Lorenzo Covarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4582689/publications.pdf

Version: 2024-02-01

566801 433756 1,396 32 15 31 citations h-index g-index papers 33 33 33 1973 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	E <scp>ffector</scp> P: predicting fungal effector proteins from secretomes using machine learning. New Phytologist, 2016, 210, 743-761.	3.5	438
2	Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts. PLoS Pathogens, 2012, 8, e1002952.	2.1	176
3	<i>Fusarium</i> species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy. Journal of the Science of Food and Agriculture, 2015, 95, 540-551.	1.7	122
4	Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy. Food Control, 2016, 62, 322-329.	2.8	88
5	Characterization of Fusarium verticillioides strains isolated from maize in Italy: Fumonisin production, pathogenicity and genetic variability. Food Microbiology, 2012, 31, 17-24.	2.1	57
6	Identification of the Biosynthetic Gene Clusters for the Lipopeptides Fusaristatin A and W493 B in <i>Fusarium graminearum</i> and <i>F. pseudograminearum</i> Journal of Natural Products, 2014, 77, 2619-2625.	1.5	55
7	Presence of <i>Fusarium</i> Species and Other Toxigenic Fungi in Malting Barley and Multi-Mycotoxin Analysis by Liquid Chromatography–High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2016, 64, 4390-4399.	2.4	54
8	The Fusarium crown rot pathogen <i>Fusarium pseudograminearum</i> transcriptional and metabolic changes in bread wheat (<i>Triticum aestivum</i> L.). Annals of Botany, 2017, 119, mcw207.	1.4	52
9	Infection by mycotoxigenic fungal species and mycotoxin contamination of maize grain in Umbria, central Italy. Food and Chemical Toxicology, 2011, 49, 2365-2369.	1.8	48
10	The cereal pathogen <i>Fusarium pseudograminearum</i> produces a new class of active cytokinins during infection. Molecular Plant Pathology, 2018, 19, 1140-1154.	2.0	37
11	Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy. Toxins, 2017, 9, 120.	1.5	35
12	Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain. International Journal of Food Microbiology, 2019, 290, 214-225.	2.1	35
13	Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy. International Journal of Food Microbiology, 2018, 273, 33-42.	2.1	33
14	Fungicides may have differential efficacies towards the main causal agents of Fusarium head blight of wheat. Pest Management Science, 2020, 76, 3738-3748.	1.7	31
15	Cultivation Area Affects the Presence of Fungal Communities and Secondary Metabolites in Italian Durum Wheat Grains. Toxins, 2020, 12, 97.	1.5	19
16	Three-year investigations on leaf rust of poplar cultivated for biomass production in Umbria, Central Italy. Biomass and Bioenergy, 2013, 49, 315-322.	2.9	15
17	Aspergillus, Penicillium and Cladosporium species associated with dried date fruits collected in the Perugia (Umbria, Central Italy) market. International Journal of Food Microbiology, 2020, 322, 108585.	2.1	15
18	Genome Sequences of Pseudomonas spp. Isolated from Cereal Crops. Genome Announcements, 2013, 1, .	0.8	12

#	Article	IF	CITATIONS
19	Miscanthus rhizome rot: A potential threat for the establishment and the development of biomass cultivations. Biomass and Bioenergy, 2012, 46, 263-269.	2.9	10
20	Regulation of a novel Fusarium cytokinin in Fusarium pseudograminearum. Fungal Biology, 2019, 123, 255-266.	1.1	9
21	Enniatin B and Deoxynivalenol Activity on Bread Wheat and on Fusarium Species Development. Toxins, 2021, 13, 728.	1.5	9
22	Phytopathological Threats Associated with Quinoa (Chenopodium quinoa Willd.) Cultivation and Seed Production in an Area of Central Italy. Plants, 2021, 10, 1933.	1.6	8
23	Fusarium Virulence Assay on Wheat and Barley Seedlings. Bio-protocol, 2013, 3, .	0.2	8
24	In Vitro Evaluation of the Inhibitory Activity of Different Selenium Chemical Forms on the Growth of a Fusarium proliferatum Strain Isolated from Rice Seedlings. Plants, 2021, 10, 1725.	1.6	6
25	Management of Pyrenophora teres f. teres, the Causal Agent of Net Form Net Blotch of Barley, in A Two-Year Field Experiment in Central Italy. Pathogens, 2022, 11, 291.	1.2	6
26	Comparative studies about fungal colonization and deoxynivalenol translocation in barley plants inoculated at the base with Fusarium graminearum, Fusarium culmorum and Fusarium pseudograminearum. Agricultural and Food Science, 2018, 27, .	0.3	5
27	Identification of Putative Virulence Genes by DNA Methylation Studies in the Cereal Pathogen Fusarium graminearum. Cells, 2021, 10, 1192.	1.8	4
28	A Two-Year Field Experiment for the Integrated Management of Bread and Durum Wheat Fungal Diseases and of Deoxynivalenol Accumulation in the Grain in Central Italy. Agronomy, 2022, 12, 840.	1.3	3
29	In Vitro Fumonisin Biosynthesis and Genetic Structure of Fusarium verticillioides Strains from Five Mediterranean Countries. Microorganisms, 2020, 8, 241.	1.6	2
30	Infection timing affects <i>Fusarium poae</i> colonization of bread wheat spikes and mycotoxin accumulation in the grain. Journal of the Science of Food and Agriculture, 2022, 102, 6358-6372.	1.7	2
31	Risks Related to the Presence of Fungal Species and Mycotoxins in Grapes, Wines and Other Derived Products in the Mediterranean Area. , 2015, , 563-575.		1
32	Detection of <i>Ramularia colloâ€cygni</i> from barley in Australia using triplex quantitative and droplet digital <scp>PCR</scp> . Pest Management Science, 2022, 78, 1367-1376.	1.7	1