David W Eyre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45822/publications.pdf

Version: 2024-02-01

130 papers 13,188 citations

53 h-index 30922 102 g-index

176 all docs

176 docs citations

176 times ranked

17576 citing authors

#	Article	IF	CITATIONS
1	Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. New England Journal of Medicine, 2021, 384, 533-540.	27.0	803
2	Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infectious Diseases, The, 2013, 13, 137-146.	9.1	786
3	Diverse Sources of <i>C. difficile</i> Infection Identified on Whole-Genome Sequencing. New England Journal of Medicine, 2013, 369, 1195-1205.	27.0	595
4	Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infectious Diseases, The, 2015, 15, 1193-1202.	9.1	553
5	Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nature Medicine, 2021, 27, 2127-2135.	30.7	450
6	Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infectious Diseases, The, 2020, 20, 1390-1400.	9.1	336
7	Effect of Covid-19 Vaccination on Transmission of Alpha and Delta Variants. New England Journal of Medicine, 2022, 386, 744-756.	27.0	323
8	A <i>Candida auris</i> Outbreak and Its Control in an Intensive Care Setting. New England Journal of Medicine, 2018, 379, 1322-1331.	27.0	318
9	Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. Journal of Antimicrobial Chemotherapy, 2013, 68, 2234-2244.	3.0	314
10	SARS-CoV-2 within-host diversity and transmission. Science, 2021, 372, .	12.6	278
11	Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infectious Diseases, The, 2017, 17, 411-421.	9.1	269
12	Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell, 2021, 184, 5699-5714.e11.	28.9	262
13	Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom. Nature Medicine, 2021, 27, 1370-1378.	30.7	260
13	Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom. Nature Medicine, 2021, 27, 1370-1378. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Eurosurveillance, 2018, 23, .	30.7 7.0	260 255
	1370-1378. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone		
14	Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Eurosurveillance, 2018, 23, . Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United	7.0	255
14 15	Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Eurosurveillance, 2018, 23, . Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom. Nature Microbiology, 2021, 6, 1140-1149. The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers. Clinical Infectious Diseases, 2021,	7.0 13.3	255 254

#	Article	IF	Citations
19	Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biology, 2012, 13, R118.	9.6	199
20	Differential occupational risks to healthcare workers from SARS-CoV-2 observed during a prospective observational study. ELife, 2020, 9, .	6.0	196
21	Relationship Between Bacterial Strain Type, Host Biomarkers, and Mortality in Clostridium difficile Infection. Clinical Infectious Diseases, 2013, 56, 1589-1600.	5.8	191
22	Evolutionary History of the Clostridium difficile Pathogenicity Locus. Genome Biology and Evolution, 2014, 6, 36-52.	2.5	190
23	Predictors of First Recurrence of Clostridium difficile Infection: Implications for Initial Management. Clinical Infectious Diseases, 2012, 55, S77-S87.	5.8	180
24	Antibody testing for COVID-19: A report from theÂNational COVID Scientific Advisory Panel. Wellcome Open Research, 2020, 5, 139.	1.8	179
25	Molecular Diagnosis of Orthopedic-Device-Related Infection Directly from Sonication Fluid by Metagenomic Sequencing. Journal of Clinical Microbiology, 2017, 55, 2334-2347.	3.9	174
26	WGS to predict antibiotic MICs for Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 2017, 72, 1937-1947.	3.0	169
27	COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing. EClinicalMedicine, 2021, 36, 100924.	7.1	162
28	Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing. Lancet Infectious Diseases, The, 2017, 17, 207-214.	9.1	155
29	Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infectious Diseases, The, 2016, 16, 1295-1303.	9.1	149
30	Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey. Lancet Public Health, The, 2021, 6, e30-e38.	10.0	147
31	Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines. Nature Medicine, 2022, 28, 1072-1082.	30.7	147
32	T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort study. Lancet Microbe, The, 2022, 3, e21-e31.	7.3	131
33	Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices. BMC Genomics, 2018, 19, 714.	2.8	128
34	SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Research, 2020, 5, 181.	1.8	122
35	Asymptomatic Clostridium difficile Colonisation and Onward Transmission. PLoS ONE, 2013, 8, e78445.	2.5	113
36	Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Eurosurveillance, 2019, 24, .	7.0	107

#	Article	IF	CITATIONS
37	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity by Viral Load, S Gene Variants and Demographic Factors, and the Utility of Lateral Flow Devices to Prevent Transmission. Clinical Infectious Diseases, 2022, 74, 407-415.	5.8	106
38	T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nature Communications, 2021, 12, 2055.	12.8	102
39	Quantitative SARS-CoV-2 anti-spike responses to Pfizer–BioNTech and Oxford–AstraZeneca vaccines by previous infection status. Clinical Microbiology and Infection, 2021, 27, 1516.e7-1516.e14.	6.0	100
40	Rapid triage for COVID-19 using routine clinical data for patients attending hospital: development and prospective validation of an artificial intelligence screening test. The Lancet Digital Health, 2021, 3, e78-e87.	12.3	96
41	Recombinational Switching of the Clostridium difficile S-Layer and a Novel Glycosylation Gene Cluster Revealed by Large-Scale Whole-Genome Sequencing. Journal of Infectious Diseases, 2013, 207, 675-686.	4.0	93
42	Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines. GigaScience, 2020, 9, .	6.4	92
43	Ct threshold values, a proxy for viral load in community SARS-CoV-2 cases, demonstrate wide variation across populations and over time. ELife, 2021, 10 , .	6.0	91
44	Anti-spike antibody response to natural SARS-CoV-2 infection in the general population. Nature Communications, 2021, 12, 6250.	12.8	88
45	Daily testing for contacts of individuals with SARS-CoV-2 infection and attendance and SARS-CoV-2 transmission in English secondary schools and colleges: an open-label, cluster-randomised trial. Lancet, The, 2021, 398, 1217-1229.	13.7	87
46	Epidemiology of Clostridium difficile in infants in Oxfordshire, UK: Risk factors for colonization and carriage, and genetic overlap with regional C. difficile infection strains. PLoS ONE, 2017, 12, e0182307.	2.5	82
47	SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Research, 2020, 5, 181.	1.8	81
48	Genetic relatedness of ceftriaxone-resistant and high-level azithromycin resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018. Eurosurveillance, 2019, 24, .	7.0	77
49	Detection of Mixed Infection from Bacterial Whole Genome Sequence Data Allows Assessment of Its Role in Clostridium difficile Transmission. PLoS Computational Biology, 2013, 9, e1003059.	3.2	75
50	Covert dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a successfully controlled outbreak: long- and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission. Journal of Antimicrobial Chemotherapy, 2017, 72, 3025-3034.	3.0	73
51	Antimicrobial Resistance in Neisseria gonorrhoeae and Treatment of Gonorrhea. Methods in Molecular Biology, 2019, 1997, 37-58.	0.9	71
52	Comparison of Multilocus Variable-Number Tandem-Repeat Analysis and Whole-Genome Sequencing for Investigation of Clostridium difficile Transmission. Journal of Clinical Microbiology, 2013, 51, 4141-4149.	3.9	69
53	An Observational Cohort Study on the Incidence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and B.1.1.7 Variant Infection in Healthcare Workers by Antibody and Vaccination Status. Clinical Infectious Diseases, 2022, 74, 1208-1219.	5.8	64
54	Two Distinct Patterns of Clostridium difficile Diversity Across Europe Indicating Contrasting Routes of Spread. Clinical Infectious Diseases, 2018, 67, 1035-1044.	5.8	60

#	Article	IF	CITATIONS
55	Clostridium difficile Mixed Infection and Reinfection. Journal of Clinical Microbiology, 2012, 50, 142-144.	3.9	55
56	<i>Clostridium difficile</i> : Investigating Transmission Patterns Between Infected and Colonized Patients Using Whole Genome Sequencing. Clinical Infectious Diseases, 2019, 68, 204-209.	5.8	55
57	Epidemiological data and genome sequencing reveals that nosocomial transmission of SARS-CoV-2 is underestimated and mostly mediated by a small number of highly infectious individuals. Journal of Infection, 2021, 83, 473-482.	3.3	55
58	Emergence and spread of predominantly community-onset Clostridium difficile PCR ribotype 244 infection in Australia, 2010 to 2012. Eurosurveillance, 2015, 20, 21059.	7.0	55
59	Whole-Genome Sequencing Demonstrates That Fidaxomicin Is Superior to Vancomycin for Preventing Reinfection and Relapse of Infection With Clostridium difficile. Journal of Infectious Diseases, 2014, 209, 1446-1451.	4.0	54
60	Reduction in Chest CT Severity and Improved Hospital Outcomes in SARS-CoV-2 Omicron Compared with Delta Variant Infection. Radiology, 2023, 306, 261-269.	7.3	53
61	Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. ELife, 2021, 10, .	6.0	50
62	Metagenomic Sequencing as a Pathogen-Agnostic Clinical Diagnostic Tool for Infectious Diseases: a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies. Journal of Clinical Microbiology, 2021, 59, e0291620.	3.9	50
63	A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated <i>Clostridium difficile</i> PCR Ribotype 078. MBio, 2019, 10, .	4.1	46
64	Contribution to Clostridium Difficile Transmission of Symptomatic Patients With Toxigenic Strains Who Are Fecal Toxin Negative. Clinical Infectious Diseases, 2017, 64, 1163-1170.	5.8	45
65	Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers. Journal of Biological Rhythms, 2022, 37, 124-129.	2.6	42
66	Comparison of Control of Clostridium difficile Infection in Six English Hospitals Using Whole-Genome Sequencing. Clinical Infectious Diseases, 2017, 65, 433-441.	5.8	40
67	Results of a large retrospective analysis of the effect of intended dose intensity of Râ€∢scp>CHOP on outcome in a cohort of consecutive, unselected elderly patients with ⟨i⟩de novo⟨/i⟩ diffuse large B cell lymphoma. British Journal of Haematology, 2016, 173, 487-491.	2.5	38
68	Equations To Predict Antimicrobial MICs in Neisseria gonorrhoeae Using Molecular Antimicrobial Resistance Determinants. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	37
69	Clostridium difficile trehalose metabolism variants are common and not associated with adverse patient outcomes when variably present in the same lineage. EBioMedicine, 2019, 43, 347-355.	6.1	35
70	Transmission of community- and hospital-acquired SARS-CoV-2 in hospital settings in the UK: A cohort study. PLoS Medicine, 2021, 18, e1003816.	8.4	35
71	Optimizing DNA Extraction Methods for Nanopore Sequencing of Neisseria gonorrhoeae Directly from Urine Samples. Journal of Clinical Microbiology, 2020, 58, .	3.9	33
72	Home-based SARS-CoV-2 lateral flow antigen testing in hospital workers. Journal of Infection, 2021, 82, 282-327.	3.3	32

#	Article	lF	Citations
73	Impaired antibody response to COVIDâ€19 vaccination in patients with chronic myeloid neoplasms. British Journal of Haematology, 2021, 194, 1010-1015.	2.5	31
74	RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates. ELife, 2020, 9, .	6.0	31
75	Real-world evaluation of rapid and laboratory-free COVID-19 triage for emergency care: external validation and pilot deployment of artificial intelligence driven screening. The Lancet Digital Health, 2022, 4, e266-e278.	12.3	28
76	High precision <i>Neisseria gonorrhoeae</i> variant and antimicrobial resistance calling from metagenomic Nanopore sequencing. Genome Research, 2020, 30, 1354-1363.	5.5	27
77	Genomic analysis of urogenital and rectal <i>Neisseria meningitidis</i> isolates reveals encapsulated hyperinvasive meningococci and coincident multidrug-resistant gonococci. Sexually Transmitted Infections, 2017, 93, 445-451.	1.9	26
78	The global challenge of Candida auris in the intensive care unit. Critical Care, 2019, 23, 150.	5.8	26
79	Use of lateral flow devices allows rapid triage of patients with SARS-CoV-2 on admission to hospital. Journal of Infection, 2021, 82, 276-316.	3.3	25
80	Patient and Strain Characteristics Associated With Clostridium difficile Transmission and Adverse Outcomes. Clinical Infectious Diseases, 2018, 67, 1379-1387.	5.8	24
81	Infection prevention and control insights from a decade of pathogen whole-genome sequencing. Journal of Hospital Infection, 2022, 122, 180-186.	2.9	24
82	Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight, 2022, 7 , .	5.0	24
83	Stringent thresholds in SARS-CoV-2 IgG assays lead to under-detection of mild infections. BMC Infectious Diseases, 2021, 21, 187.	2.9	23
84	<i>Clostridium difficile $<$ $ $ i $>$ surveillance: harnessing new technologies to control transmission. Expert Review of Anti-Infective Therapy, 2013, 11, 1193-1205.	4.4	22
85	Results of a multicentre <scp>UK</scp> â€wide retrospective study evaluating the efficacy of brentuximab vedotin in relapsed, refractory classical Hodgkin lymphoma in the transplant naive setting. British Journal of Haematology, 2017, 179, 471-479.	2.5	20
86	Epidemiology of Mycobacterium abscessus in England: an observational study. Lancet Microbe, The, 2021, 2, e498-e507.	7.3	20
87	Symptoms and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Positivity in the General Population in the United Kingdom. Clinical Infectious Diseases, 2022, 75, e329-e337.	5 . 8	20
88	Divergent trajectories of antiviral memory after SARS-CoV-2 infection. Nature Communications, 2022, 13, 1251.	12.8	20
89	Results of a multicentre <scp>UK</scp> â€wide retrospective study evaluating the efficacy of pixantrone in relapsed, refractory diffuse large B cell lymphoma. British Journal of Haematology, 2016, 173, 896-904.	2.5	19
90	Whole genome sequencing of <i>Neisseria gonorrhoeae</i> reveals transmission clusters involving patients of mixed HIV serostatus. Sexually Transmitted Infections, 2018, 94, 138-143.	1.9	19

#	Article	IF	Citations
91	Clinical Metagenomic Sequencing for Species Identification and Antimicrobial Resistance Prediction in Orthopedic Device Infection. Journal of Clinical Microbiology, 2022, 60, e0215621.	3.9	18
92	SARS-CoV-2 antibody prevalence, titres and neutralising activity in an antenatal cohort, United Kingdom, 14 April to 15 June 2020. Eurosurveillance, 2020, 25, .	7.0	17
93	BugMat and FindNeighbour: command line and server applications for investigating bacterial relatedness. BMC Bioinformatics, 2017, 18, 477.	2.6	16
94	Hash-Based Core Genome Multilocus Sequence Typing for Clostridium difficile. Journal of Clinical Microbiology, 2019, 58, .	3.9	16
95	Short-Term Genome Stability of Serial Clostridium difficile Ribotype 027 Isolates in an Experimental Gut Model and Recurrent Human Disease. PLoS ONE, 2013, 8, e63540.	2.5	16
96	Whole genome sequencing reveals hidden transmission of carbapenemase-producing Enterobacterales. Nature Communications, 2022, 13, .	12.8	16
97	<i>In Vitro</i> Activity of Omadacycline, a New Tetracycline Analog, and Comparators against Clostridioides difficile. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	14
98	Hospital Admission Location Prediction via Deep Interpretable Networks for the Year-Round Improvement of Emergency Patient Care. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 289-300.	6.3	14
99	Results of a multicentre <scp>UK</scp> â€wide compassionate use programme evaluating the efficacy of idelalisib monotherapy in relapsed, refractory follicular lymphoma. British Journal of Haematology, 2018, 181, 555-559.	2.5	13
100	Diverse Sources of <i>C. difficile</i> Infection. New England Journal of Medicine, 2014, 370, 182-184.	27.0	12
101	Genetic Heterogeneity of Australian Candida auris Isolates: Insights From a Nonoutbreak Setting Using Whole-Genome Sequencing. Open Forum Infectious Diseases, 2020, 7, ofaa158.	0.9	12
102	Human and Porcine Transmission of <i>Clostridioides difficile</i> Ribotype 078, Europe. Emerging Infectious Diseases, 2021, 27, 2294-2300.	4.3	12
103	Male gender is an independent predictor for worse survival and relapse in a large, consecutive cohort of elderly <scp>DLBCL</scp> patients treated with Râ€ <scp>CHOP</scp> . British Journal of Haematology, 2019, 186, e94-e98.	2.5	10
104	Probabilistic transmission models incorporating sequencing data for healthcare-associated Clostridioides difficile outperform heuristic rules and identify strain-specific differences in transmission. PLoS Computational Biology, 2021, 17, e1008417.	3.2	9
105	Regarding "Clostridium Difficile Ribotype Does Not Predict Severe Infection". Clinical Infectious Diseases, 2013, 56, 1845-1846.	5.8	8
106	Prediction of Minimum Inhibitory Concentrations of Antimicrobials for Neisseria gonorrhoeae Using Whole-Genome Sequencing. Methods in Molecular Biology, 2019, 1997, 59-76.	0.9	8
107	In vitro activity of eravacycline against common ribotypes of Clostridioides difficile. Journal of Antimicrobial Chemotherapy, 2020, 75, 2879-2884.	3.0	7
108	Two cases of Clostridium difficile infection in unrelated oncology patients attributable to a single clone of C. difficile PCR ribotype 126. JMM Case Reports, 2015, 2, .	1.3	7

#	Article	IF	CITATIONS
109	WGS to determine the extent of <i>Clostridioides difficile</i> transmission in a high incidence setting in North Wales in 2015. Journal of Antimicrobial Chemotherapy, 2019, 74, 1092-1100.	3.0	6
110	Should modern molecular testing be routinely available for the diagnosis of musculoskeletal infection?. Bone and Joint Journal, 2020, 102-B, 1274-1276.	4.4	6
111	SARS-CoV-2 antibody trajectories after a single COVID-19 vaccination with and without prior infection. Nature Communications, 2022, 13 , .	12.8	6
112	Risk Factors for Clostridium difficile Acquisition in Infants: Importance of Study Design. Clinical Infectious Diseases, 2013, 56, 1680-1681.	5.8	5
113	Possible contribution of shoes to Clostridioides difficile transmission within hospitals. Clinical Microbiology and Infection, 2021, 27, 797-799.	6.0	5
114	Comparison of two T-cell assays to evaluate T-cell responses to SARS-CoV-2 following vaccination in naÃ-ve and convalescent healthcare workers. Clinical and Experimental Immunology, 2022, 209, 90-98.	2.6	5
115	Ethnically diverse urban transmission networks of Neisseria gonorrhoeae without evidence of HIV serosorting. Sexually Transmitted Infections, 2020, 96, 106-109.	1.9	3
116	Combination therapy of infliximab and thiopurines, but not monotherapy with infliximab or vedolizumab, is associated with attenuated IgA and neutralisation responses to SARS-CoV-2 in inflammatory bowel disease. Gut, 2022, 71, 1919.2-1922.	12.1	3
117	Mortality risks associated with empirical antibiotic activity in $\langle i \rangle$ Escherichia coli $\langle i \rangle$ bacteraemia: an analysis of electronic health records. Journal of Antimicrobial Chemotherapy, $0, , .$	3.0	3
118	Utility of Whole Genome Sequencing in Assessing and Enhancing Partner Notification of Neisseria gonorrhoeae Infection. Sexually Transmitted Diseases, 2021, 48, 773-780.	1.7	2
119	Probabilistic modelling of effects of antibiotics and calendar time on transmission of healthcare-associated infection. Scientific Reports, 2021, 11, 21417.	3.3	2
120	HIV-associated late seminal vesicle â€BCGosis' following intravesical bacille Calmette-Guérin therapy. Journal of Clinical Urology, 2013, 6, 20-21.	0.1	1
121	Comparison of Pulsed-Field Gel Electrophoresis and Whole Genome Sequencing in Clostridium difficile Typing. Open Forum Infectious Diseases, 2016, 3, .	0.9	1
122	Clostridium difficile in England: can we stop washing our hands? – Authors' reply. Lancet Infectious Diseases, The, 2017, 17, 478-479.	9.1	1
123	Clostridium difficile: Investigating Transmission Patterns Between Symptomatic and Asymptomatic Patients Using Whole Genome Sequencing. Open Forum Infectious Diseases, 2017, 4, S1-S1.	0.9	1
124	P675â€Two recent cases of extensively drug-resistant (XDR) gonorrhoea in the united kingdom linked to a european party destination. , 2019, , .		1
125	Impact of Intended and Relative Dose Intensity of RCHOP in a Large, Consecutive Cohort of Elderly DLBCL Patients: No Difference in DFS for 70-80 Years Versus >80 Years and Idi Independently Predicts Survival. Blood, 2018, 132, 573-573.	1.4	1
126	Assessment of an institutional guideline for vancomycin dosing and identification of predictive factors associated with dose and drug trough levels. Journal of Infection, 2022, 85, 382-389.	3.3	1

#	Article	IF	CITATIONS
127	Lack of Evidence for Toxin Immunoassay-Negative Patients as a Significant Source of Clostridium difficile Transmission at an Academic Medical Center. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
128	PTU-047â€High prevalence of clostridium difficile ribotype 078 in IBD outpatients. , 2018, , .		0
129	O03.5â€Utility of real-time whole genome sequencing in partner notification and control ofneisseria gonorrhoeaeinfection. , 2019, , .		O
130	K-mer based prediction of Clostridioides difficile relatedness and ribotypes. Microbial Genomics, 2022, 8, .	2.0	0