Ningling Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4581388/publications.pdf

Version: 2024-02-01

840776 1058476 14 730 11 14 citations h-index g-index papers 14 14 14 1101 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF- \hat{l}^2 receptor I versus II. Cell Reports, 2022, 38, 110349.	6.4	15
2	Long non-coding RNA ACTA2-AS1 promotes ductular reaction by interacting with the p300/ELK1 complex. Journal of Hepatology, 2022, 76, 921-933.	3.7	15
3	Endothelial p300 Promotes Portal Hypertension and Hepatic Fibrosis Through C Motif Chemokine Ligand 2–Mediated Angiocrine Signaling. Hepatology, 2021, 73, 2468-2483.	7.3	52
4	Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFÎ ² Receptor 2. Hepatology Communications, 2020, 4, 268-283.	4.3	8
5	Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGF \hat{l}^2 receptor endocytosis. FASEB Journal, 2020, 34, 7345-7359.	0.5	11
6	p300 Acetyltransferase Is a Cytoplasmâ€toâ€Nucleus Shuttle for SMAD2/3 and TAZ Nuclear Transport in Transforming Growth Factor β–Stimulated Hepatic Stellate Cells. Hepatology, 2019, 70, 1409-1423.	7.3	60
7	P300 Acetyltransferase Mediates Stiffness-Induced Activation of Hepatic Stellate Cells Into Tumor-Promoting Myofibroblasts. Gastroenterology, 2018, 154, 2209-2221.e14.	1.3	136
8	Vasodilatorâ€stimulated phosphoprotein promotes activation of hepatic stellate cells by regulating Rab11â€dependent plasma membrane targeting of transforming growth factor beta receptors. Hepatology, 2015, 61, 361-374.	7.3	60
9	Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis?. Molecular Cancer Research, 2015, 13, 604-612.	3.4	41
10	PDGF receptor-α promotes TGF-β signaling in hepatic stellate cells via transcriptional and posttranscriptional regulation of TGF-β receptors. American Journal of Physiology - Renal Physiology, 2014, 307, G749-G759.	3.4	55
11	Sphingosine-1-Phosphate Mediates a Reciprocal Signaling Pathway between Stellate Cells and Cancer Cells that Promotes Pancreatic Cancer Growth. American Journal of Pathology, 2014, 184, 2791-2802.	3.8	25
12	IQGAP1 suppresses \hat{T}^2 RII-mediated myofibroblastic activation and metastatic growth in liver. Journal of Clinical Investigation, 2013, 123, 1138-1156.	8.2	78
13	Hepatic stellate cells: Partners in crime for liver metastases?. Hepatology, 2011, 54, 707-713.	7.3	141
14	Focal Adhesion Assembly in Myofibroblasts Fosters a Microenvironment that Promotes Tumor Growth. American Journal of Pathology, 2010, 177, 1888-1900.	3.8	33