Lynne S Taylor

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4582685/lynne-s-taylor-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

349 papers

16,456 citations

66 h-index

110 g-index

482 ext. papers

18,591 ext. citations

5.7 avg, IF

7.3 L-index

#	Paper	IF	Citations
349	Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets <i>Pharmaceutical Research</i> , 2022 , 1	4.5	2
348	Development of hot-melt extruded drug/polymer matrices for sustained delivery of meloxicam Journal of Controlled Release, 2022 , 342, 189-200	11.7	0
347	Role of Surfactants on Release Performance of Amorphous Solid Dispersions of Ritonavir and Copovidone <i>Pharmaceutical Research</i> , 2022 , 39, 381	4.5	1
346	Phase separation in surfactant-containing amorphous solid dispersions: orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition <i>International Journal of Pharmaceutics</i> , 2022 , 121708	6.5	4
345	Phase Behavior and Crystallization Kinetics of a Poorly Water-Soluble Weakly Basic Drug as a Function of Supersaturation and Media Composition <i>Molecular Pharmaceutics</i> , 2022 , 19, 1146-1159	5.6	1
344	Optimization of Amorphization Kinetics during Hot Melt Extrusion by Particle Engineering: An Experimental and Computational Study. <i>Crystal Growth and Design</i> , 2022 , 22, 821-841	3.5	2
343	Impact of Polymer Type on Thermal Degradation of Amorphous Solid Dispersions Containing Ritonavir <i>Molecular Pharmaceutics</i> , 2022 , 19, 332-344	5.6	О
342	Surface nanocoating of high drug-loading spray-dried amorphous solid dispersions by atomic layer coating: Excellent physical stability under accelerated storage conditions for two years <i>International Journal of Pharmaceutics</i> , 2022 , 121747	6.5	2
341	Designing synergistic crystallization inhibitors: Bile salt derivatives of cellulose with enhanced hydrophilicity. <i>Carbohydrate Polymers</i> , 2022 , 119680	10.3	
340	Improved Dissolution of an Enteric Polymer and its Amorphous Solid Dispersions by Polymer Salt Formation. <i>International Journal of Pharmaceutics</i> , 2022 , 121886	6.5	2
339	Physical Stability and Dissolution of Lumefantrine Amorphous Solid Dispersions Produced by Spray Anti-Solvent Precipitation. <i>Journal of Pharmaceutical Sciences</i> , 2021 , 110, 2423-2431	3.9	11
338	Crystallization Kinetics in Fasted-State Simulated and Aspirated Human Intestinal Fluids. <i>Crystal Growth and Design</i> , 2021 , 21, 2807-2820	3.5	2
337	Amorphous Solid Dispersions Containing Residual Crystallinity: Competition Between Dissolution and Matrix Crystallization. <i>AAPS Journal</i> , 2021 , 23, 69	3.7	6
336	Exploring the Role of Surfactants in Enhancing Drug Release from Amorphous Solid Dispersions at Higher Drug Loadings. <i>Pharmaceutics</i> , 2021 , 13,	6.4	6
335	Understanding the Impact of Protein-Excipient Interactions on Physical Stability of Spray-Dried Protein Solids. <i>Molecular Pharmaceutics</i> , 2021 , 18, 2657-2668	5.6	2
334	Impact of Drug-Polymer Intermolecular Interactions on Dissolution Performance of Copovidone-Based Amorphous Solid Dispersions. <i>Molecular Pharmaceutics</i> , 2021 , 18, 3496-3508	5.6	2
333	Effects of polyphenols on crystallization of amorphous sucrose lyophiles. <i>Food Chemistry</i> , 2021 , 338, 128061	8.5	1

332	In Ivitro Biopredictive Methods: A Workshop Summary Report. <i>Journal of Pharmaceutical Sciences</i> , 2021 , 110, 567-583	3.9	8
331	Effects of drying method and excipient on the structure and physical stability of protein solids: Freeze drying vs. spray freeze drying. <i>International Journal of Pharmaceutics</i> , 2021 , 594, 120169	6.5	15
330	Partitioning of surfactant into drug-rich nanodroplets and its impact on drug thermodynamic activity and droplet size. <i>Journal of Controlled Release</i> , 2021 , 330, 229-243	11.7	14
329	Chemical stability and reaction kinetics of thiamine mononitrate in the aqueous phase of bread dough. <i>Food Research International</i> , 2021 , 140, 110084	7	3
328	Interaction of Polymers with Enzalutamide Nanodroplets-Impact on Droplet Properties and Induction Times. <i>Molecular Pharmaceutics</i> , 2021 , 18, 836-849	5.6	4
327	Effect of Polymer Species on Maximum Aqueous Phase Supersaturation Revealed by Quantitative Nuclear Magnetic Resonance Spectroscopy. <i>Molecular Pharmaceutics</i> , 2021 , 18, 1344-1355	5.6	5
326	Drug Release and Nanodroplet Formation from Amorphous Solid Dispersions: Insight into the Roles of Drug Physicochemical Properties and Polymer Selection. <i>Molecular Pharmaceutics</i> , 2021 , 18, 2066-208	8 ⁵ 16	13
325	A Mechanistic Study of Drug Mass Transport from Supersaturated Solutions Across PAMPA Membranes. <i>Journal of Pharmaceutical Sciences</i> , 2021 ,	3.9	3
324	Fluorescence-Detected Mid-Infrared Photothermal Microscopy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10809-10815	16.4	8
323	Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. <i>Acta Pharmaceutica Sinica B</i> , 2021 , 11, 2505-2536	15.5	31
322	Effect of Excipients on Salt Disproportionation during Dissolution: A Novel Application of In Situ Raman Imaging. <i>Molecular Pharmaceutics</i> , 2021 , 18, 3247-3259	5.6	1
321	Effect of pH and concentration on the chemical stability and reaction kinetics of thiamine mononitrate and thiamine chloride hydrochloride in solution. <i>BMC Chemistry</i> , 2021 , 15, 47	3.7	1
320	Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug-Polymer Interactions. <i>Molecular Pharmaceutics</i> , 2021 ,	5.6	7
319	Polymer effects on crystallization at the amorphous atazanavir-water interface. <i>Journal of Crystal Growth</i> , 2021 , 571, 126254	1.6	1
318	Impact of Hypromellose Acetate Succinate Grade on Drug Amorphous Solubility and In Witro Membrane Transport. <i>Journal of Pharmaceutical Sciences</i> , 2020 , 109, 2464-2473	3.9	16
317	The role of surface energy heterogeneity on crystal morphology during solid-state crystallization at the amorphous atazanavirwater interface. <i>CrystEngComm</i> , 2020 , 22, 3179-3187	3.3	2
316	Impact of phospholipid digests and bile acid pool variations on the crystallization of atazanavir from supersaturated solutions. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2020 , 153, 68-	8 ⁵³⁷	5
315	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133	5.6	

314	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498	4.3	
313	Confronting Racism in Chemistry Journals. <i>Organometallics</i> , 2020 , 39, 2331-2333	3.8	
312	Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition. <i>Molecular Pharmaceutics</i> , 2020 , 17, 1261-1275	5.6	38
311	Evidence for Halogen Bonding in Amorphous Solid Dispersions. <i>Crystal Growth and Design</i> , 2020 , 20, 3224-3235	3.5	9
310	Inhalable Nanocomposite Microparticles with Enhanced Dissolution and Superior Aerosol Performance. <i>Molecular Pharmaceutics</i> , 2020 , 17, 3270-3280	5.6	9
309	Comparison of Drug Release and Adsorption under Supersaturating Conditions for Ordered Mesoporous Silica with Indomethacin or Indomethacin Methyl Ester. <i>Molecular Pharmaceutics</i> , 2020 , 17, 3062-3074	5.6	4
308	Update to Our Reader, Reviewer, and Author CommunitiesApril 2020. <i>Energy & amp; Fuels</i> , 2020 , 34, 5107-5108	4.1	
307	Polymer Type Impacts Amorphous Solubility and Drug-Rich Phase Colloidal Stability: A Mechanistic Study Using Nuclear Magnetic Resonance Spectroscopy. <i>Molecular Pharmaceutics</i> , 2020 , 17, 1352-1362	5.6	19
306	Amorphous solid dispersions containing residual crystallinity: Influence of seed properties and polymer adsorption on dissolution performance. <i>European Journal of Pharmaceutical Sciences</i> , 2020 , 146, 105276	5.1	24
305	Update to Our Reader, Reviewer, and Author CommunitiesApril 2020. <i>Organometallics</i> , 2020 , 39, 1665-	16&6	
305 304		16 <u>6</u> 66	
	Update to Our Reader, Reviewer, and Author CommunitiesApril 2020. <i>Organometallics</i> , 2020 , 39, 1665-		7
304	Update to Our Reader, Reviewer, and Author Communities April 2020. <i>Organometallics</i> , 2020 , 39, 1665-Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200 Stochastic Differential Scanning Calorimetry by Nonlinear Optical Microscopy. <i>Analytical Chemistry</i> ,	1.7 7.8	7 8
304	Update to Our Reader, Reviewer, and Author Communities April 2020. <i>Organometallics</i> , 2020 , 39, 1665-Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200 Stochastic Differential Scanning Calorimetry by Nonlinear Optical Microscopy. <i>Analytical Chemistry</i> , 2020 , 92, 1171-1178 Absorptive Dissolution Testing: An Improved Approach to Study the Impact of Residual Crystallinity	1.7 7.8	7 8 8
304 303 302	Update to Our Reader, Reviewer, and Author Communities April 2020. <i>Organometallics</i> , 2020 , 39, 1665-Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200 Stochastic Differential Scanning Calorimetry by Nonlinear Optical Microscopy. <i>Analytical Chemistry</i> , 2020 , 92, 1171-1178 Absorptive Dissolution Testing: An Improved Approach to Study the Impact of Residual Crystallinity on the Performance of Amorphous Formulations. <i>Journal of Pharmaceutical Sciences</i> , 2020 , 109, 1312-1 Impact of Monomeric versus Micellar Surfactant and Surfactant Polymer Interactions on Nucleation Times of Atazanavir from Supersaturated Solutions. <i>Crystal Growth and</i>	7.8 323	
304 303 302 301	Update to Our Reader, Reviewer, and Author Communities April 2020. <i>Organometallics</i> , 2020 , 39, 1665-Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200 Stochastic Differential Scanning Calorimetry by Nonlinear Optical Microscopy. <i>Analytical Chemistry</i> , 2020 , 92, 1171-1178 Absorptive Dissolution Testing: An Improved Approach to Study the Impact of Residual Crystallinity on the Performance of Amorphous Formulations. <i>Journal of Pharmaceutical Sciences</i> , 2020 , 109, 1312-1 Impact of Monomeric versus Micellar Surfactant and Surfactant Polymer Interactions on Nucleation Times of Atazanavir from Supersaturated Solutions. <i>Crystal Growth and Design</i> , 2020 , 20, 62-72 Application and limitations of thermogravimetric analysis to delineate the hot melt extrusion	1.7 7.8 323 3.5	8
304 303 302 301 300	Update to Our Reader, Reviewer, and Author Communities April 2020. Organometallics, 2020, 39, 1665- Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200 Stochastic Differential Scanning Calorimetry by Nonlinear Optical Microscopy. Analytical Chemistry, 2020, 92, 1171-1178 Absorptive Dissolution Testing: An Improved Approach to Study the Impact of Residual Crystallinity on the Performance of Amorphous Formulations. Journal of Pharmaceutical Sciences, 2020, 109, 1312-1 Impact of Monomeric versus Micellar Surfactant and Surfactant Polymer Interactions on NucleationInduction Times of Atazanavir from Supersaturated Solutions. Crystal Growth and Design, 2020, 20, 62-72 Application and limitations of thermogravimetric analysis to delineate the hot melt extrusion chemical stability processing window. International Journal of Pharmaceutics, 2020, 590, 119916 Patterns of drug release as a function of drug loading from amorphous solid dispersions: A	7.8 323 3.5 6.5	8

296	Influence of Drug-Silica Electrostatic Interactions on Drug Release from Mesoporous Silica-Based Oral Delivery Systems. <i>Molecular Pharmaceutics</i> , 2020 , 17, 3435-3446	5.6	5
295	Amorphous solid dispersions of enzalutamide and novel polysaccharide derivatives: investigation of relationships between polymer structure and performance. <i>Scientific Reports</i> , 2020 , 10, 18535	4.9	13
294	Water-Induced Phase Separation of Spray-Dried Amorphous Solid Dispersions. <i>Molecular Pharmaceutics</i> , 2020 , 17, 4004-4017	5.6	15
293	Amorphization of Thiamine Chloride Hydrochloride: Effects of Physical State and Polymer Type on the Chemical Stability of Thiamine in Solid Dispersions. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	6
292	Amorphization of Thiamine Mononitrate: A Study of Crystallization Inhibition and Chemical Stability of Thiamine in Thiamine Mononitrate Amorphous Solid Dispersions. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	1
291	Effects of emulsifiers on the moisture sorption and crystallization of amorphous sucrose lyophiles. <i>Food Chemistry: X</i> , 2019 , 3, 100050	4.7	2
290	Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. <i>Molecular Pharmaceutics</i> , 2019 , 16, 1327-	15359	56
289	Congruent release of drug and polymer: A "sweet spot" in the dissolution of amorphous solid dispersions. <i>Journal of Controlled Release</i> , 2019 , 298, 68-82	11.7	56
288	Conjugation of bile esters to cellulose by olefin cross-metathesis: A strategy for accessing complex polysaccharide structures. <i>Carbohydrate Polymers</i> , 2019 , 221, 37-47	10.3	7
287	Dissolution of Indomethacin Crystals into a Polymer Melt: Role of Diffusion and Fragmentation. <i>Crystal Growth and Design</i> , 2019 , 19, 3315-3328	3.5	12
286	Microstructure Formation for Improved Dissolution Performance of Lopinavir Amorphous Solid Dispersions. <i>Molecular Pharmaceutics</i> , 2019 , 16, 1751-1765	5.6	13
285	Assessing the Impact of Endogenously Derived Crystalline Drug on the in Vivo Performance of Amorphous Formulations. <i>Molecular Pharmaceutics</i> , 2019 , 16, 3617-3625	5.6	14
284	Application of an adsorption isotherm to explain incomplete drug release from ordered mesoporous silica materials under supersaturating conditions. <i>Journal of Controlled Release</i> , 2019 , 307, 186-199	11.7	13
283	Interplay of Supersaturation and Solubilization: Lack of Correlation between Concentration-Based Supersaturation Measurements and Membrane Transport Rates in Simulated and Aspirated Human Fluids. <i>Molecular Pharmaceutics</i> , 2019 , 16, 5042-5053	5.6	22
282	Insights into the Dissolution Behavior of Ledipasvir-Copovidone Amorphous Solid Dispersions: Role of Drug Loading and Intermolecular Interactions. <i>Molecular Pharmaceutics</i> , 2019 , 16, 5054-5067	5.6	29
281	The Effect of Promiscuous Aggregation on in Vitro Drug Metabolism Assays. <i>Pharmaceutical Research</i> , 2019 , 36, 170	4.5	1
280	Characterization of Phase Transformations for Amorphous Solid Dispersions of a Weakly Basic Drug upon Dissolution in Biorelevant Media. <i>Pharmaceutical Research</i> , 2019 , 36, 174	4.5	15
279	Amorphous solid dispersion formation via solvent granulation - A case study with ritonavir and lopinavir. <i>International Journal of Pharmaceutics: X</i> , 2019 , 1, 100035	3.2	10

278	Surface Composition and Formulation Heterogeneity of Protein Solids Produced by Spray Drying. <i>Pharmaceutical Research</i> , 2019 , 37, 14	4.5	6
277	Optimizing the Quality of Food Powder Products: The Challenges of Moisture-Mediated Phase Transformations. <i>Annual Review of Food Science and Technology</i> , 2019 , 10, 457-478	14.7	2
276	Insight into Amorphous Solid Dispersion Performance by Coupled Dissolution and Membrane Mass Transfer Measurements. <i>Molecular Pharmaceutics</i> , 2019 , 16, 448-461	5.6	24
275	Evaluation of Pazopanib Phase Behavior Following pH-Induced Supersaturation. <i>Molecular Pharmaceutics</i> , 2018 , 15, 1690-1699	5.6	13
274	Influence of Polymer and Drug Loading on the Release Profile and Membrane Transport of Telaprevir. <i>Molecular Pharmaceutics</i> , 2018 , 15, 1700-1713	5.6	40
273	Qualitative and Quantitative Characterization of Composition Heterogeneity on the Surface of Spray Dried Amorphous Solid Dispersion Particles by an Advanced Surface Analysis Platform with High Surface Sensitivity and Superior Spatial Resolution. <i>Molecular Pharmaceutics</i> , 2018 , 15, 2045-2053	5.6	18
272	Tailoring supersaturation from amorphous solid dispersions. <i>Journal of Controlled Release</i> , 2018 , 279, 114-125	11.7	63
271	Paclitaxel Crystal Seeds with Different Intrinsic Properties and Their Impact on Dissolution of Paclitaxel-HPMCAS Amorphous Solid Dispersions. <i>Crystal Growth and Design</i> , 2018 , 18, 1548-1559	3.5	26
270	Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersions prepared by spray-drying and hot melt extrusion. <i>International Journal of Pharmaceutics</i> , 2018 , 540, 106-119	6.5	30
269	A novel approach for measuring room temperature enthalpy of mixing and associated solubility estimation of a drug in a polymer matrix. <i>Polymer</i> , 2018 , 135, 50-60	3.9	8
268	Investigating the Impact of Drug Crystallinity in Amorphous Tacrolimus Capsules on Pharmacokinetics and Bioequivalence Using Discriminatory In Vitro Dissolution Testing and Physiologically Based Pharmacokinetic Modeling and Simulation. <i>Journal of Pharmaceutical Sciences</i>	3.9	38
267	, 2018 , 107, 1330-1341 Mechanistic understanding of the phase behavior of supersaturated solutions of poorly water-soluble drugs. <i>International Journal of Pharmaceutics</i> , 2018 , 543, 29-37	6.5	13
266	Rifampin Stability and Solution Concentration Enhancement Through Amorphous Solid Dispersion in Cellulose ECarboxyalkanoate Matrices. <i>Journal of Pharmaceutical Sciences</i> , 2018 , 107, 127-138	3.9	18
265	Gaining Thermodynamic Insight From Distinct Glass Formation Kinetics of Structurally Similar Organic Compounds. <i>Journal of Pharmaceutical Sciences</i> , 2018 , 107, 192-202	3.9	5
264	Chemical stability and reaction kinetics of two thiamine salts (thiamine mononitrate and thiamine chloride hydrochloride) in solution. <i>Food Research International</i> , 2018 , 112, 443-456	7	16
263	Supersaturation Potential of Ordered Mesoporous Silica Delivery Systems. Part 1: Dissolution Performance and Drug Membrane Transport Rates. <i>Molecular Pharmaceutics</i> , 2018 , 15, 3489-3501	5.6	21
262	Selective synthesis of curdlan Etarboxyamides by Staudinger ylide nucleophilic ring-opening. Carbohydrate Polymers, 2018 , 190, 222-231	10.3	5
261	Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. <i>Biomacromolecules</i> , 2018 , 19, 2351-2376	6.9	102

(2017-2018)

260	Phase Behavior of Drug-Hydroxypropyl Methylcellulose Amorphous Solid Dispersions Produced from Various Solvent Systems: Mechanistic Understanding of the Role of Polymer using Experimental and Theoretical Methods. <i>Molecular Pharmaceutics</i> , 2018 , 15, 3236-3251	5.6	13	
259	Monitoring the Phase Behavior of Supersaturated Solutions of Poorly Water-Soluble Drugs Using Fluorescence Techniques. <i>Journal of Pharmaceutical Sciences</i> , 2018 , 107, 94-102	3.9	13	
258	Variation in Supersaturation and Phase Behavior of Ezetimibe Amorphous Solid Dispersions upon Dissolution in Different Biorelevant Media. <i>Molecular Pharmaceutics</i> , 2018 , 15, 193-206	5.6	14	
257	Impact of Solid-State Form on the Disproportionation of Miconazole Mesylate. <i>Molecular Pharmaceutics</i> , 2018 , 15, 40-52	5.6	5	
256	Cellulose-based amorphous solid dispersions enhance rifapentine delivery characteristics in vitro. <i>Carbohydrate Polymers</i> , 2018 , 182, 149-158	10.3	12	
255	Impact of Additives on Heterogeneous Crystallization of Acetaminophen. <i>International Journal of Chemical Engineering</i> , 2018 , 2018, 1-7	2.2	1	
254	Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport. <i>Journal of Controlled Release</i> , 2018 , 292, 172-182	11.7	77	
253	The application of temperature-composition phase diagrams for hot melt extrusion processing of amorphous solid dispersions to prevent residual crystallinity. <i>International Journal of Pharmaceutics</i> , 2018 , 553, 454-466	6.5	41	
252	Nanometer-Scale Residual Crystals in a Hot Melt Extruded Amorphous Solid Dispersion: Characterization by Transmission Electron Microscopy. <i>Crystal Growth and Design</i> , 2018 , 18, 7633-7640	3.5	13	
251	Crystallization Inhibition Properties of Cellulose Esters and Ethers for a Group of Chemically Diverse Drugs: Experimental and Computational Insight. <i>Biomacromolecules</i> , 2018 , 19, 4593-4606	6.9	14	
250	Effects of Mono-, Di-, and Tri-Saccharides on the Stability and Crystallization of Amorphous Sucrose. <i>Journal of Food Science</i> , 2018 , 83, 2827-2839	3.4	7	
249	Assessing the Risk of Salt Disproportionation Using Crystal Structure and Surface Topography Analysis. <i>Crystal Growth and Design</i> , 2018 , 18, 7027-7040	3.5	3	
248	Effect of excipient properties, water activity, and water content on the disproportionation of a pharmaceutical salt. <i>International Journal of Pharmaceutics</i> , 2018 , 546, 226-234	6.5	13	
247	Crystallization from Supersaturated Solutions: Role of Lecithin and Composite Simulated Intestinal Fluid. <i>Pharmaceutical Research</i> , 2018 , 35, 158	4.5	20	
246	Impact of Endogenous Bile Salts on the Thermodynamics of Supersaturated Active Pharmaceutical Ingredient Solutions. <i>Crystal Growth and Design</i> , 2017 , 17, 1264-1275	3.5	23	
245	Understanding the Impact of Water on the Miscibility and Microstructure of Amorphous Solid Dispersions: An AFM-LCR and TEM-EDX Study. <i>Molecular Pharmaceutics</i> , 2017 , 14, 1691-1705	5.6	32	
244	Tandem modification of amphiphilic cellulose ethers for amorphous solid dispersion via olefin cross-metathesis and thiol-Michael addition. <i>Polymer Chemistry</i> , 2017 , 8, 3129-3139	4.9	19	
243	Origin of Nanodroplet Formation Upon Dissolution of an Amorphous Solid Dispersion: A Mechanistic Isotope Scrambling Study. <i>Journal of Pharmaceutical Sciences</i> , 2017 , 106, 1998-2008	3.9	36	

242	Impact of Bile Salts on Solution Crystal Growth Rate and Residual Supersaturation of an Active Pharmaceutical Ingredient. <i>Crystal Growth and Design</i> , 2017 , 17, 3528-3537	3.5	19
241	Impact of Supramolecular Aggregation on the Crystallization Kinetics of Organic Compounds from the Supercooled Liquid State. <i>Molecular Pharmaceutics</i> , 2017 , 14, 2126-2137	5.6	6
240	Moisture-Mediated Interactions Between Amorphous Maltodextrins and Crystalline Fructose. Journal of Food Science, 2017 , 82, 1142-1156	3.4	8
239	Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy. <i>Pharmaceutical Research</i> , 2017 , 34, 1364-1377	4.5	35
238	Synthesis and characterization of alkyl cellulose Etarboxyesters for amorphous solid dispersion. <i>Cellulose</i> , 2017 , 24, 609-625	5.5	6
237	Amorphization of thiamine chloride hydrochloride: A study of the crystallization inhibitor properties of different polymers in thiamine chloride hydrochloride amorphous solid dispersions. <i>Food Research International</i> , 2017 , 99, 363-374	7	7
236	Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems. <i>International Journal of Pharmaceutics</i> , 2017 , 524, 424-432	6.5	24
235	Maintaining Supersaturation of Active Pharmaceutical Ingredient Solutions with Biologically Relevant Bile Salts. <i>Crystal Growth and Design</i> , 2017 , 17, 2782-2791	3.5	23
234	Impact of Micellar Surfactant on Supersaturation and Insight into Solubilization Mechanisms in Supersaturated Solutions of Atazanavir. <i>Pharmaceutical Research</i> , 2017 , 34, 1276-1295	4.5	44
233	Crystalline solid dispersion-a strategy to slowdown salt disproportionation in solid state formulations during storage and wet granulation. <i>International Journal of Pharmaceutics</i> , 2017 , 517, 20.	3- 2 - 1 5	16
232	Absorptive Dissolution Testing of Supersaturating Systems: Impact of Absorptive Sink Conditions on Solution Phase Behavior and Mass Transport. <i>Molecular Pharmaceutics</i> , 2017 , 14, 4052-4063	5.6	26
231	Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution. <i>Pharmaceutical Research</i> , 2017 , 34, 2842-2861	4.5	54
230	Insights into Water-Induced Phase Separation in Itraconazole-Hydroxypropylmethyl Cellulose Spin Coated and Spray Dried Dispersions. <i>Molecular Pharmaceutics</i> , 2017 , 14, 4387-4402	5.6	21
229	Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. <i>International Journal of Pharmaceutics</i> , 2017 , 531, 313-323	6.5	37
228	Second harmonic generation microscopy as a tool for the early detection of crystallization in spray dried dispersions. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2017 , 146, 86-95	3.5	14
227	A Comparative Study on the Performance of Inert and Functionalized Spheres Coated with Solid Dispersions Made of Two Structurally Related Antifungal Drugs. <i>Molecular Pharmaceutics</i> , 2017 , 14, 37	18-372	87
226	Multidrug, Anti-HIV Amorphous Solid Dispersions: Nature and Mechanisms of Impacts of Drugs on Each Other Solution Concentrations. <i>Molecular Pharmaceutics</i> , 2017 , 14, 3617-3627	5.6	20
225	Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: Insights with confocal fluorescence microscopy. <i>International Journal of Pharmaceutics</i> , 2017 , 529, 654-666	6.5	28

(2016-2017)

224	Compositional effect of complex biorelevant media on the crystallization kinetics of an active pharmaceutical ingredient. <i>CrystEngComm</i> , 2017 , 19, 4797-4806	3.3	13	
223	Effects of Chloride and Sulfate Salts on the Inhibition or Promotion of Sucrose Crystallization in Initially Amorphous Sucrose-Salt Blends. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 11259-11	1277	5	
222	Impact of Polymers on the Melt Crystal Growth Rate of Indomethacin Polymorphs. <i>Crystal Growth and Design</i> , 2017 , 17, 6467-6476	3.5	19	
221	Evaluation of the Crystallization Tendency of Commercially Available Amorphous Tacrolimus Formulations Exposed to Different Stress Conditions. <i>Pharmaceutical Research</i> , 2017 , 34, 2142-2155	4.5	22	
220	Professor Peter York-A Distinguished Career in Powders, Processing, and Particle Design. <i>Journal of Pharmaceutical Sciences</i> , 2017 , 106, 2-4	3.9		
219	Acceleration of the crystal growth rate of low molecular weight organic compounds in supercooled liquids in the presence of polyhydroxybutyrate. <i>CrystEngComm</i> , 2017 , 19, 80-87	3.3	9	
218	Non-Sink Dissolution Behavior and Solubility Limit of Commercial Tacrolimus Amorphous Formulations. <i>Journal of Pharmaceutical Sciences</i> , 2017 , 106, 264-272	3.9	19	
217	Effect of Temperature and Moisture on the Physical Stability of Binary and Ternary Amorphous Solid Dispersions of Celecoxib. <i>Journal of Pharmaceutical Sciences</i> , 2017 , 106, 100-110	3.9	42	
216	Novel cellulose-based amorphous solid dispersions enhance quercetin solution concentrations in vitro. <i>Carbohydrate Polymers</i> , 2017 , 157, 86-93	10.3	28	
215	Heat transport model for the deliquescence kinetics of crystalline ingredients and mixtures. Journal of Food Engineering, 2016 , 169, 298-308	6	3	
214	Common-ion effects on the deliquescence lowering of crystalline ingredient blends. <i>Food Chemistry</i> , 2016 , 195, 2-10	8.5	17	
213	Vemurafenib: A Tetramorphic System Displaying Concomitant Crystallization from the Supercooled Liquid. <i>Crystal Growth and Design</i> , 2016 , 16, 6033-6042	3.5	11	
212	Impact of Metallic Stearates on Disproportionation of Hydrochloride Salts of Weak Bases in Solid-State Formulations. <i>Molecular Pharmaceutics</i> , 2016 , 13, 3541-3552	5.6	22	
211	Amphiphilic hydroxyalkyl cellulose derivatives for amorphous solid dispersion prepared by olefin cross-metathesis. <i>Polymer Chemistry</i> , 2016 , 7, 4953-4963	4.9	25	
210	A Comparison of the Crystallization Inhibition Properties of Bile Salts. <i>Crystal Growth and Design</i> , 2016 , 16, 7286-7300	3.5	37	
209	Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis. <i>Biomacromolecules</i> , 2016 , 17, 454-65	6.9	22	
208	Supersaturation Potential of Salt, Co-Crystal, and Amorphous Forms of a Model Weak Base. <i>Crystal Growth and Design</i> , 2016 , 16, 737-748	3.5	48	
207	Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives. <i>Molecular Pharmaceutics</i> , 2016 , 13, 873-84	5.6	37	

206	Compromised in vitro dissolution and membrane transport of multidrug amorphous formulations. Journal of Controlled Release, 2016 , 229, 172-182	11.7	33
205	Physical chemistry of supersaturated solutions and implications for oral absorption. <i>Advanced Drug Delivery Reviews</i> , 2016 , 101, 122-142	18.5	200
204	Polymer Inhibition of Crystal Growth by Surface Poisoning. <i>Crystal Growth and Design</i> , 2016 , 16, 2094-21	1933	37
203	Nanoscale Infrared, Thermal, and Mechanical Characterization of Telaprevir-Polymer Miscibility in Amorphous Solid Dispersions Prepared by Solvent Evaporation. <i>Molecular Pharmaceutics</i> , 2016 , 13, 1123	3 ⁵ 36	61
202	Characterization of Supersaturated Danazol Solutions - Impact of Polymers on Solution Properties and Phase Transitions. <i>Pharmaceutical Research</i> , 2016 , 33, 1276-88	4.5	35
201	Dissolution of Danazol Amorphous Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and Polymer Type. <i>Molecular Pharmaceutics</i> , 2016 , 13, 223-31	5.6	87
200	Analytical approaches to investigate salt disproportionation in tablet matrices by Raman spectroscopy and Raman mapping. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2016 , 118, 328-33	3 7 ·5	34
199	Dissolution Performance of High Drug Loading Celecoxib Amorphous Solid Dispersions Formulated with Polymer Combinations. <i>Pharmaceutical Research</i> , 2016 , 33, 739-50	4.5	79
198	Leaching of Lopinavir Amorphous Solid Dispersions in Acidic Media. <i>Pharmaceutical Research</i> , 2016 , 33, 1723-35	4.5	9
197	Understanding Crystal Growth Kinetics in the Absence and Presence of a Polymer Using a Rotating Disk Apparatus. <i>Crystal Growth and Design</i> , 2016 , 16, 2640-2645	3.5	12
196	Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. <i>Molecular Pharmaceutics</i> , 2016 , 13, 2059-69	5.6	93
195	Non-Sink Dissolution Conditions for Predicting Product Quality and In[Vivo Performance of Supersaturating Drug Delivery Systems. <i>Journal of Pharmaceutical Sciences</i> , 2016 , 105, 2477-2488	3.9	69
194	Solid-State Spectroscopic Investigation of Molecular Interactions between Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions. <i>Molecular Pharmaceutics</i> , 2016 , 13, 3964-3975	5.6	54
193	Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques. <i>Molecular Pharmaceutics</i> , 2016 , 13, 3988-4000	5.6	41
192	Mechanistic Design of Chemically Diverse Polymers with Applications in Oral Drug Delivery. <i>Biomacromolecules</i> , 2016 , 17, 3659-3671	6.9	36
191	Chiral discrimination by a cellulose polymer: differential crystallization inhibition of enantiomers in amorphous dispersions. <i>CrystEngComm</i> , 2015 , 17, 5046-5053	3.3	2
190	Finding the Needle in the Haystack: Characterization of Trace Crystallinity in a Commercial Formulation of Paclitaxel Protein-Bound Particles by Raman Spectroscopy Enabled by Second Harmonic Generation Microscopy. <i>Molecular Pharmaceutics</i> , 2015 , 12, 2378-83	5.6	28
189	Using Environment-Sensitive Fluorescent Probes to Characterize Liquid-Liquid Phase Separation in Supersaturated Solutions of Poorly Water Soluble Compounds. <i>Pharmaceutical Research</i> , 2015 , 32, 3660	o -4 -5	32

(2015-2015)

Evaluating the influence of polymers on nucleation and growth in supersaturated solutions of acetaminophen. <i>CrystEngComm</i> , 2015 , 17, 1242-1248	3.3	21	
Salt Stability - The Effect of pHmax on Salt to Free Base Conversion. <i>Pharmaceutical Research</i> , 2015 , 32, 3110-8	4.5	39	
Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. <i>Journal of Pharmaceutical Sciences</i> , 2015 , 104, 1981-1992	3.9	60	
Phase Behavior of Resveratrol Solid Dispersions Upon Addition to Aqueous media. <i>Pharmaceutical Research</i> , 2015 , 32, 3324-37	4.5	18	
Phase separation kinetics in amorphous solid dispersions upon exposure to water. <i>Molecular Pharmaceutics</i> , 2015 , 12, 1623-35	5.6	66	
The role of polymers in oral bioavailability enhancement; a review. <i>Polymer</i> , 2015 , 77, 399-415	3.9	57	
Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition. <i>Langmuir</i> , 2015 , 31, 11279-87	4	35	
Physical stability of l-ascorbic acid amorphous solid dispersions in different polymers: A study of polymer crystallization inhibitor properties. <i>Food Research International</i> , 2015 , 76, 867-877	7	17	
Miscibility of Itraconazole-Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies. <i>Molecular Pharmaceutics</i> , 2015 , 12, 4542-53	5.6	54	
Assessment of the amorphous "solubility" of a group of diverse drugs using new experimental and theoretical approaches. <i>Molecular Pharmaceutics</i> , 2015 , 12, 484-95	5.6	93	
Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution. <i>Langmuir</i> , 2015 , 31, 171-9	4	44	
Crystallization of acetaminophen on chitosan films blended with different acids. <i>Chemical Engineering Science</i> , 2015 , 126, 1-9	4.4	13	
Salt stabilityeffect of particle size, relative humidity, temperature and composition on salt to free base conversion. <i>Pharmaceutical Research</i> , 2015 , 32, 549-61	4.5	27	
Thermodynamics of Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs-Impact of a Second Drug on the Solution Phase Behavior and Implications for Combination Products. <i>Journal of Pharmaceutical Sciences</i> , 2015 , 104, 2583-93	3.9	51	
Physical Stability and Crystallization Inhibition 2015 , 1-39			
Bile Salts as Crystallization Inhibitors of Supersaturated Solutions of Poorly Water-Soluble Compounds. <i>Crystal Growth and Design</i> , 2015 , 15, 2593-2597	3.5	52	
Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at the Molecular Level. <i>Molecular Pharmaceutics</i> , 2015 , 12, 2459-68	5.6	47	
Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs. <i>Pharmaceutical Research</i> , 2015 , 32, 3350-64	4.5	82	
	Salt Stability - The Effect of pHmax on Salt to Free Base Conversion. <i>Pharmaceutical Research</i> , 2015, 32, 3110-8 Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. <i>Journal of Pharmaceutical Sciences</i> , 2015, 104, 1981-1992 Phase Behavior of Resveratrol Solid Dispersions Upon Addition to Aqueous media. <i>Pharmaceutical Research</i> , 2015, 32, 3324-37 Phase separation kinetics in amorphous solid dispersions upon exposure to water. <i>Molecular Pharmaceutics</i> , 2015, 12, 1623-35 The role of polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition. <i>Langmuir</i> , 2015, 31, 11279-87 Physical stability of I-ascorbic acid amorphous solid dispersions in different polymers. A study of polymer crystallization inhibitor properties. <i>Food Research International</i> , 2015, 76, 867-877 Miscibility of Itraconazole-Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies. <i>Molecular Pharmaceutics</i> , 2015, 12, 4542-53 Assessment of the amorphous "solubility" of a group of diverse drugs using new experimental and theoretical approaches. <i>Molecular Pharmaceutics</i> , 2015, 12, 484-95 Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution. <i>Langmuir</i> , 2015, 31, 171-9 Crystallization of acetaminophen on chitosan films blended with different acids. <i>Chemical Engineering Science</i> , 2015, 126, 1-9 Salt stability-effect of particle size, relative humidity, temperature and composition on salt to free base conversion. <i>Pharmaceutical Research</i> , 2015, 32, 549-61 Thermodynamics of Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs-Impact of a Second Drug on the Solution Phase Behavior and Implications for Combination Products. <i>Journal of Pharmaceutical Sciences</i> , 2015, 10, 2583-93 Physical Stability and Crystallization Inhibitors of Supersaturate	Salt Stability - The Effect of pHmax on Salt to Free Base Conversion. Pharmaceutical Research, 2015, 32, 3110-8 Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. Journal of Pharmaceutical Sciences, 2015, 104, 1981-1992 Phase Behavior of Resveratrol Solid Dispersions Upon Addition to Aqueous media. Pharmaceutical Research, 2015, 32, 3324-37 Phase separation kinetics in amorphous solid dispersions upon exposure to water. Molecular Pharmaceutics, 2015, 12, 1623-35 The role of polymers in oral bioavailability enhancement; a review. Polymer, 2015, 77, 399-415 Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition. Langmuir, 2015, 31, 11279-87 Physical stability of Lascorbic acid amorphous solid dispersions in different polymers: A study of polymer crystallization inhibitor properties. Food Research International, 2015, 76, 867-877 Miscibility of Itraconazole-Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies. Molecular Pharmaceutics, 2015, 12, 484-95 Assessment of the amorphous "solubility" of a group of diverse drugs using new experimental and theoretical approaches. Molecular Pharmaceutics, 2015, 12, 484-95 Impact of polymer conformation on the crystal growth inhibition of a poorty water-soluble drug in aqueous solution. Langmuir, 2015, 31, 171-9 Crystallization of acetaminophen on chitosan films blended with different acids. Chemical Engineering Science, 2015, 126, 1-9 Salt stability—effect of particle size, relative humidity, temperature and composition on salt to free base conversion. Pharmaceutical Sciences, 2015, 104, 2583-93 Physical Stability and Crystallization Inhibitors of Supersaturated Solutions of Poorly Water-Soluble Compounds. Crystal Growth and Design, 2015, 15, 2593-2597 Investigating the Interaction Pattern and Structural Elements of a Drug-P	scetaminophen. CrystEngComm, 2015, 17, 1242-1248 Salt Stability - The Effect of pHmax on Salt to Free Base Conversion. Pharmaceutical Research, 2015, 32, 3110-8 Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. Journal of Pharmaceutical Sciences, 2015, 104, 1981-1992 Phase Behavior of Resveratrol Solid Dispersions Upon Addition to Aqueous media. Pharmaceutical Research, 2015, 32, 3324-37 Phase separation kinetics in amorphous solid dispersions upon exposure to water. Molecular Pharmaceutics, 2015, 12, 1623-35 The role of polymers in oral bioavailability enhancement; a review. Polymer, 2015, 77, 399-415 The role of polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition. Langmuir, 2015, 31, 11279-87 The role of polymers on the Crystal Growth Inhibition. Langmuir, 2015, 31, 11279-87 Miscibility of Itaconazole-Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies. Molecular Pharmaceutics, 2015, 12, 484-95 Assessment of the amorphous "solubility" of a group of diverse drugs using new experimental and theoretical approaches. Molecular Pharmaceutics, 2015, 12, 484-95 Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution. Langmuir, 2015, 31, 171-9 Crystallization of acetaminophen on chitosan films blended with different acids. Chemical Engineering Science, 2015, 126, 19 Salt stability-effect of particle size, relative humidity, temperature and composition on salt to free base conversion. Pharmaceutical Research, 2015, 32, 549-61 Thermodynamics of Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Orugs In Pharmaceutical Sciences, 2015, 104, 2583-93 Physical Stability and Crystallization Inhibition 2015, 15, 2593-2597 Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at

170	pH-Dependent Liquid-Liquid Phase Separation of Highly Supersaturated Solutions of Weakly Basic Drugs. <i>Molecular Pharmaceutics</i> , 2015 , 12, 2365-77	5.6	71
169	Dissolution performance of binary amorphous drug combinationsImpact of a second drug on the maximum achievable supersaturation. <i>International Journal of Pharmaceutics</i> , 2015 , 496, 282-90	6.5	32
168	Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms. <i>Journal of Pharmaceutical Sciences</i> , 2015 , 104, 1641-9	3.9	48
167	Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir. <i>Molecular Pharmaceutics</i> , 2015 , 12, 496-503	5.6	79
166	Ab Initio Prediction of the Diversity of Second Harmonic Generation from Pharmaceutically Relevant Materials. <i>Crystal Growth and Design</i> , 2015 , 15, 581-586	3.5	14
165	Effect of Temperature and Initial Moisture Content on the Chemical Stability and Color Change of Various Forms of Vitamin C. <i>International Journal of Food Properties</i> , 2015 , 18, 862-879	3	11
164	Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles. <i>Molecular Pharmaceutics</i> , 2015 , 12, 533-41	5.6	86
163	Impact of surfactants on the crystal growth of amorphous celecoxib. <i>International Journal of Pharmaceutics</i> , 2014 , 461, 251-7	6.5	49
162	Assessing the impact of polymers on the pH-induced precipitation behavior of poorly water soluble compounds using synchrotron wide angle X-ray scattering. <i>Journal of Pharmaceutical Sciences</i> , 2014 , 103, 2724-2735	3.9	24
161	Nucleation and crystal growth of amorphous nilutamide lunusual low temperature behavior. <i>CrystEngComm</i> , 2014 , 16, 7186	3.3	6
160	Factors influencing crystal growth rates from undercooled liquids of pharmaceutical compounds. Journal of Physical Chemistry B, 2014 , 118, 9974-82	3.4	44
159	Impact of polymers on the crystallization and phase transition kinetics of amorphous nifedipine during dissolution in aqueous media. <i>Molecular Pharmaceutics</i> , 2014 , 11, 3565-76	5.6	44
158	George Zografi and the science of solids and surfaces. <i>Journal of Pharmaceutical Sciences</i> , 2014 , 103, 2592-2594	3.9	3
157	Impact of polymers on the precipitation behavior of highly supersaturated aqueous danazol solutions. <i>Molecular Pharmaceutics</i> , 2014 , 11, 3027-38	5.6	43
156	Water-solid interactions between amorphous maltodextrins and crystalline sodium chloride. <i>Food Chemistry</i> , 2014 , 144, 26-35	8.5	20
155	Impact of sertraline salt form on the oxidative stability in powder blends. <i>International Journal of Pharmaceutics</i> , 2014 , 461, 322-30	6.5	16
154	Pairwise polymer blends for oral drug delivery. <i>Journal of Pharmaceutical Sciences</i> , 2014 , 103, 2871-288	3 3 3.9	47
153	Curcumin amorphous solid dispersions: the influence of intra and intermolecular bonding on physical stability. <i>Pharmaceutical Development and Technology</i> , 2014 , 19, 976-86	3.4	59

(2013-2014)

152	Synthesis and structure-property evaluation of cellulose Etarboxyesters for amorphous solid dispersions. <i>Carbohydrate Polymers</i> , 2014 , 100, 116-25	10.3	44
151	Mid-infrared spectroscopy as a polymer selection tool for formulating amorphous solid dispersions. Journal of Pharmacy and Pharmacology, 2014 , 66, 244-55	4.8	29
150	Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms. <i>Journal of Pharmaceutical Sciences</i> , 2014 , 103, 496-506	3.9	42
149	Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. <i>Journal of Pharmaceutical Sciences</i> , 2014 , 103, 2736-2748	3.9	121
148	Water-solid interactions in amorphous maltodextrin-crystalline sucrose binary mixtures. <i>Pharmaceutical Development and Technology</i> , 2014 , 19, 247-56	3.4	15
147	The physical and chemical stability of amorphous (Hepi-gallocatechin gallate: Effects of water vapor sorption and storage temperature. <i>Food Research International</i> , 2014 , 58, 112-123	7	9
146	Classification of the crystallization behavior of amorphous active pharmaceutical ingredients in aqueous environments. <i>Pharmaceutical Research</i> , 2014 , 31, 969-82	4.5	53
145	Evaluation of the Crystal Growth Rate of Felodipine Polymorphs in the Presence and Absence of Additives As a Function of Temperature. <i>Crystal Growth and Design</i> , 2013 , 13, 4349-4354	3.5	32
144	Maintaining Supersaturation in Aqueous Drug Solutions: Impact of Different Polymers on Induction Times. <i>Crystal Growth and Design</i> , 2013 , 13, 740-751	3.5	177
143	Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. <i>Carbohydrate Polymers</i> , 2013 , 98, 1108-16	10.3	122
142	Rapid classification of pharmaceutical ingredients with Raman spectroscopy using compressive detection strategy with PLS-DA multivariate filters. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2013 , 80, 63-8	3.5	24
141	Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals. <i>Analytical Chemistry</i> , 2013 , 85, 11449-55	7.8	31
140	Crystallization and dissolution behavior of naproxen/polyethylene glycol solid dispersions. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 1494-500	3.4	35
139	Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. <i>Carbohydrate Polymers</i> , 2013 , 92, 2033-40	10.3	90
138	Enhancement of naringenin solution concentration by solid dispersion in cellulose derivative matrices. <i>Cellulose</i> , 2013 , 20, 2137-2149	5.5	20
137	Stability and solution concentration enhancement of resveratrol by solid dispersion in cellulose derivative matrices. <i>Cellulose</i> , 2013 , 20, 1249-1260	5.5	27
136	Evaluating the non-isothermal crystallization behavior of organic molecules from the undercooled melt state using rapid heat/cool calorimetry. <i>CrystEngComm</i> , 2013 , 15, 111-119	3.3	10
135	Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers. <i>Journal of Pharmaceutical Sciences</i> , 2013 , 102, 171-84	3.9	124

134	Effect of substrates on naproxen-polyvinylpyrrolidone solid dispersions formed via the drop printing technique. <i>Journal of Pharmaceutical Sciences</i> , 2013 , 102, 638-48	3.9	38
133	Interplay of degradation, dissolution and stabilization of clarithromycin and its amorphous solid dispersions. <i>Molecular Pharmaceutics</i> , 2013 , 10, 4640-53	5.6	34
132	Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions. <i>Carbohydrate Polymers</i> , 2013 , 92, 1443-50	10.3	56
131	Liquidliquid Phase Separation in Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs: Implications for Solubility Enhancing Formulations. <i>Crystal Growth and Design</i> , 2013 , 13, 1497-1509	3.5	215
130	Influence of particle size on the crystallization kinetics of amorphous felodipine powders. <i>Powder Technology</i> , 2013 , 236, 197-204	5.2	28
129	Quantitative analysis of the inhibitory effect of HPMC on felodipine crystallization kinetics using population balance modeling. <i>CrystEngComm</i> , 2013 , 15, 2197-2205	3.3	30
128	Rapid insight into heating-induced phase transformations in the solid state of the calcium salt of atorvastatin using multivariate data analysis. <i>Pharmaceutical Research</i> , 2013 , 30, 826-35	4.5	14
127	Impact of polymers on crystal growth rate of structurally diverse compounds from aqueous solution. <i>Molecular Pharmaceutics</i> , 2013 , 10, 2381-93	5.6	81
126	Color and chemical stability of tea polyphenol (Fepigallocatechin-3-gallate in solution and solid states. <i>Food Research International</i> , 2013 , 53, 909-921	7	49
125	Influence of additives on the properties of nanodroplets formed in highly supersaturated aqueous solutions of ritonavir. <i>Molecular Pharmaceutics</i> , 2013 , 10, 3392-403	5.6	69
124	Effect of temperature on the deliquescence properties of food ingredients and blends. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 9241-50	5.7	30
123	Analysis of counterfeit Cialis tablets using Raman microscopy and multivariate curve resolution. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2012 , 66, 126-35	3.5	32
122	Analysis of the packaging enclosing a counterfeit pharmaceutical tablet using Raman microscopy and two-dimensional correlation spectroscopy. <i>Vibrational Spectroscopy</i> , 2012 , 61, 176-182	2.1	26
121	Role of viscosity in influencing the glass-forming ability of organic molecules from the undercooled melt state. <i>Pharmaceutical Research</i> , 2012 , 29, 271-84	4.5	73
120	Molecular Conformation and Crystallization: The Case of Ethenzamide. <i>Crystal Growth and Design</i> , 2012 , 12, 6110-6117	3.5	39
119	Kinetic study of catechin stability: effects of pH, concentration, and temperature. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 12531-9	5.7	144
118	Inhibition of solution crystal growth of ritonavir by cellulose polymers Factors influencing polymer effectiveness. <i>CrystEngComm</i> , 2012 , 14, 6503	3.3	84
117	Molecular weight effects on the miscibility behavior of dextran and maltodextrin with poly(vinylpyrrolidone). <i>Pharmaceutical Research</i> , 2012 , 29, 2754-65	4.5	11

(2012-2012)

116	Effects of storage conditions, formulation, and particle size on moisture sorption and flowability of powders: A study of deliquescent ingredient blends. <i>Food Research International</i> , 2012 , 49, 783-791	7	46
115	Modification of crystallization behavior in drug/polyethylene glycol solid dispersions. <i>Molecular Pharmaceutics</i> , 2012 , 9, 546-53	5.6	31
114	Effect of Binary Additive Combinations on Solution Crystal Growth of the Poorly Water-Soluble Drug, Ritonavir. <i>Crystal Growth and Design</i> , 2012 , 12, 6050-6060	3.5	55
113	Effect of Additives on Crystal Growth and Nucleation of Amorphous Flutamide. <i>Crystal Growth and Design</i> , 2012 , 12, 3221-3230	3.5	38
112	Characterizing the Impact of Hydroxypropylmethyl Cellulose on the Growth and Nucleation Kinetics of Felodipine from Supersaturated Solutions. <i>Crystal Growth and Design</i> , 2012 , 12, 1538-1547	3.5	98
111	Selective imaging of active pharmaceutical ingredients in powdered blends with common excipients utilizing two-photon excited ultraviolet-fluorescence and ultraviolet-second order nonlinear optical imaging of chiral crystals. <i>Analytical Chemistry</i> , 2012 , 84, 5869-75	7.8	31
110	Effects of anticaking agents and storage conditions on the moisture sorption, caking, and flowability of deliquescent ingredients. <i>Food Research International</i> , 2012 , 45, 369-380	7	50
109	pH-Induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. <i>Pharmaceutical Research</i> , 2012 , 29, 2738-53	4.5	104
108	Disproportionation of the calcium salt of atorvastatin in the presence of acidic excipients. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2012 , 82, 410-6	5.7	27
107	Nanoscale mid-infrared evaluation of the miscibility behavior of blends of dextran or maltodextrin with poly(vinylpyrrolidone). <i>Molecular Pharmaceutics</i> , 2012 , 9, 1459-69	5.6	53
106	Raman Spectroscopy for the Analysis of Counterfeit Tablets 2012 , 561-572		2
105	Effect of polymers on nucleation and crystal growth of amorphous acetaminophen. <i>CrystEngComm</i> , 2012 , 14, 5188	3.3	69
104	Understanding Polymer Properties Important for Crystal Growth Inhibition Impact of Chemically Diverse Polymers on Solution Crystal Growth of Ritonavir. <i>Crystal Growth and Design</i> , 2012 , 12, 3133-31	4 ³ 3 ⁵	170
103	Nanoscale mid-infrared imaging of phase separation in a drug-polymer blend. <i>Journal of Pharmaceutical Sciences</i> , 2012 , 101, 2066-73	3.9	69
102	Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders. <i>Journal of Pharmaceutical Sciences</i> , 2012 , 101, 4201-13	3.9	35
101	Acoustic levitation: recent developments and emerging opportunities in biomaterials research. <i>European Biophysics Journal</i> , 2012 , 41, 397-403	1.9	46
100	Evaluation of amorphous solid dispersion properties using thermal analysis techniques. <i>Advanced Drug Delivery Reviews</i> , 2012 , 64, 396-421	18.5	311
99	Nilutamide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o591		2

98	Time-resolved SAXS/WAXS study of the phase behavior and microstructural evolution of drug/PEG solid dispersions. <i>Molecular Pharmaceutics</i> , 2011 , 8, 932-9	5.6	20
97	Degradation kinetics of catechins in green tea powder: effects of temperature and relative humidity. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 6082-90	5.7	72
96	Effects of anticaking agents and relative humidity on the physical and chemical stability of powdered vitamin C. <i>Journal of Food Science</i> , 2011 , 76, C1062-74	3.4	26
95	Application of mid-IR spectroscopy for the characterization of pharmaceutical systems. <i>International Journal of Pharmaceutics</i> , 2011 , 417, 3-16	6.5	61
94	An ab initiopolymer selection methodology to prevent crystallization in amorphous solid dispersions by application of crystal engineering principles. <i>CrystEngComm</i> , 2011 , 13, 6171	3.3	59
93	Influence of polymer chemistry on crystal growth inhibition of two chemically diverse organic molecules. <i>CrystEngComm</i> , 2011 , 13, 6712	3.3	36
92	Understanding the tendency of amorphous solid dispersions to undergo amorphous-amorphous phase separation in the presence of absorbed moisture. <i>AAPS PharmSciTech</i> , 2011 , 12, 1209-19	3.9	96
91	Influence of particle size on the ultraviolet spectrum of particulate-containing solutions: implications for in-situ concentration monitoring using UV/Vis fiber-optic probes. <i>Pharmaceutical Research</i> , 2011 , 28, 1643-52	4.5	52
90	Complex dielectric properties of microcrystalline cellulose, anhydrous lactose, and Hactose monohydrate powders using a microwave-based open-reflection resonator sensor. <i>Journal of Pharmaceutical Sciences</i> , 2011 , 100, 2920-34	3.9	7
89	Dissolution and precipitation behavior of amorphous solid dispersions. <i>Journal of Pharmaceutical Sciences</i> , 2011 , 100, 3316-3331	3.9	204
88	Study of water adsorption on organics crystal surfaces using a modified X-ray photoelectron spectroscopy instrument. <i>Analytical Chemistry</i> , 2011 , 83, 1144-7	7.8	2
87	Single particle nonlinear optical imaging of trace crystallinity in an organic powder. <i>Analytical Chemistry</i> , 2011 , 83, 4745-51	7.8	33
86	Deliquescence Behavior and Chemical Stability of Vitamin C Forms (Ascorbic Acid, Sodium Ascorbate, and Calcium Ascorbate) and Blends. <i>International Journal of Food Properties</i> , 2011 , 14, 1330-	1348	15
85	Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions. <i>Pharmaceutical Development and Technology</i> , 2011 , 16, 201-11	3.4	18
84	Effects of Co-Formulation of Amorphous Maltodextrin and Deliquescent Sodium Ascorbate on Moisture Sorption and Stability. <i>International Journal of Food Properties</i> , 2011 , 14, 726-740	3	13
83	2-(Biphenyl-4-yl)acetic acid (felbinac). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2010 , 66, o2609		3
82	1-[(Biphenyl-4-yl)(phen-yl)meth-yl]-1H-imidazole (bifonazole). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2010 , 66, o2649		2
81	2-But-oxy-N-[2-(diethyl-amino)-eth-yl]quinoline-4-carboxamide (dibucaine). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2010 , 66, o3189		1

(2010-2010)

80	Influence of simultaneous variations in temperature and relative humidity on chemical stability of two vitamin C forms and implications for shelf life models. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 3532-40	5.7	30
79	Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine. <i>CrystEngComm</i> , 2010 , 12, 2390	3.3	98
78	Water-solids interactions: deliquescence. <i>Annual Review of Food Science and Technology</i> , 2010 , 1, 41-63	14.7	111
77	Effects of Moisture on the Growth Rate of Felodipine Crystals in the Presence and Absence of Polymers. <i>Crystal Growth and Design</i> , 2010 , 10, 747-753	3.5	21
76	Selective detection and quantitation of organic molecule crystallization by second harmonic generation microscopy. <i>Analytical Chemistry</i> , 2010 , 82, 5425-32	7.8	62
75	Kinetics of moisture-induced hydrolysis in powder blends stored at and below the deliquescence relative humidity: investigation of sucrose-citric acid mixtures. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 11716-24	5.7	24
74	Dissociation of water on the surface of organic salts studied by X-ray photoelectron spectroscopy. <i>Langmuir</i> , 2010 , 26, 11998-2002	4	6
73	Effects of the Molecular Weight and Concentration of Polymer Additives, and Temperature on the Melt Crystallization Kinetics of a Small Drug Molecule. <i>Crystal Growth and Design</i> , 2010 , 10, 3585-3595	3.5	56
72	Evaluation of the microstructure of semicrystalline solid dispersions. <i>Molecular Pharmaceutics</i> , 2010 , 7, 1291-300	5.6	39
71	Deliquescence of pharmaceutical systems. <i>Pharmaceutical Development and Technology</i> , 2010 , 15, 582-5	9 4 .4	46
70	Analysis of relationships between solid-state properties, counterion, and developability of pharmaceutical salts. <i>AAPS PharmSciTech</i> , 2010 , 11, 1212-22	3.9	43
69	Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. <i>Molecular Pharmaceutics</i> , 2010 , 7, 477-90	5.6	136
68	Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. <i>Molecular Pharmaceutics</i> , 2010 , 7, 1328-37	5.6	87
67	Application of partial least-squares (PLS) modeling in quantifying drug crystallinity in amorphous solid dispersions. <i>International Journal of Pharmaceutics</i> , 2010 , 398, 155-60	6.5	51
66	Understanding the behavior of amorphous pharmaceutical systems during dissolution. <i>Pharmaceutical Research</i> , 2010 , 27, 608-18	4.5	352
65	Analysis of the moisture sorption behavior of amorphous drugpolymer blends. <i>Journal of Applied Polymer Science</i> , 2010 , 117, 1055-1063	2.9	35
64	Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol. <i>Journal of Pharmaceutical Sciences</i> , 2010 , 99, 154-68	3.9	82
63	Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). <i>Journal of Pharmaceutical Sciences</i> , 2010 , 99, 169-85	3.9	157

62	Impact of counterion on the chemical stability of crystalline salts of procaine. <i>Journal of Pharmaceutical Sciences</i> , 2010 , 99, 3719-30	3.9	39
61	A classification system to assess the crystallization tendency of organic molecules from undercooled melts. <i>Journal of Pharmaceutical Sciences</i> , 2010 , 99, 3787-806	3.9	422
60	Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporationclassification and comparison with crystallization tendency from undercooled melts. <i>Journal of Pharmaceutical Sciences</i> , 2010 , 99, 3826-38	3.9	128
59	Phase behavior and moisture sorption of deliquescent powders. <i>Chemical Engineering Science</i> , 2010 , 65, 5639-5650	4.4	15
58	Manipulating hydrate formation during high shear wet granulation using polymeric excipients. Journal of Pharmaceutical Sciences, 2009 , 98, 4670-83	3.9	31
57	Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. <i>Pharmaceutical Research</i> , 2009 , 26, 139-51	4.5	371
56	Role of salt and excipient properties on disproportionation in the solid-state. <i>Pharmaceutical Research</i> , 2009 , 26, 2015-26	4.5	83
55	Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. <i>Pharmaceutical Research</i> , 2009 , 26, 2523-34	4.5	149
54	Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. <i>Pharmaceutical Research</i> , 2009 , 26, 2599-606	4.5	133
53	Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2009 , 49, 247-52	3.5	18
52	Interaction of environmental moisture with powdered green tea formulations: relationship between catechin stability and moisture-induced phase transformations. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 4691-7	5.7	20
51	Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. <i>Molecular Pharmaceutics</i> , 2009 , 6, 1492-505	5.6	176
50	An investigation into the influence of counterion on the properties of some amorphous organic salts. <i>Molecular Pharmaceutics</i> , 2008 , 5, 946-55	5.6	28
49	Toward an Understanding of the Factors Influencing Anhydrate-to-Hydrate Transformation Kinetics in Aqueous Environments. <i>Crystal Growth and Design</i> , 2008 , 8, 2684-2693	3.5	65
48	Interaction of environmental moisture with powdered green tea formulations: effect on catechin chemical stability. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 4068-77	5.7	41
47	Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2008 , 70, 493-9	5.7	287
46	Impact of deliquescence on the chemical stability of vitamins B1, B6, and C in powder blends. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 6471-9	5.7	42
45	Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. <i>Pharmaceutical Research</i> , 2008 , 25, 969-78	4.5	123

(2006-2008)

Manipulating theophylline monohydrate formation during high-shear wet granulation through improved understanding of the role of pharmaceutical excipients. <i>Pharmaceutical Research</i> , 2008 ,		
25, 923-35	4.5	43
Spontaneous crystallinity loss of drugs in the disordered regions of poly(ethylene oxide) in the presence of water. <i>Journal of Pharmaceutical Sciences</i> , 2008 , 97, 3182-94	3.9	16
Influence of polymeric excipients on crystal hydrate formation kinetics in aqueous slurries. <i>Journal of Pharmaceutical Sciences</i> , 2008 , 97, 5198-211	3.9	40
Phase behavior of ranitidine HCl in the presence of degradants and atmospheric moistureimpact on chemical stability. <i>Langmuir</i> , 2008 , 24, 3850-6	4	17
Spectroscopic Characterization of Intermolecular Interactions in Solution and Their Influence on Crystallization Outcome. <i>Crystal Growth and Design</i> , 2007 , 7, 633-638	3.5	22
Hyphenation of Raman spectroscopy with gravimetric analysis to interrogate water-solid interactions in pharmaceutical systems. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2007 , 43, 14	-2 ³ 3 ⁵	28
Estimation of the transition temperature for an enantiotropic polymorphic system from the transformation kinetics monitored using Raman spectroscopy. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2007 , 45, 546-51	3.5	35
Effect of small levels of impurities on the water vapor sorption behavior of ranitidine HCl. <i>Pharmaceutical Research</i> , 2007 , 24, 147-56	4.5	25
Physical stability of crystal hydrates and their anhydrates in the presence of excipients. <i>Journal of Pharmaceutical Sciences</i> , 2006 , 95, 446-61	3.9	66
Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. <i>Journal of Pharmaceutical Sciences</i> , 2006 , 95, 2692-705	3.9	296
Deliquescence-induced caking in binary powder blends. <i>Pharmaceutical Development and Technology</i> , 2006 , 11, 453-64	3.4	28
Role of deliquescence lowering in enhancing chemical reactivity in physical mixtures. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10190-6	3.4	35
On-line content uniformity determination of tablets using low-resolution Raman spectroscopy. <i>Applied Spectroscopy</i> , 2006 , 60, 672-81	3.1	31
Analysis of the effect of particle size on polymorphic quantitation by Raman spectroscopy. <i>Applied Spectroscopy</i> , 2006 , 60, 977-84	3.1	45
Deliquescence Lowering in Food Ingredient Mixtures. <i>Journal of Food Science</i> , 2006 , 71, E10-E16	3.4	76
A comparison of the physical stability of amorphous felodipine and nifedipine systems. <i>Pharmaceutical Research</i> , 2006 , 23, 2306-16	4.5	226
Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. <i>Pharmaceutical Research</i> , 2006 , 23, 2417-26	4.5	433
	Spontaneous crystallinity loss of drugs in the disordered regions of poly(ethylene oxide) in the presence of water. <i>Journal of Pharmaceutical Sciences</i> , 2008, 97, 3182-94 Influence of polymeric excipients on crystal hydrate formation kinetics in aqueous slurries. <i>Journal of Pharmaceutical Sciences</i> , 2008, 97, 5198-211 Phase behavior of ranitidine HCl in the presence of degradants and atmospheric moistureimpact on chemical stability. <i>Langmuir</i> , 2008, 24, 3850-6 Spectroscopic Characterization of Intermolecular Interactions in Solution and Their Influence on Crystallization Outcome. <i>Crystal Growth and Design</i> , 2007, 7, 633-638 Hyphenation of Raman spectroscopy with gravimetric analysis to interrogate water-solid interactions in pharmaceutical systems. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2007, 43, 14 Estimation of the transition temperature for an enantiotropic polymorphic system from the transformation kinetics monitored using Raman spectroscopy. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2007, 45, 546-51 Effect of small levels of impurities on the water vapor sorption behavior of ranitidine HCl. <i>Pharmaceutical Research</i> , 2007, 24, 147-56 Physical stability of crystal hydrates and their anhydrates in the presence of excipients. <i>Journal of Pharmaceutical Sciences</i> , 2006, 95, 446-61 Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. <i>Journal of Pharmaceutical Sciences</i> , 2006, 95, 2692-705 Deliquescence-induced caking in binary powder blends. <i>Pharmaceutical Development and Technology</i> , 2006, 11, 453-64 Role of deliquescence lowering in enhancing chemical reactivity in physical mixtures. <i>Journal of Physical Chemistry B</i> , 2006, 110, 10190-6 On-line content uniformity determination of tablets using low-resolution Raman spectroscopy. <i>Applied Spectroscopy</i> , 2006, 60, 672-81 Analysis of the effect of particle size on polymorphic quantitation by Raman spectroscopy. <i>Applied Spectroscopy</i> , 2006, 60, 672-81 Analysis	Spontaneous crystallinity loss of drugs in the disordered regions of poly(ethylene oxide) in the presence of water. Journal of Pharmaceutical Sciences, 2008, 97, 3182-94 Influence of polymeric excipients on crystal hydrate formation kinetics in aqueous slurries. Journal of Pharmaceutical Sciences, 2008, 97, 5198-211 Phase behavior of ranitidine HCl in the presence of degradants and atmospheric moistureimpact on chemical stability. Langmuir, 2008, 24, 3850-6 Spectroscopic Characterization of Intermolecular Interactions in Solution and Their Influence on Crystallization Outcome. Crystal Growth and Design, 2007, 7, 633-638 Hyphenation of Raman spectroscopy with gravimetric analysis to interrogate water-solid interactions in pharmaceutical systems. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 14-237 Estimation of the transition temperature for an enantiotropic polymorphic system from the transformation kinetics monitored using Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 546-51 Effect of small levels of impurities on the water vapor sorption behavior of ranitidine HCl. Pharmaceutical Research, 2007, 24, 147-56 Physical stability of crystal hydrates and their anhydrates in the presence of excipients. Journal of Pharmaceutical Sciences, 2006, 95, 446-61 and the province of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. Journal of Pharmaceutical Sciences, 2006, 95, 2692-705 Deliquescence-induced caking in binary powder blends. Pharmaceutical Development and Technology, 2006, 11, 453-64 Role of deliquescence lowering in enhancing chemical reactivity in physical mixtures. Journal of Physical Chemistry B, 2006, 110, 1190-6 On-line content uniformity determination of tablets using low-resolution Raman spectroscopy. Applied Spectroscopy, 2006, 60, 672-81 Analysis of the effect of particle size on polymorphic quantitation by Raman spectroscopy. Applied Spectroscopy, 2006, 60, 977-84 A comparison of the physi

26	Crystallization Monitoring by Raman Spectroscopy: Simultaneous Measurement of Desupersaturation Profile and Polymorphic Form in Flufenamic Acid Systems. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 1233-1240	3.9	123
25	Comparison of sampling techniques for in-line monitoring using Raman spectroscopy. <i>Applied Spectroscopy</i> , 2005 , 59, 934-41	3.1	53
24	Improved understanding of factors contributing to quantification of anhydrate/hydrate powder mixtures. <i>Applied Spectroscopy</i> , 2005 , 59, 942-51	3.1	64
23	Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes. <i>Analytical Chemistry</i> , 2005 , 77, 556-63	7.8	120
22	In-line monitoring of hydrate formation during wet granulation using Raman spectroscopy. <i>Journal of Pharmaceutical Sciences</i> , 2005 , 94, 209-19	3.9	100
21	Deliquescence in binary mixtures. <i>Pharmaceutical Research</i> , 2005 , 22, 318-24	4.5	60
20	Atomic force microscopy analysis and confocal Raman microimaging of coated pellets. <i>International Journal of Pharmaceutics</i> , 2003 , 267, 35-47	6.5	26
19	Airborne chemistry coupled to Raman spectroscopy. <i>Analytical Chemistry</i> , 2003 , 75, 2177-80	7.8	64
18	Water diffusion in hydrated crystalline and amorphous sugars monitored using H/D exchange. <i>Journal of Pharmaceutical Sciences</i> , 2002 , 91, 690-8	3.9	22
17	Infrared imaging of laser-induced heating during Raman spectroscopy of pharmaceutical solids. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2002 , 30, 1223-31	3.5	34
16	Water dynamics in channel hydrates investigated using H/D exchange. <i>International Journal of Pharmaceutics</i> , 2002 , 241, 253-61	6.5	36
15	A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. <i>Pharmaceutical Research</i> , 2002 , 19, 477-83	4.5	119
14	The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers. <i>Pharmaceutical Research</i> , 2002 , 19, 484-90	4.5	55
13	Influence of alkali metal counterions on the glass transition temperature of amorphous indomethacin salts. <i>Pharmaceutical Research</i> , 2002 , 19, 649-54	4.5	41
12	Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers. <i>Journal of Pharmaceutical Sciences</i> , 2001 , 90, 888-901	3.9	142
11	A comparison of alternative polymer excipients and processing methods for making solid dispersions of a poorly water soluble drug. <i>International Journal of Pharmaceutics</i> , 2001 , 222, 139-51	6.5	82
10	Evaluation of solid-state forms present in tablets by Raman spectroscopy. <i>Journal of Pharmaceutical Sciences</i> , 2000 , 89, 1342-53	3.9	89
9	Particle size dependent molecular rearrangements during the dehydration of trehalose dihydrate in situ FT-Raman spectroscopy. <i>Pharmaceutical Research</i> , 1998 , 15, 1207-14	4.5	28

LIST OF PUBLICATIONS

8	The quantitative analysis of crystallinity using FT-Raman spectroscopy. <i>Pharmaceutical Research</i> , 1998 , 15, 755-61	4.5	198
7	Characterization of the phase transitions of trehalose dihydrate on heating and subsequent dehydration. <i>Journal of Pharmaceutical Sciences</i> , 1998 , 87, 347-55	3.9	68
6	Mixing behavior of colyophilized binary systems. <i>Journal of Pharmaceutical Sciences</i> , 1998 , 87, 694-701	3.9	162
5	Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures. <i>Journal of Pharmaceutical Sciences</i> , 1998 , 87, 1615-21	3.9	153
4	Effect of particle size and temperature on the dehydration kinetics of trehalose dihydrate. <i>International Journal of Pharmaceutics</i> , 1998 , 167, 215-221	6.5	46
3	Characterization of frozen glucose solutions. <i>Pharmaceutical Development and Technology</i> , 1997 , 2, 395	5-4.042	3
2	Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. <i>Pharmaceutical Research</i> , 1997 , 14, 1691-8	4.5	696
1	Sucrose reduces the efficiency of protein denaturation by a chaotropic agent. <i>BBA - Proteins and Proteomics</i> , 1995 , 1253, 39-46		33