Heikki Tenhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/458149/publications.pdf Version: 2024-02-01

HEIKKI TENIHII

#	Article	IF	CITATIONS
1	Phase Separation of Aqueous Poly(diisopropylaminoethyl methacrylate) upon Heating. Langmuir, 2022, 38, 5135-5148.	3.5	5
2	Thermoâ€reversible cellulose micro phaseâ€separation in mixtures of methyltributylphosphonium acetate and γâ€valerolactone or DMSO. ChemPhysChem, 2022, , .	2.1	2
3	CO ₂ Capture and Low-Temperature Release by Poly(aminoethyl methacrylate) and Derivatives. Langmuir, 2022, 38, 5197-5208.	3.5	4
4	Morphological transitions of cationic PISA particles by salt, triflate ions and temperature; comparison of three polycations. Polymer Chemistry, 2022, 13, 3790-3799.	3.9	4
5	Phase Transition Behavior and Catalytic Activity of Poly(<i>N</i> -acryloylglycinamide- <i>co</i> -methacrylic acid) Microgels. Langmuir, 2021, 37, 2639-2648.	3.5	5
6	Thermoresponsive Polycation-Stabilized Nanoparticles through PISA. Control of Particle Morphology with a Salt. Macromolecules, 2021, 54, 4288-4299.	4.8	6
7	Self-Organization in Dilute Aqueous Solutions of Thermoresponsive Star-Shaped Six-Arm Poly-2-Alkyl-2-Oxazines and Poly-2-Alkyl-2-Oxazolines. Polymers, 2021, 13, 1429.	4.5	4
8	Tough Materials Through Ionic Interactions. Frontiers in Chemistry, 2021, 9, 721656.	3.6	2
9	Glucose and Maltose Surface-Functionalized Thermoresponsive Poly(<i>N</i> -Vinylcaprolactam) Nanogels. Biomacromolecules, 2020, 21, 955-965.	5.4	30
10	Thermoresponsive behavior of poly[trialkyl-(4-vinylbenzyl)ammonium] based polyelectrolytes in aqueous salt solutions. Polymer Chemistry, 2020, 11, 5870-5883.	3.9	13
11	Polyzwitterions with LCST Side Chains: Tunable Self-Assembly. Macromolecules, 2020, 53, 8267-8275.	4.8	15
12	CE and asymmetrical flowâ€field flow fractionation studies of polymer interactions with surfaces and solutes reveal conformation changes of polymers. Journal of Separation Science, 2020, 43, 2495-2505.	2.5	1
13	Stimuli-Responsive Nanodiamond–Polyelectrolyte Composite Films. Polymers, 2020, 12, 507.	4.5	7
14	Bicatalytic poly(N-acryloyl glycinamide) microgels. European Polymer Journal, 2020, 133, 109760.	5.4	7
15	Poly(2-propyl-2-oxazoline)s in Aqueous Methanol: To Dissolve or not to Dissolve. Macromolecules, 2019, 52, 6361-6368.	4.8	9
16	Molecular Mass Affects the Phase Separation of Aqueous PEG–Polycation Block Copolymer. Macromolecules, 2019, 52, 6514-6522.	4.8	6
17	Conjugated Main Chain Azoâ€Polymers Based on Polycyclic Aromatic Hydrocarbons. Macromolecular Chemistry and Physics, 2019, 220, 1900303.	2.2	0
18	The emulsion polymerization induced self-assembly of a thermoresponsive polymer poly(N-vinylcaprolactam). Polymer Chemistry, 2019, 10, 766-775.	3.9	20

#	Article	IF	CITATIONS
19	Poly(2-isopropyl-2-oxazoline)- <i>b</i> -poly(lactide) (PiPOx- <i>b</i> -PLA) Nanoparticles in Water: Interblock van der Waals Attraction Opposes Amphiphilic Phase Separation. Macromolecules, 2019, 52, 1317-1326.	4.8	7
20	Polyelectrolyte stabilized nanodiamond dispersions. Diamond and Related Materials, 2019, 95, 185-194.	3.9	12
21	Soft poly(N-vinylcaprolactam) nanogels surface-decorated with AuNPs. Response to temperature, light, and RF-field. European Polymer Journal, 2019, 115, 59-69.	5.4	18
22	Molecular crowding facilitates assembly of spidroin-like proteins through phase separation. European Polymer Journal, 2019, 112, 539-546.	5.4	28
23	Artificial chaperones based on thermoresponsive polymers recognize the unfolded state of the protein. International Journal of Biological Macromolecules, 2019, 121, 536-545.	7.5	12
24	Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration technique. Reactive and Functional Polymers, 2018, 127, 67-73.	4.1	35
25	Poly(<i>N</i> -acryloylglycinamide) microgels as nanocatalyst platform. Polymer Chemistry, 2018, 9, 517-524.	3.9	28
26	Inversion of crystallization rates in miscible block copolymers of poly(lactide)- <i>block</i> -poly(2-isopropyl-2-oxazoline). Polymer Chemistry, 2018, 9, 1848-1856.	3.9	5
27	Hyaluronic Acid Graft Copolymers with Cleavable Arms as Potential Intravitreal Drug Delivery Vehicles. Macromolecular Bioscience, 2018, 18, 1700200.	4.1	3
28	Polycation–PEG Block Copolymer Undergoes Stepwise Phase Separation in Aqueous Triflate Solution. Macromolecules, 2018, 51, 9681-9691.	4.8	14
29	Highly controllable ambient atmosphere spray deposition of water dispersible poly(benzimidazobenzophenanthroline) films. Synthetic Metals, 2018, 245, 144-150.	3.9	1
30	Visualization data on the freezing process of micrometer-scaled aqueous citric acid drops. Data in Brief, 2017, 10, 144-146.	1.0	1
31	Poly(glyceryl glycerol): A multiâ€functional hydrophilic polymer for labeling with boronic acids. Journal of Polymer Science Part A, 2017, 55, 1822-1830.	2.3	5
32	Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Nanoscale Research Letters, 2017, 12, 74.	5.7	168
33	Polysulfobetaine-surfactant solutions and their use in stabilizing hydrophobic compounds in saline solution. Polymer, 2017, 127, 77-87.	3.8	15
34	Poly(acrylamide-homocysteine thiolactone) as a synthetic platform for the preparation of polymeric ionic liquids by post ring-opening-orthogonal modifications. Polymer Chemistry, 2017, 8, 4789-4797.	3.9	22
35	How to manipulate the upper critical solution temperature (UCST)?. Polymer Chemistry, 2017, 8, 220-232.	3.9	228
36	Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycations. Polymers, 2016, 8, 96.	4.5	7

#	Article	IF	CITATIONS
37	Thermal response of a PVCL–HA conjugate. Journal of Polymer Science Part A, 2016, 54, 425-436.	2.3	7
38	Rheological properties of thermoresponsive nanocomposite hydrogels. Journal of Applied Polymer Science, 2016, 133, .	2.6	10
39	Cationic polymers for DNA origami coating $\hat{a} \in$ examining their binding efficiency and tuning the enzymatic reaction rates. Nanoscale, 2016, 8, 11674-11680.	5.6	109
40	Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 109, 49-60.	4.3	12
41	AuNP–Polymeric Ionic Liquid Composite Multicatalytic Nanoreactors for One-Pot Cascade Reactions. ACS Catalysis, 2016, 6, 7230-7237.	11.2	25
42	Novel cationic polyelectrolyte coatings for capillary electrophoresis. Electrophoresis, 2016, 37, 363-371.	2.4	7
43	Triple Hydrophilic UCST–LCST Block Copolymers. Macromolecules, 2016, 49, 986-993.	4.8	77
44	Upper or lower critical solution temperature, or both? Studies on cationic copolymers of N-isopropylacrylamide. Polymer Chemistry, 2015, 6, 3074-3082.	3.9	24
45	Modification of naphthalenic unit in BBL main chain. Synthetic Metals, 2015, 207, 87-95.	3.9	7
46	Complex interactions in aqueous PIL-PNIPAm-PIL triblock copolymer solutions. Polymer, 2015, 58, 180-188.	3.8	17
47	Thermoresponsive Nanoparticles of Self-Assembled Block Copolymers as Potential Carriers for Drug Delivery and Diagnostics. Biomacromolecules, 2015, 16, 2750-2756.	5.4	33
48	Thermally responsive particles of poly(benzimidazobenzophenanthroline) modified with poly(N-isopropylacrylamide). Colloid and Polymer Science, 2015, 293, 2957-2965.	2.1	4
49	Multiple Glass Transitions and Freezing Events of Aqueous Citric Acid. Journal of Physical Chemistry A, 2015, 119, 4515-4523.	2.5	22
50	Visualization of Freezing Process in situ upon Cooling and Warming of Aqueous Solutions. Scientific Reports, 2015, 4, 7414.	3.3	32
51	Breath figure templated semifluorinated block copolymers with tunable surface properties and binding capabilities. Journal of Applied Polymer Science, 2015, 132, .	2.6	8
52	Optimized triazine-mediated amidation for efficient and controlled functionalization of hyaluronic acid. Carbohydrate Polymers, 2015, 116, 42-50.	10.2	19
53	Mixed-Monolayer-Protected Au ₂₅ Clusters with Bulky Calix[4]arene Functionalities. Journal of Physical Chemistry Letters, 2014, 5, 585-589.	4.6	34
54	Wetting behaviour and direct observation of thermally responsive polystyrene- <i>block</i> -poly(<i>N</i> -isopropylacrylamide)- <i>block</i> -polystyrene electrospun fibres in aqueous environment. Polymer International, 2014, 63, 37-43.	3.1	8

#	Article	IF	CITATIONS
55	Counterion-Induced UCST for Polycations. Macromolecules, 2014, 47, 7581-7587.	4.8	60
56	LCST-type polymers based on chiral-polymeric ionic liquids. Chemical Communications, 2014, 50, 10683.	4.1	24
57	Simple and Efficient Separation of Atomically Precise Noble Metal Clusters. Analytical Chemistry, 2014, 86, 12185-12190.	6.5	69
58	Gold nanoparticles: calixarene complexation in a mixed calixarene–alkanethiol monolayer. RSC Advances, 2014, 4, 13453.	3.6	12
59	Synthesis and lectin recognition of glycosylated amphiphilic nanoparticles. European Polymer Journal, 2014, 59, 282-289.	5.4	10
60	An enzymatic biomimetic system: enhancement of catalytic efficiency with new polymeric chiral ionic liquids synthesised by controlled radical polymerisation. Polymer Chemistry, 2014, 5, 1437-1446.	3.9	20
61	Influence of Hydrophobic Anion on Solution Properties of PDMAEMA. Macromolecules, 2014, 47, 2103-2111.	4.8	61
62	Phase Separation of Aqueous Poly(2-dimethylaminoethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 Td (methac 10776-10784.	rylate- <i>l 2.6</i>	block- <i>N 20</i>
63	Nanocomposites based on crosslinked polyacrylic latex/silver nanoparticles for waterborne highâ€performance antibacterial coatings. Journal of Polymer Science Part A, 2014, 52, 1435-1447.	2.3	14
64	lmidazoliumâ€Based Poly(ionic liquid)s as New Alternatives for CO ₂ Capture. ChemSusChem, 2013, 6, 1500-1509.	6.8	75
65	Using Light To Tune Thermo-Responsive Behavior and Host–Guest Interactions in Tegylated Poly(azocalix[4]arene)s. Macromolecules, 2013, 46, 6209-6216.	4.8	23
66	Colloidal properties and gelation of aqueous dispersions of conductive poly(benzimidazobenzophenanthroline) derivatives. Polymer, 2013, 54, 694-701.	3.8	6
67	Investigation of the phase separation of PNIPAM using infrared spectroscopy together with multivariate data analysis. Polymer, 2013, 54, 6947-6953.	3.8	20
68	Thermoresponsiveness of PDMAEMA. Electrostatic and Stereochemical Effects. Macromolecules, 2013, 46, 2331-2340.	4.8	63
69	Complexation of calix[4]arene protected gold nanoparticles with pyridinium and bipyridinium compounds. RSC Advances, 2013, 3, 733-742.	3.6	12
70	Diblock copolymers consisting of a polymerized ionic liquid and poly(N-isopropylacrylamide). Effects of PNIPAM block length and counter ion on self-assembling and thermal properties. Polymer Chemistry, 2013, 4, 1014-1024.	3.9	70
71	Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environmental Science and Pollution Research, 2013, 20, 3456-3463.	5.3	116
72	A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sensors and Actuators B: Chemical, 2013, 177, 153-162.	7.8	166

#	Article	IF	CITATIONS
73	Influence of photo-isomerisation on host–guest interactions in poly(azocalix[4]arene)s. Polymer Chemistry, 2013, 4, 2898.	3.9	16
74	Surface initiated polymerization of a cationic monomer on inner surfaces of silica capillaries: Analyte separation by capillary electrophoresis versus polyelectrolyte behavior. Journal of Separation Science, 2013, 36, 1070-1077.	2.5	14
75	Mesoporous silica particles grafted with poly(ethyleneoxideâ€ <i>block</i> â€ <i>N</i> â€vinylcaprolactam). Journal of Polymer Science Part A, 2013, 51, 5012-5020.	2.3	33
76	Spontaneous Assembly of Miktoarm Stars into Vesicular Interpolyelectrolyte Complexes. Macromolecular Rapid Communications, 2013, 34, 855-860.	3.9	48
77	Solution coating around ice particles of incipient cirrus clouds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2439-E2439.	7.1	10
78	Screening of the effect of biocidal agents released from poly (acrylic acid) matrices on mould growth. Wood Material Science and Engineering, 2012, 7, 59-68.	2.3	2
79	Inkjet-Printed Gold Electrodes on Paper: Characterization and Functionalization. ACS Applied Materials & Interfaces, 2012, 4, 955-964.	8.0	112
80	Crystal Morphology Modification by the Addition of Tailor-Made Stereocontrolled Poly(<i>N</i> -isopropyl acrylamide). Molecular Pharmaceutics, 2012, 9, 1932-1941.	4.6	14
81	Thermally Sensitive Block Copolymer Particles Prepared via Aerosol Flow Reactor Method: Morphological Characterization and Behavior in Water. Macromolecules, 2012, 45, 8401-8411.	4.8	18
82	Interfacial and Fluorescence Studies on Stereoblock Poly(<i>N</i> -isopropylacryl amide)s. Langmuir, 2012, 28, 14792-14798.	3.5	9
83	Ferroelectric Transition Vanishes in (NH ₄) ₂ SO ₄ Precipitated in Small-Sized Aqueous Droplets. Journal of Physical Chemistry C, 2012, 116, 9372-9377.	3.1	5
84	Novel photo-switchable polymers based on calix[4]arenes. Polymer Chemistry, 2012, 3, 1126.	3.9	11
85	Polymer-Modulated Optical Properties of Gold Sols. Journal of Physical Chemistry C, 2012, 116, 12660-12669.	3.1	5
86	IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films, 2012, 520, 2949-2955.	1.8	144
87	Interparticle distance in monolayers controlled by soft spacers. Soft Matter, 2011, 7, 7112.	2.7	8
88	Temperature and pH responsive hybrid nanoclay grafted with PDMAEMA. Polymer Chemistry, 2011, 2, 2027.	3.9	28
89	A novel method to prepare water dispersible poly(benzimidazobenzophenanthroline) (BBL) by partial substitution of chain ends with poly(ethylene oxide). Colloid and Polymer Science, 2011, 289, 1065-1072.	2.1	8
90	Behaviour of stereoblock poly(N-isopropyl acrylamide) in acetone–water mixtures. Polymer Bulletin, 2011, 67, 677-692.	3.3	12

#	Article	lF	CITATIONS
91	Characterization of Waterâ€Dispersible nâ€Type Poly(benzimidazobenzophenanthroline) Derivatives. Macromolecular Chemistry and Physics, 2011, 212, 1567-1574.	2.2	7
92	Mechanisms of polyethylenimineâ€mediated DNA delivery: free carrier helps to overcome the barrier of cellâ€surface glycosaminoglycans. Journal of Gene Medicine, 2011, 13, 402-409.	2.8	43
93	Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid and Polymer Science, 2010, 288, 543-553.	2.1	33

#	Article	IF	CITATIONS
109	A–B–A stereoblock copolymers of <i>N</i> â€isopropylacrylamide. Journal of Polymer Science Part A, 2008, 46, 38-46.	2.3	51
110	Encapsulation and release by starâ€shaped block copolymers as unimolecular nanocontainers. Journal of Polymer Science Part A, 2008, 46, 650-660.	2.3	30
111	Solution properties of an aqueous poly(methacryl oxyethyl trimethylammonium chloride) and its poly(oxyethylene) grafted analog. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 547-557.	2.1	5
112	Drug release characteristics of physically crossâ€linked thermosensitive poly(Nâ€vinylcaprolactam) hydrogel particles. Journal of Pharmaceutical Sciences, 2008, 97, 4783-4793.	3.3	93
113	Anomalous turbidity, dynamical, and rheological properties in aqueous mixtures of a thermoresponsive PVCL-g-C11EO42 copolymer and an anionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 316, 159-170.	4.7	4
114	Thermoassociating Poly(<i>N</i> -isopropylacrylamide) Aâ^'Bâ^'A Stereoblock Copolymers. Macromolecules, 2008, 41, 2627-2631.	4.8	49
115	Spontaneous and Thermally Induced Self-Organization of Aâ^'Bâ^'A Stereoblock Polymers of N-Isopropylacrylamide in Aqueous Solutions. Macromolecules, 2008, 41, 4881-4886.	4.8	35
116	Direct Imaging of Nanoscopic Plastic Deformation below Bulk Tg and Chain Stretching in Temperature-Responsive Block Copolymer Hydrogels by Cryo-TEM. Macromolecules, 2008, 41, 3243-3249.	4.8	29
117	Synthesis and characterization of copper sulfide nanocrystallites with low sintering temperatures. Journal of Materials Chemistry, 2008, 18, 3200.	6.7	55
118	Effect of the Number of Arms on the Association of Amphiphilic Star Block Copolymers. Macromolecules, 2008, 41, 8855-8864.	4.8	44
119	Rheological Behavior of Poly(vinylpyrrolidone)/Fullerene C ₆₀ Complexes in Aqueous Medium. Journal of Macromolecular Science - Physics, 2008, 47, 500-510.	1.0	12
120	Influence of Macromolecular Architecture on the Thermal Response Rate of Amphiphilic Copolymers, Based on Poly(N-isopropylacrylamide) and Poly(oxyethylene), in Water. Macromolecules, 2007, 40, 3765-3772.	4.8	53
121	Gold Nanoparticles Protected with pH and Temperature-Sensitive Diblock Copolymers. Langmuir, 2007, 23, 5352-5357.	3.5	106
122	Phase Behavior and Temperature-Responsive Molecular Filters Based on Self-Assembly of Polystyrene- <i>block</i> -poly(<i>N</i> -isopropylacrylamide)- <i>block</i> -polystyrene. Macromolecules, 2007, 40, 5827-5834.	4.8	149
123	Cell–polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene) Tj ETQq1 1 0.784314	rgB Ђ.¦ Ωver	loc k110 Tf 50
124	Synthesis and rheological properties of an associative star polymer in aqueous solutions. Polymer, 2007, 48, 4087-4096.	3.8	45
125	Star polymers synthesised with flexible resorcinarene-derived ATRP initiators. Polymer, 2007, 48, 3938-3951.	3.8	34
126	Structure of poly(vinyl pyrrolidone) – C70 complexes in aqueous solutions. Polymer, 2007, 48, 4503-4510.	3.8	23

#	Article	IF	CITATIONS
127	Self-assembling of star-like amphiphilic block copolymers with polyelectrolyte blocks. Effect of pH. Polymer, 2007, 48, 7008-7016.	3.8	31
128	Cationic poly(methacryl oxyethyl trimethylammonium) and its poly(ethylene glycol)â€grafted analogue as capillary coating materials in electrophoresis. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2655-2663.	2.1	10
129	Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chemical Communications, 2007, , 4580.	4.1	375
130	Interaction of Maleic Acid Copolymers with Collagen. Macromolecular Symposia, 2006, 239, 68-76.	0.7	0
131	Effect of Polycation Length on Its Complexation with DNA and with Poly(oxyethylene-block-sodium) Tj ETQq1 1 ().784314 5.4	rg₽Ţ /Overloc
132	Optical Properties of Thermally Responsive Amphiphilic Gold Nanoparticles Protected with Polymers. Langmuir, 2006, 22, 794-801.	3.5	71
133	A New Method for Measuring Free Drug Concentration: Retinal Tissue as a Biosensor. , 2006, 47, 2583.		12
134	Solution properties of dendronized poly(hydroxy ethyl methacrylate) polymers. Journal of Polymer Science Part A, 2006, 44, 3674-3683.	2.3	17
135	Supramolecular assemblies of amphiphilic PMMA-block-PAA starsÂinÂaqueous solutions. Polymer, 2006, 47, 6524-6535.	3.8	40
136	Temperature-Sensitive Properties of Poly(N-isopropylacrylamide) Mesoglobules Formed in Dilute Aqueous Solutions Heated above Their Demixing Point. Macromolecules, 2006, 39, 7686-7693.	4.8	129
137	Polystyrene latex particles coated with crosslinked poly(N-isopropylacrylamide). Colloid and Polymer Science, 2006, 284, 1255-1263.	2.1	35
138	Mesoglobules of thermoresponsive polymers in dilute aqueous solutions above the LCST. Polymer, 2005, 46, 7118-7131.	3.8	147
139	Polyelectrolyte complexes of poly(methacryloxyethyl trimethylammonium chloride) and poly(ethylene oxide)-block-poly(sodium methacrylate) studied by asymmetrical flow field-flow fractionation and dynamic light scattering. Analytica Chimica Acta, 2005, 542, 222-229.	5.4	18
140	Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography. Journal of Separation Science, 2005, 28, 435-442.	2.5	27
141	Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials, 2005, 26, 3055-3064.	11.4	594
142	Thermosensitive graft copolymers of an amphiphilic macromonomer and N-vinylcaprolactam: synthesis and solution properties in dilute aqueous solutions below and above the LCST. Polymer, 2005, 46, 7055-7065.	3.8	35
143	Interaction and ionic network formation process between polyamidine and nonlinear optically active dyes. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 398-404.	2.1	5
144	Effect of ligand on the synthesis of star polymers by resorcinarene-based ATRP initiators. Journal of Polymer Science Part A, 2005, 43, 3349-3358.	2.3	32

#	Article	IF	CITATIONS
145	Synthesis, Characterization, and Application of Eu(III), Tb(III), Sm(III), and Dy(III) Lanthanide Chelate Nanoparticle Labels. Analytical Chemistry, 2005, 77, 2643-2648.	6.5	129
146	Pyrene-Labeled Graft Copolymers of N-Vinylcaprolactam:  Synthesis and Solution Properties in Water. Macromolecules, 2005, 38, 2439-2448.	4.8	42
147	Physical Properties of Aqueous Solutions of a Thermo-Responsive Neutral Copolymer and an Anionic Surfactant:  Turbidity and Small-Angle Neutron Scattering Studies. Langmuir, 2005, 21, 8010-8018.	3.5	14
148	Overcharging of Polyelectrolyte Complexes by the Guest Polyelectrolyte Studied by Fluorescence Spectroscopy. Langmuir, 2005, 21, 11431-11438.	3.5	42
149	Association in Aqueous Solutions of a Thermoresponsive PVCL-g-C11EO42 Copolymer. Macromolecules, 2005, 38, 948-960.	4.8	63
150	Unusual Conformational Behavior of Complexes of Poly(N-isopropylacrylamide) with Poly(methacrylic acid). Macromolecules, 2005, 38, 1292-1299.	4.8	32
151	Amphiphilic Gold Nanoparticles Grafted with Poly(N-isopropylacrylamide) and Polystyrene. Macromolecules, 2005, 38, 2918-2926.	4.8	152
152	Binding of 3-isobutyl-1-methylxanthine into copolymers of N-isopropylacrylamide. European Journal of Pharmaceutical Sciences, 2004, 21, 607-616.	4.0	1
153	Aggregation and protein binding of sodium maleate copolymers with varying hydrophobicities. Polymers for Advanced Technologies, 2004, 15, 260-265.	3.2	4
154	Resorcinarene-based ATRP initiators for star polymers. Journal of Polymer Science Part A, 2004, 42, 4189-4201.	2.3	38
155	Aggregation behaviour of well defined amphiphilic diblock copolymers with poly(N-isopropylacrylamide) and hydrophobic blocks. Polymer, 2004, 45, 3643-3650.	3.8	144
156	Two Phase Transitions of Poly(N-isopropylacrylamide) Brushes Bound to Gold Nanoparticles. Langmuir, 2004, 20, 4671-4676.	3.5	150
157	Complexation of DNA with Poly(methacryl oxyethyl trimethylammonium chloride) and Its Poly(oxyethylene) Grafted Analogue. Biomacromolecules, 2004, 5, 1853-1861.	5.4	18
158	Self-Complexation of Poly(ethylene oxide)-block-poly(methacrylic acid) Studied by Fluorescence Spectroscopy. Macromolecules, 2004, 37, 7008-7018.	4.8	76
159	Formation of Colloidally Stable Phase Separated Poly(N-vinylcaprolactam) in Water:Â A Study by Dynamic Light Scattering, Microcalorimetry, and Pressure Perturbation Calorimetry. Macromolecules, 2004, 37, 2268-2274.	4.8	185
160	Light scattering and microcalorimetry studies on aqueous solutions of thermo-responsive PVCL-g-PEO copolymers. Polymer, 2003, 44, 6807-6814.	3.8	50
161	Soluble polyelectrolyte complexes composed of poly(ethylene oxide)-block-poly(sodium methacrylate) and poly(methacryloyloxyethyl trimethylammonium chloride). Polymer, 2003, 44, 7907-7916.	3.8	49
162	Conformations of Highly Charged Dendronized Polymers in Aqueous Solutions of Varying Ionic Strength. Macromolecular Chemistry and Physics, 2003, 204, 2258-2264.	2.2	15

#	Article	IF	CITATIONS
163	Characterisation of thermally controlled chain association in aqueous solutions of poly(N-isopropyl) Tj ETQq1	l 0.784314 4.7	rgBT /Overloc 38
164	Complexation of linear and poly(ethylene oxide)-grafted poly(methacryl oxyethyl trimethylammonium) Tj ETQo 2003, 41, 1904-1914.	0 0 0 rgBT 2.3	/Overlock 10 26
165	Poly(vinyl pyrrolidone)—C70 complexes in aqueous solutions. Polymer, 2003, 44, 4863-4870.	3.8	16
166	Synthesis of Gold Nanoparticles Grafted with a Thermoresponsive Polymer by Surface-Induced Reversible-Addition-Fragmentation Chain-Transfer Polymerization. Langmuir, 2003, 19, 3499-3504.	3.5	285
167	Preparation of Poly(N-isopropylacrylamide)-Monolayer-Protected Gold Clusters:Â Synthesis Methods, Core Size, and Thickness of Monolayer. Macromolecules, 2003, 36, 4526-4533.	4.8	170
168	Solution Properties of Linear and Branched Block Copolymers Consisting of Acidic and PEO Blocks. Macromolecules, 2002, 35, 4733-4738.	4.8	39
169	Aggregation in Aqueous Poly(N-isopropylacrylamide)-block-poly(ethylene oxide) Solutions Studied by Fluorescence Spectroscopy and Light Scattering. Macromolecules, 2002, 35, 4763-4769.	4.8	143
170	Dissolution and Aggregation of a Poly(NIPA-block-sulfobetaine) Copolymer in Water and Saline Aqueous Solutions. Langmuir, 2002, 18, 5360-5365.	3.5	180
171	Behavior of Poly(N-vinylcaprolactam-co-methacrylic acid) Macromolecules in Aqueous Solution:Â Interplay between Coulombic and Hydrophobic Interaction. Macromolecules, 2002, 35, 1870-1876.	4.8	71
172	Binding and release of drugs into and from thermosensitive poly(N-vinyl caprolactam) nanoparticles. European Journal of Pharmaceutical Sciences, 2002, 16, 69-74.	4.0	150
173	Static and dynamic light scattering study of strong intermolecular interactions in aqueous solutions of PVP/C60 complexes. Polymer, 2002, 43, 2769-2775.	3.8	31
174	Neutron Scattering Studies of the Structure of a Polyelectrolyte Globule in a Waterâ^Acetone Mixture. Macromolecules, 2001, 34, 3706-3709.	4.8	61
175	Studies on copolymerization ofn-isopropylacrylamide and glycidyl methacrylate. Journal of Polymer Science Part A, 2001, 39, 3716-3725.	2.3	43
176	Novel dynamic polymer coating for capillary electrophoresis in nonaqueous methanolic background electrolytes. Electrophoresis, 2001, 22, 3805-3812.	2.4	20
177	Fluorescence and EPR studies on the collapse of poly(N-isopropyl acrylamide)-g-poly(ethylene oxide) in water. Polymer, 2001, 42, 9487-9493.	3.8	51
178	Grafting of Poly(N-isopropylacrylamide) with Poly(ethylene oxide) under Various Reaction Conditions. Macromolecules, 2000, 33, 336-341.	4.8	152
179	Poly(N-vinylcaprolactam) Microgel Particles Grafted with Amphiphilic Chains. Macromolecules, 2000, 33, 8703-8708.	4.8	52
180	Thermal Properties of Poly(N-isopropylacrylamide)-g-poly(ethylene oxide) in Aqueous Solutions:Â Influence of the Number and Distribution of the Grafts. Macromolecules, 2000, 33, 5970-5975.	4.8	130

#	Article	IF	CITATIONS
181	Collapse of poly(methacryloylethyl trimethylammonium methylsulfate) on addition of acetone into an aqueous solution. Polymer, 1999, 40, 1173-1180.	3.8	9
182	Interactions of drugs and spin probes with hydrophobically modified polyelectrolyte hydrogels based on N-isopropylacrylamide. Polymer, 1999, 40, 2595-2603.	3.8	37
183	Effect of hydrophobicity of a drug on its release from hydrogels with different topological structures. Journal of Applied Polymer Science, 1999, 73, 1031-1039.	2.6	32
184	Electron microscopy studies on the coil-to-globule transition of a polyelectrolyte in a water-acetone mixture. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3337-3343.	2.1	3
185	Thermal and rheological properties of hydrophobically modified responsive gels. Macromolecular Chemistry and Physics, 1999, 200, 51-57.	2.2	20
186	Contraction of a Polyelectrolyte upon Dilution. Light Scattering Studies on a Polycation in Basic and Acidic Waterâ^'Acetone Mixtures. Macromolecules, 1999, 32, 1838-1846.	4.8	11
187	Hydrophobically Modified Responsive Polyelectrolytesâ€. Langmuir, 1999, 15, 4259-4265.	3.5	40
188	Conformational changes of a polyelectrolyte in mixtures of water and acetone. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1107-1114.	2.1	16
189	Partially fluorinated thermally responsive latices of linear and crosslinked copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2141-2152.	2.1	16
190	Uptake of zinc, nickel, and chromium byN-isopropyl acrylamide polymer gels. Journal of Applied Polymer Science, 1998, 68, 355-362.	2.6	37
191	Dynamic light scattering studies on polyelectrolytic derivatives of poly (N-isopropylacrylamide). Polymer, 1998, 39, 641-650.	3.8	21
192	Conformational Changes of Poly(vinylcaprolactam) Macromolecules and Their Complexes with Ionic Surfactants in Aqueous Solution. Macromolecules, 1998, 31, 6112-6118.	4.8	120
193	Interactions of Thermally Responsive Polyelectrolyte Latices with Low Molar Mass Organic Molecules Studied by Light Scattering. Macromolecules, 1998, 31, 1590-1594.	4.8	27
194	Contraction of a Polyelectrolyte upon Dilution. Light-Scattering Studies on a Polycation in Saltless Waterâ^'Acetone Mixtures. Macromolecules, 1998, 31, 7717-7722.	4.8	20
195	Spin-Labeled Polyelectrolyte Gels Based on Poly(N-isopropylacrylamide). Effects of the Network Structure and the Gel Collapse on the EPR Spectra. Macromolecules, 1997, 30, 1311-1316.	4.8	22
196	Aggregation of the interpolymer complex of poly(methacrylic acid) and poly(vinyl pyrrolidone) in aqueous solutions. European Polymer Journal, 1997, 33, 219-223.	5.4	34
197	Poly(N-isopropyl acrylamide) derivatives with pendent sulfonic acid groups and nitroxide radicals. Polymer, 1994, 35, 4852-4856.	3.8	14
198	Flexibility and hydrodynamic properties of poly(vinylpyrrolidone) in non-ideal solvents. Polymer Bulletin, 1992, 29, 461-467.	3.3	7

#	Article	IF	CITATIONS
199	Polystyrene crosslinked with oligomeric and polymeric poly(dimethyl siloxane) derivatives. Thermal and dynamic mechanical studies. Journal of Applied Polymer Science, 1992, 44, 55-64.	2.6	30
200	13C NMR relaxation studies of poly(vinyl alcohol) and its derivatives. Die Makromolekulare Chemie, 1991, 192, 1099-1106.	1.1	1
201	The crosslinking theory of aging $\hat{a} \in$ "Added evidence. Experimental Gerontology, 1990, 25, 91-95.	2.8	50
202	Spin-labelling studies of the conformation of poly(vinyl alcohol) derivatives. British Polymer Journal, 1990, 23, 129-133.	0.7	2
203	Characterization of proteinaceous material from postmortem human brain by differential scanning calorimetry. Thermochimica Acta, 1986, 102, 15-19.	2.7	3
204	Studies of crosslinked poly(N-vinyl-2-pyrrolidone) by calorimetry and by NMR. Die Makromolekulare Chemie, 1984, 185, 2011-2019.	1.1	16
205	Temperature Dependence of the Colloidal Stability of Neutral Amphiphilic Polymers in Water. , 0, , 1-85.		188