Adrianus Johannes Van Opstal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/458207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Speed-accuracy tradeoffs influence the main sequence of saccadic eye movements. Scientific Reports, 2022, 12, 5262.	3.3	7
2	A spiking neural network model of the Superior Colliculus that is robust to changes in the spatial–temporal input. Scientific Reports, 2022, 12, 6916.	3.3	4
3	Estimating multiple latencies in the auditory system from auditory steady-state responses on a single EEG channel. Scientific Reports, 2021, 11, 2150.	3.3	5
4	Spatiotemporal factors influence sound-source segregation in localization behavior. Journal of Neurophysiology, 2021, 125, 556-567.	1.8	1
5	Adaptive Response Behavior in the Pursuit of Unpredictably Moving Sounds. ENeuro, 2021, 8, ENEURO.0556-20.2021.	1.9	2
6	Modelling 3D saccade generation by feedforward optimal control. PLoS Computational Biology, 2021, 17, e1008975.	3.2	6
7	Multisensory Integration-Attention Trade-Off in Cochlear-Implanted Deaf Individuals. Frontiers in Neuroscience, 2021, 15, 683804.	2.8	0
8	Towards Real-Time Detection of Auditory Steady-State Responses: A Comparative Study. IEEE Access, 2021, 9, 108975-108991.	4.2	1
9	Amount of Frequency Compression in Bimodal Cochlear Implant Users Is a Poor Predictor for Audibility and Spatial Hearing. Journal of Speech, Language, and Hearing Research, 2021, , 1-14.	1.6	3
10	Contribution of spectral pinna cues for sound localization in children with congenital unilateral conductive hearing loss after hearing rehabilitation. Hearing Research, 2020, 385, 107847.	2.0	11
11	Spatial Hearing by Bilateral Cochlear Implant Users With Temporal Fine-Structure Processing. Frontiers in Neurology, 2020, 11, 915.	2.4	11
12	An Individual With Hearing Preservation and Bimodal Hearing Using a Cochlear Implant and Hearing Aids Has Perturbed Sound Localization but Preserved Speech Perception. Frontiers in Neurology, 2019, 10, 637.	2.4	6
13	The Principle of Inverse Effectiveness in Audiovisual Speech Perception. Frontiers in Human Neuroscience, 2019, 13, 335.	2.0	33
14	Sound Localization in Real-Time Vocoded Cochlear-Implant Simulations With Normal-Hearing Listeners. Trends in Hearing, 2019, 23, 233121651984733.	1.3	9
15	Electrical stimulation in a spiking neural network model of monkey superior colliculus. Progress in Brain Research, 2019, 249, 153-166.	1.4	Ο
16	Microstimulation in a spiking neural network model of the midbrain superior colliculus. PLoS Computational Biology, 2019, 15, e1006522.	3.2	7
17	Spectral Weighting Underlies Perceived Sound Elevation. Scientific Reports, 2019, 9, 1642.	3.3	15
18	Maps and sensorimotor transformations for eye-head gaze shifts: Role of the midbrain superior colliculus. Progress in Brain Research, 2019, 249, 19-33.	1.4	7

#	Article	IF	CITATIONS
19	Sound-localization performance of patients with single-sided deafness is not improved when listening with a bone-conduction device. Hearing Research, 2019, 372, 62-68.	2.0	42
20	Perceived Target Range Shapes Human Sound-Localization Behavior. ENeuro, 2019, 6, ENEURO.0111-18.2019.	1.9	7
21	Differential Adaptation in Azimuth and Elevation to Acute Monaural Spatial Hearing after Training with Visual Feedback. ENeuro, 2019, 6, ENEURO.0219-19.2019.	1.9	10
22	Dynamic parallelism for synaptic updating in GPU-accelerated spiking neural network simulations. Neurocomputing, 2018, 302, 55-65.	5.9	33
23	Learning to localise weakly-informative sound spectra with and without feedback. Scientific Reports, 2018, 8, 17933.	3.3	11
24	Double Stimulation in a Spiking Neural Network Model of the Midbrain Superior Colliculus. Frontiers in Applied Mathematics and Statistics, 2018, 4, 47.	1.3	2
25	200 years Franciscus Cornelis Donders. Strabismus, 2018, 26, 159-162.	0.7	2
26	Accuracy-Precision Trade-off in Human Sound Localisation. Scientific Reports, 2018, 8, 16399.	3.3	14
27	Testing the Precedence Effect in the Median Plane Reveals Backward Spatial Masking of Sound. Scientific Reports, 2018, 8, 8670.	3.3	10
28	Modeling auditory-visual evoked eye-head gaze shifts in dynamic multisteps. Journal of Neurophysiology, 2018, 119, 1795-1808.	1.8	3
29	MEASURING CORTICAL ACTIVITY DURING AUDITORY PROCESSING WITH FUNCTIONAL NEAR-INFRARED SPECTROSCOPY. Journal of Hearing Science, 2018, 8, 9-18.	0.1	9
30	A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands. Biological Cybernetics, 2017, 111, 249-268.	1.3	24
31	Effect of extreme adaptive frequency compression in bimodal listeners on sound localization and speech perception. Cochlear Implants International, 2017, 18, 266-277.	1.2	8
32	Level-weighted averaging in elevation to synchronous amplitude-modulated sounds. Journal of the Acoustical Society of America, 2017, 142, 3094-3103.	1.1	10
33	Reconstructing spectral cues for sound localization from responses to rippled noise stimuli. PLoS ONE, 2017, 12, e0174185.	2.5	14
34	Sound Localization Plasticity. , 2016, , 333-360.		1
35	Temporal Cortex Activation to Audiovisual Speech in Normal-Hearing and Cochlear Implant Users Measured with Functional Near-Infrared Spectroscopy. Frontiers in Human Neuroscience, 2016, 10, 48.	2.0	34
36	Horizontal sound localization in cochlear implant users with a contralateral hearing aid. Hearing Research, 2016, 336, 72-82.	2.0	24

#	Article	IF	CITATIONS
37	Frequency-dependent loudness balancing in bimodal cochlear implant users. Acta Oto-Laryngologica, 2016, 136, 775-781.	0.9	25
38	The Auditory Nerve. , 2016, , 147-169.		20
39	Spectrotemporal Response Properties of Core Auditory Cortex Neurons in Awake Monkey. PLoS ONE, 2015, 10, e0116118.	2.5	16
40	Single-sided deafness and directional hearing: contribution of spectral cues and high-frequency hearing loss in the hearing ear. Frontiers in Neuroscience, 2014, 8, 188.	2.8	47
41	Taskâ€related preparatory modulations multiply with acoustic processing in monkey auditory cortex. European Journal of Neuroscience, 2014, 39, 1538-1550.	2.6	13
42	Auditory–prefrontal axonal connectivity in the macaque cortex: Quantitative assessment of processing streams. Brain and Language, 2014, 135, 73-84.	1.6	4
43	Stable bottomâ€up processing during dynamic topâ€down modulations in monkey auditory cortex. European Journal of Neuroscience, 2013, 37, 1830-1842.	2.6	12
44	Age-related Hearing Loss and Ear Morphology Affect Vertical but not Horizontal Sound-Localization Performance. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 261-273.	1.8	68
45	Contribution of monaural and binaural cues to sound localization in listeners with acquired unilateral conductive hearing loss: Improved directional hearing with a bone-conduction device. Hearing Research, 2012, 286, 9-18.	2.0	43
46	Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts. PLoS ONE, 2012, 7, e47606.	2.5	6
47	Improved Horizontal Directional Hearing in Bone Conduction Device Users with Acquired Unilateral Conductive Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 1-11.	1.8	41
48	The effect of head roll on perceived auditory zenith. Experimental Brain Research, 2011, 213, 235-243.	1.5	10
49	Influence of Static Eye and Head Position on Tone-Evoked Gaze Shifts. Journal of Neuroscience, 2011, 31, 17496-17504.	3.6	16
50	Applying double-magnetic induction to measure head-unrestrained gaze shifts: calibration and validation in monkey. Biological Cybernetics, 2010, 103, 415-432.	1.3	5
51	Acquired prior knowledge modulates audiovisual integration. European Journal of Neuroscience, 2010, 31, 1763-1771.	2.6	31
52	Pinna Cues Determine Orienting Response Modes to Synchronous Sounds in Elevation. Journal of Neuroscience, 2010, 30, 194-204.	3.6	29
53	Spectrotemporal Response Properties of Inferior Colliculus Neurons in Alert Monkey. Journal of Neuroscience, 2009, 29, 9725-9739.	3.6	38
54	The effect of spatial–temporal audiovisual disparities on saccades in a complex scene. Experimental Brain Research, 2009, 198, 425-437.	1.5	38

#	Article	IF	CITATIONS
55	Sound Localization Under Perturbed Binaural Hearing. Journal of Neurophysiology, 2007, 97, 715-726.	1.8	80
56	Gaze Orienting in Dynamic Visual Double Steps. Journal of Neurophysiology, 2005, 94, 4300-4313.	1.8	26
57	Relearning Sound Localization with a New Ear. Journal of Neuroscience, 2005, 25, 5413-5424.	3.6	121
58	The influence of duration and level on human sound localization. Journal of the Acoustical Society of America, 2004, 115, 1705-1713.	1.1	66
59	Involvement of Monkey Inferior Colliculus in Spatial Hearing. Journal of Neuroscience, 2004, 24, 4145-4156.	3.6	88
60	Dynamic Sound Localization during Rapid Eye-Head Gaze Shifts. Journal of Neuroscience, 2004, 24, 9291-9302.	3.6	63
61	Contribution of Head Shadow and Pinna Cues to Chronic Monaural Sound Localization. Journal of Neuroscience, 2004, 24, 4163-4171.	3.6	157
62	Plasticity in human sound localization induced by compressed spatial vision. Nature Neuroscience, 2003, 6, 175-181.	14.8	133
63	Bayesian reconstruction of sound localization cues from responses to random spectra. Biological Cybernetics, 2002, 86, 305-316.	1.3	30
64	Relearning sound localization with new ears. Nature Neuroscience, 1998, 1, 417-421.	14.8	368
65	Spectro-temporal factors in two-dimensional human sound localization. Journal of the Acoustical Society of America, 1998, 103, 2634-2648.	1.1	155
66	Role of Monkey Nucleus Reticularis Tegmenti Pontis in the Stabilization of Listing's Plane. Journal of Neuroscience, 1996, 16, 7284-7296.	3.6	63