
Yuanyuan Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4581419/publications.pdf Version: 2024-02-01

YHANYHAN FENC

#	Article	IF	CITATIONS
1	Exploring Variability of Trichodesmium Photophysiology Using Multi-Excitation Wavelength Fast Repetition Rate Fluorometry. Frontiers in Microbiology, 2022, 13, 813573.	3.5	2
2	The Combined Effects of Increased pCO2 and Warming on a Coastal Phytoplankton Assemblage: From Species Composition to Sinking Rate. Frontiers in Marine Science, 2021, 8, .	2.5	8
3	Trace Metal Clean Culture Techniques. , 2021, , 303-315.		1
4	Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore <i>Emiliania huxleyi</i> . Global Change Biology, 2020, 26, 5630-5645.	9.5	17
5	Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore <i>Emiliania huxleyi</i> . Biogeosciences, 2018, 15, 581-595.	3.3	11
6	A global compilation of coccolithophore calcification rates. Earth System Science Data, 2018, 10, 1859-1876.	9.9	18
7	Skeletonema cf. costatum biogenic silica production rate determinated by PDMPO method. Journal of Ocean University of China, 2017, 16, 333-338.	1.2	1
8	Phytoplankton species composition of four ecological provinces in Yellow Sea, China. Journal of Ocean University of China, 2017, 16, 1115-1125.	1.2	4
9	Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore <i>Emiliania huxleyi</i> . Limnology and Oceanography, 2017, 62, 519-540.	3.1	50
10	Ecological provinces of spring phytoplankton in the Yellow Sea: species composition. Acta Oceanologica Sinica, 2016, 35, 114-125.	1.0	15
11	Size-fractionated Chlorophyll a biomass in the northern South China Sea in summer 2014. Chinese Journal of Oceanology and Limnology, 2016, 34, 672-682.	0.7	12
12	Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change, 2016, 6, 207-213.	18.8	153
13	Sinking rates of phytoplankton in the Changjiang (Yangtze River) estuary: A comparative study between Prorocentrum dentatum and Skeletonema dorhnii bloom. Journal of Marine Systems, 2016, 154, 5-14.	2.1	33
14	Long-Term Conditioning to Elevated pCO2 and Warming Influences the Fatty and Amino Acid Composition of the Diatom Cylindrotheca fusiformis. PLoS ONE, 2015, 10, e0123945.	2.5	57
15	Spring and autumn living coccolithophores in the Bohai Sea and Yellow Sea, China. Acta Oceanologica Sinica, 2015, 34, 132-146.	1.0	7
16	Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage. PLoS ONE, 2015, 10, e0140394.	2.5	68
17	Summer and winter living coccolithophores in the Yellow Sea and the East China Sea. Biogeosciences, 2014, 11, 779-806.	3.3	42
18	Autumn living coccolithophores in the Yellow Sea and the East China Sea. Acta Oceanologica Sinica, 2014, 33, 83-94.	1.0	3

Yuanyuan Feng

#	Article	IF	CITATIONS
19	Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Marine Ecology - Progress Series, 2014, 516, 103-126.	1.9	126
20	Bottom-up control of phytoplankton growth in spring blooms in Central Yellow Sea, China. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 97, 61-71.	1.4	16
21	Top-down control of spring surface phytoplankton blooms by microzooplankton in the Central Yellow Sea, China. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 97, 51-60.	1.4	14
22	Effects of changing <i>p</i> CO ₂ and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom <i>Pseudoâ€nitzschia multiseries</i> . Limnology and Oceanography, 2011, 56, 829-840.	3.1	159
23	Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proceedings of the United States of America, 2011, 108, 208-213.	7.1	316
24	Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 368-383.	1.4	160
25	Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages. Biogeosciences, 2009, 6, 3131-3147.	3.3	76
26	Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom. Biogeosciences, 2009, 6, 2155-2179.	3.3	50
27	Effects of increased pCO2 and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing. Marine Ecology - Progress Series, 2009, 388, 27-40.	1.9	86
28	Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Marine Ecology - Progress Series, 2009, 388, 13-25.	1.9	227
29	Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate. Marine Ecology - Progress Series, 2009, 388, 41-49.	1.9	33
30	A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum. Harmful Algae, 2008, 7, 76-90.	4.8	116
31	Interactive effects of increased pCO ₂ , temperature and irradiance on the marine coccolithophore <i>Emiliania huxleyi</i> (Prymnesiophyceae). European Journal of Phycology, 2008, 43, 87-98.	2.0	248
32	CO ₂ control of <i>Trichodesmium</i> N ₂ fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnology and Oceanography, 2007, 52, 1293-1304.	3.1	409
33	EFFECTS OF INCREASED TEMPERATURE AND CO2ON PHOTOSYNTHESIS, GROWTH, AND ELEMENTAL RATIOS IN MARINESYNECHOCOCCUSANDPROCHLOROCOCCUS(CYANOBACTERIA). Journal of Phycology, 2007, 43, 485-496.	2.3	370
34	Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays and Delaware Bay. Hydrobiologia, 2007, 589, 127-139.	2.0	17
35	Phosphate and ATP uptake and growth kinetics in axenic cultures of the cyanobacteriumSynechococcusCCMP 1334. European Journal of Phycology, 2006, 41, 15-28.	2.0	31
36	The Differential Responses of Coastal Diatoms to Ocean Acidification and Warming: A Comparison Between Thalassiosira sp. and Nitzschia closterium f.minutissima. Frontiers in Microbiology, 0, 13, .	3.5	3