
Neslihan Yuca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4581609/publications.pdf Version: 2024-02-01

Νεςιίμαν Υμέλ

#	Article	IF	CITATIONS
1	Self-Healing Systems in Silicon Anodes for Li-Ion Batteries. Materials, 2022, 15, 2392.	2.9	11
2	Colloidal polypyrrole as binder for silicon anode in lithium ion batteries. Energy Storage, 2022, 4, .	4.3	2
3	Novel approach with polyfluorene/polydisulfide copolymer binder for highâ€capacity silicon anode in lithiumâ€ion batteries. Journal of Applied Polymer Science, 2020, 137, 48303.	2.6	18
4	An overview on efforts to enhance the Si electrode stability for lithium ion batteries. Energy Storage, 2020, 2, e94.	4.3	16
5	Influence of Doping and Controlled Sn Charge State on the Properties and Performance of SnO ₂ Nanoparticles as Anodes in Li-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 18490-18501.	3.1	20
6	The electrochemical behavior of silicon and graphite anode materials with different cathodes for lithium ion cells. Materials Letters, 2020, 272, 127889.	2.6	6
7	Interconnected conductive gel binder for high capacity silicon anode for Li-ion batteries. Materials Letters, 2020, 273, 127918.	2.6	17
8	Effect of Mn, Ni, Co transition metal ratios in lithium rich metal oxide cathodes on lithium ion battery performance. Materials Today: Proceedings, 2020, 33, 2490-2494.	1.8	3
9	Synthesis and characterization of li-rich cathode material for lithium ion batteries. Materials Letters, 2020, 273, 127927.	2.6	13
10	Synergistic effect of carbon nanomaterials on a cost-effective coral-like Si/rGO composite for lithium ion battery application. Electrochimica Acta, 2020, 339, 135917.	5.2	12
11	Systematic structural characterization of highâ€density porous silicon anodes in lithiumâ€ion batteries. Energy Storage, 2019, 1, e78.	4.3	Ο
12	Highly efficient poly(fluorene phenylene) copolymer as a new class of binder for high-capacity silicon anode in lithium-ion batteries. International Journal of Energy Research, 2018, 42, 1148-1157.	4.5	33
13	A facile and functional process to enhance electrochemical performance of silicon anode in lithium ion batteries. Electrochimica Acta, 2016, 222, 1538-1544.	5.2	18
14	A Convenient and Versatile Method To Control the Electrode Microstructure toward High-Energy Lithium-Ion Batteries. Nano Letters, 2016, 16, 4686-4690.	9.1	32
15	Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 2565-2571.	13.7	203
16	High Capacity and High Density Functional Conductive Polymer and SiO Anode for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 862-866.	8.0	72
17	Effect of hydrogen and oxygen addition as a mixture on emissions and performance characteristics of a gasoline engine. International Journal of Hydrogen Energy, 2015, 40, 8750-8760.	7.1	36
18	A Systematic Investigation of Polymer Binder Flexibility on the Electrode Performance of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 17111-17118.	8.0	65

NESLIHAN YUCA

#	Article	IF	CITATIONS
19	A polymerized vinylene carbonate anode binder enhances performance of lithium-ion batteries. Journal of Power Sources, 2014, 263, 288-295.	7.8	23
20	Different techniques for characterizing single-walled carbon nanotube purity. Proceedings of SPIE, 2013, , .	0.8	1
21	The role of H2reduction in the growth of single-walled carbon nanotubes. , 2013, , .		3
22	Synthesis of Carbon-Based Nano Materials for Hydrogen Storage. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 31-46.	2.1	22
23	Carbon nanotube synthesis with different support materials and catalysts. Proceedings of SPIE, 2013, ,	0.8	2
24	Hydrogen adsorption on carbon nanotubes purified by different methods. International Journal of Hydrogen Energy, 2011, 36, 11467-11473.	7.1	20