
Christopher F Schuster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4581804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra-deep long-read sequencing detects IS-mediated gene duplications as a potential trigger to generate arrays of resistance genes and a mechanism to induce novel gene variants such as <i>bla</i> CTX-M-243. Journal of Antimicrobial Chemotherapy, 2022, 77, 381-390.	3.0	10
2	Status quo of <i>tet</i> regulation in bacteria. Microbial Biotechnology, 2022, 15, 1101-1119.	4.2	16
3	Recurrent bacteremia with a hypermucoviscous Escherichia coli isolated from a patient with perihilar cholangiocarcinoma: insights from a comprehensive genome-based analysis. Annals of Clinical Microbiology and Antimicrobials, 2022, 21, .	3.8	5
4	Mutations in the gdpP gene are a clinically relevant mechanism for Î ² -lactam resistance in meticillin-resistant Staphylococcus aureus lacking mec determinants. Microbial Genomics, 2021, 7, .	2.0	21
5	Complete Genome Sequences of Two Nosocomiicoccus ampullae Strains and a Growth-Adapted Mutant. Microbiology Resource Announcements, 2021, 10, e0074721.	0.6	1
6	Highâ€ŧhroughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant <i>Staphylococcus aureus</i> and underlines a tailored response to different osmotic stressors. Molecular Microbiology, 2020, 113, 699-717.	2.5	34
7	Identification of the main glutamine and glutamate transporters in <i>Staphylococcus aureus</i> and their impact on câ€diâ€AMP production. Molecular Microbiology, 2020, 113, 1085-1100.	2.5	27
8	Inactivation of the Monofunctional Peptidoglycan Glycosyltransferase SgtB Allows <i>Staphylococcus aureus</i> To Survive in the Absence of Lipoteichoic Acid. Journal of Bacteriology, 2019, 201, .	2.2	30
9	Use of the counter selectable marker PheS* for genome engineering in Staphylococcus aureus. Microbiology (United Kingdom), 2019, 165, 572-584.	1.8	24
10	Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions. Journal of Biological Chemistry, 2018, 293, 3180-3200.	3.4	84
11	Toxin-Antitoxin Systems of Staphylococcus aureus. Toxins, 2016, 8, 140.	3.4	63
12	New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus. Journal of Biological Chemistry, 2016, 291, 26970-26986.	3.4	87
13	The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in <i>Staphylococcus aureus</i> . Science Signaling, 2016, 9, ra81.	3.6	87
14	The MazEF Toxin-Antitoxin System Alters the β-Lactam Susceptibility of Staphylococcus aureus. PLoS ONE, 2015, 10, e0126118.	2.5	39
15	Post-transcriptional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems. Frontiers in Cellular and Infection Microbiology, 2014, 4, 6.	3.9	30
16	Fluorescence Based Primer Extension Technique to Determine Transcriptional Starting Points and Cleavage Sites of RNases In Vivo . Journal of Visualized Experiments, 2014, , e52134.	0.3	22
17	Two paralogous yefM-yoeB loci from Staphylococcus equorum encode functional toxin–antitoxin systems. Microbiology (United Kingdom), 2013, 159, 1575-1585.	1.8	26
18	Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiology Letters, 2013, 340, 73-85.	1.8	200

#	Article	IF	CITATIONS
19	Characterization of a <i>mazEF</i> Toxin-Antitoxin Homologue from Staphylococcus equorum. Journal of Bacteriology, 2013, 195, 115-125.	2.2	33