formations in Soft Magnetoactive Composites. Physical Review Letters, 2020, 124, 158002.	2.9	35
21	A Review of Physically Based and Thermodynamically Based Constitutive Models for Soft Materials. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	41
22	Investigation of Microscopic Instabilities in Fiber-Reinforced Composite Materials by Using Multiscale Modeling Strategies. Lecture Notes in Mechanical Engineering, 2020, , 571-582.	0.3	6
23	Microscopic instabilities and elastic wave propagation in finitely deformed laminates with compressible hyperelastic phases. European Journal of Mechanics, A/Solids, 2019, 73, 126-136.	2.1	35
24	Tunable microstructure transformations and auxetic behavior in 3D-printed multiphase composites: The role of inclusion distribution. Composites Part B: Engineering, 2019, 172, 352-362.	5.9	32
25	On the Influence of Inhomogeneous Interphase Layers on Instabilities in Hyperelastic Composites. Materials, 2019, 12, 763.	1.3	22
26	Domain Formations and Pattern Transitions via Instabilities in Soft Heterogeneous Materials. Advanced Materials, 2019, 31, e1807309.	11.1	21
27	Elastic wave propagation in smooth and wrinkled stratified polymer films. Nanotechnology, 2019, 30, 045709.	1.3	6
28	Soft Magnetoactive Laminates: Large Deformations, Transverse Elastic Waves and Band Gaps Tunability by a Magnetic Field. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	19
29	Instabilities and pattern formations in 3D-printed deformable fiber composites. Composites Part B: Engineering, 2018, 148, 114-122.	5.9	27
30	Oblique shear wave propagation in finitely deformed layered composites. Mechanics Research Communications, 2018, 87, 21-28.	1.0	14
31	Towards mechanical characterization of soft digital materials for multimaterial 3D-printing. International Journal of Engineering Science, 2018, 123, 62-72.	2.7	66
32	Hybrid metamaterials combining pentamode lattices and phononic plates. Applied Physics Letters, 2018, 113, .	1.5	27
33	Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials. Soft Matter, 2018, 14, 6171-6180.	1.2	48
34	Foreshadowing elastic instabilities by negative group velocity in soft composites. Applied Physics Letters, 2018, 113, .	1.5	18
35	Instability-Induced Pattern Transformation in Soft Metamaterial with Hexagonal Networks for Tunable Wave Propagation. Scientific Reports, 2018, 8, 11834.	1.6	25
36	Strategies to Control Performance of 3D-Printed, Cable-Driven Soft Polymer Actuators: From Simple Architectures to Gripper Prototype. Polymers, 2018, 10, 846.	2.0	24

3

#	Article	IF	Citations
37	Elastic instabilities and shear waves in hyperelastic composites with various periodic fiber arrangements. International Journal of Engineering Science, 2018, 130, 51-61.	2.7	28
38	Distinct failure modes in bio-inspired 3D-printed staggered composites under non-aligned loadings. Smart Materials and Structures, 2017, 26, 035053.	1.8	49
39	Electromechanical macroscopic instabilities in soft dielectric elastomer composites with periodic microstructures. European Journal of Mechanics, A/Solids, 2017, 65, 243-256.	2.1	37
40	Shear wave propagation in finitely deformed 3D fiber-reinforced composites. International Journal of Solids and Structures, 2017, 110-111, 294-304.	1.3	26
41	Stability of magnetoactive composites with periodic microstructures undergoing finite strains in the presence of a magnetic field. Composites Part B: Engineering, 2017, 128, 19-29.	5.9	46
42	Understanding the strength of bioinspired soft composites. International Journal of Mechanical Sciences, 2017, 131-132, 171-178.	3.6	29
43	Shear Wave Propagation and Band Gaps in Finitely Deformed Dielectric Elastomer Laminates: Long Wave Estimates and Exact Solution. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	43
44	Elastic wave propagation in finitely deformed layered materials. Journal of the Mechanics and Physics of Solids, 2017, 98, 390-410.	2.3	48
45	Microscopic and macroscopic instabilities in hyperelastic fiber composites. Journal of the Mechanics and Physics of Solids, 2017, 99, 471-482.	2.3	61
46	On the Influence of External Fields on the Acoustic Characteristics of Phononic Crystals. , 2016, , .		0
47	Harnessing viscoelasticity and instabilities for tuning wavy patterns in soft layered composites. Soft Matter, 2016, 12, 3677-3682.	1.2	48
48	Manipulating pressure and shear waves in dielectric elastomers via external electric stimuli. International Journal of Solids and Structures, 2016, 91, 18-25.	1.3	33
49	Elastic Wave Propagation in Soft Microstructured Composites Undergoing Finite Deformations. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 627-628.	0.2	3
50	Micromechanics of Electro―and Magnetoâ€active Soft Composites. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 473-474.	0.2	0
51	Comment on "Disentangling longitudinal and shear elastic waves by neo-Hookean soft devices―[Appl. Phys. Lett. 106 , 161903 (2015)]. Applied Physics Letters, 2015, 107, .	1.5	15
52	Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor. Soft Matter, 2015, 11, 2547-2554.	1.2	100
53	Influence of stiffening on elastic wave propagation in extremely deformed soft matter: from nearly incompressible to auxetic materials. Extreme Mechanics Letters, 2015, 4, 156-161.	2.0	18
54	Magnetoactive elastomers with periodic and random microstructures. International Journal of Solids and Structures, 2014, 51, 3012-3024.	1.3	60

#	Article	IF	CITATIONS
55	Transforming Wave Propagation in Layered Media via Instability-Induced Interfacial Wrinkling. Physical Review Letters, 2014, 112, 034301.	2.9	128
56	Transforming Small Localized Loading into Large Rotational Motion in Soft Anisotropically Structured Materials. Advanced Engineering Materials, 2014, 16, 1311-1317.	1.6	15
57	Multiscale instabilities in soft heterogeneous dielectric elastomers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20130618.	1.0	43
58	Analysis of elasmoid fish imbricated layered scale-tissue systems and their bio-inspired analogues at finite strains and bending. IMA Journal of Applied Mathematics, 2014, 79, 830-847.	0.8	35
59	Stability of anisotropic magnetorheological elastomers in finite deformations: A micromechanical approach. Journal of the Mechanics and Physics of Solids, 2013, 61, 949-967.	2.3	99
60	Wrinkling of Interfacial Layers in Stratified Composites. Advanced Engineering Materials, 2013, 15, 921-926.	1.6	33
61	Analysis of microstructural induced enhancement of electromechanical coupling in soft dielectrics. Applied Physics Letters, 2013, 102, .	1.5	57
62	Snap-through actuation of thick-wall electroactive balloons. International Journal of Non-Linear Mechanics, 2012, 47, 206-209.	1.4	121
63	Instabilities of Hyperelastic Fiber Composites: Micromechanical Versus Numerical Analyses. Journal of Elasticity, 2012, 106, 123-147.	0.9	56
64	Stability of anisotropic electroactive polymers with application to layered media. Zeitschrift Fur Angewandte Mathematik Und Physik, 2011, 62, 1131-1142.	0.7	62