
Jay S Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4581068/publications.pdf Version: 2024-02-01

INV S SCHNEIDER

#	Article	IF	CITATIONS
1	Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 2003, 126, 5-19.	3.7	896
2	Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicology and Applied Pharmacology, 2007, 221, 131-147.	1.3	527
3	The neurobiological basis of cognitive impairment in Parkinson's disease. Movement Disorders, 2014, 29, 634-650.	2.2	282
4	Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Research, 1990, 519, 122-128.	1.1	230
5	Effect of Creatine Monohydrate on Clinical Progression in Patients With Parkinson Disease. JAMA - Journal of the American Medical Association, 2015, 313, 584.	3.8	192
6	Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science, 1992, 256, 843-846.	6.0	172
7	Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Experimental Neurology, 2006, 202, 381-390.	2.0	170
8	Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by preâ€synaptic mechanism(s): implications to manganeseâ€induced parkinsonism. Journal of Neurochemistry, 2008, 107, 1236-1247.	2.1	141
9	GM1 ganglioside in Parkinson's disease: Results of a five year open study. Journal of the Neurological Sciences, 2010, 292, 45-51.	0.3	127
10	A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. Journal of the Neurological Sciences, 2013, 324, 140-148.	0.3	121
11	Evidence for Cortical Dysfunction and Widespread Manganese Accumulation in the Nonhuman Primate Brain following Chronic Manganese Exposure: A 1H-MRS and MRI Study. Toxicological Sciences, 2006, 94, 351-358.	1.4	110
12	Increased APLP1 expression and neurodegeneration in the frontal cortex of manganeseâ€exposed nonâ€human primates. Journal of Neurochemistry, 2008, 105, 1948-1959.	2.1	105
13	Levodopa-induced dyskinesias in parkinsonian monkeys: Relationship to extent of nigrostriatal damage. Pharmacology Biochemistry and Behavior, 1989, 34, 193-196.	1.3	101
14	Enriched environment during development is protective against lead-induced neurotoxicity. Brain Research, 2001, 896, 48-55.	1.1	101
15	Chronic exposure to low doses of MPTP. II. Neurochemical and pathological consequences in cognitively-impaired, motor asymptomatic monkeys. Brain Research, 1990, 534, 25-36.	1.1	99
16	Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicology Letters, 2013, 217, 75-81.	0.4	99
17	Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Research, 2010, 1354, 172-178.	1.1	97
18	Cognitive deficits precede motor deficits in a slowly progressing model of parkinsonism in the monkey. Experimental Neurology, 1995, 4, 245-255.	1.7	94

#	Article	IF	CITATIONS
19	Attention and executive function deficits in chronic low-dose MPTP-treated non-human primates. European Journal of Neuroscience, 2004, 20, 1371-1378.	1.2	89
20	Protective effects of valproic acid on the nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neuroscience, 2011, 194, 189-194.	1.1	88
21	Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Research, 2006, 1118, 222-231.	1.1	87
22	Delayed matching-to-sample, object retrieval, and discrimination reversal deficits in chronic low dose MPTP-treated monkeys. Brain Research, 1993, 615, 351-354.	1.1	85
23	Adverse effects of childhood lead poisoning: The clinical neuropsychological perspective. Environmental Research, 2006, 100, 284-293.	3.7	79
24	Gangliosides: Treatment Avenues in Neurodegenerative Disease. Frontiers in Neurology, 2019, 10, 859.	1.1	79
25	Sex-Related Abnormalities in Substantia Nigra Lipids in Parkinson's Disease. ASN Neuro, 2018, 10, 175909141878188.	1.5	75
26	Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates. NeuroToxicology, 2011, 32, 215-226.	1.4	74
27	The dopamine D3 receptor antagonist, S33138, counters cognitive impairment in a range of rodent and primate procedures. International Journal of Neuropsychopharmacology, 2010, 13, 1035-1051.	1.0	70
28	Effects of dihydrexidine, a full dopamine D-1 receptor agonist, on delayed response performance in chronic low dose MPTP-treated monkeys. Brain Research, 1994, 663, 140-144.	1.1	69
29	Parkinson's disease Improved function with GMI ganglioside treatment in a randomized placeboâ€controlled study. Neurology, 1998, 50, 1630-1636.	1.5	69
30	GM1 ganglioside treatment promotes recovery of striatal dopamine concentrations in the mouse model of MPTP-induced Parkinsonism. Experimental Neurology, 1989, 105, 177-183.	2.0	68
31	Effects of the Prolyl Endopeptidase Inhibitor S 17092 on Cognitive Deficits in Chronic Low Dose MPTP-Treated Monkeys. Neuropsychopharmacology, 2002, 26, 176-182.	2.8	64
32	Effects of chronic manganese exposure on working memory in non-human primates. Brain Research, 2009, 1258, 86-95.	1.1	64
33	Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. Journal of Pharmacology and Experimental Therapeutics, 1999, 290, 731-9.	1.3	64
34	Manganese exposure induces α-synuclein aggregation in the frontal cortex of non-human primates. Toxicology Letters, 2013, 217, 177-183.	0.4	61
35	Neuroprotection in Parkinson models varies with toxin administration protocol. European Journal of Neuroscience, 2006, 24, 3174-3182.	1.2	60
36	Broad neuroprotective profile of nicotinamide in different mouse models of MPTPâ€induced parkinsonism. European Journal of Neuroscience, 2008, 28, 610-617.	1.2	59

#	Article	IF	CITATIONS
37	Effects of the nicotinic acetylcholine receptor agonist SIB-1508Y on object retrieval performance in MPTP-Treated monkeys: Comparison with levodopa treatment. Annals of Neurology, 1998, 43, 311-317.	2.8	58
38	Chronic neuroleptic treatment alters expression of glial glutamate transporter GLT-1 mRNA in the striatum. NeuroReport, 1998, 9, 133-136.	0.6	58
39	Effects of Lead Exposure on Proliferation and Differentiation of Neural Stem Cells Derived from Different Regions of Embryonic Rat Brain. NeuroToxicology, 2004, 25, 1001-1012.	1.4	58
40	Altered expression of genes involved in ganglioside biosynthesis in substantia nigra neurons in Parkinson's disease. PLoS ONE, 2018, 13, e0199189.	1.1	58
41	Effects of SIB-1508Y, a novel neuronal nicotinic acetylcholine receptor agonist, on motor behavior in parkinsonian monkeys. Movement Disorders, 1998, 13, 637-642.	2.2	56
42	The effects of chronic levodopa treatment on pre- and postsynaptic markers of dopaminergic function in striatum of parkinsonian monkeys. Movement Disorders, 1997, 12, 148-158.	2.2	54
43	GM1 ganglioside treatment of Parkinson's disease. Neurology, 1995, 45, 1149-1154.	1.5	52
44	Neuroprotective effects of pramipexole in young and aged MPTP-treated mice. Brain Research, 2001, 905, 44-53.	1.1	52
45	Developmental Lead Exposure and Prenatal Stress Result in Sex-Specific Reprograming of Adult Stress Physiology and Epigenetic Profiles in Brain. Toxicological Sciences, 2018, 163, 478-489.	1.4	51
46	GM1 Ganglioside Modifies α-Synuclein Toxicity and is Neuroprotective in a Rat α-Synuclein Model of Parkinson's Disease. Scientific Reports, 2019, 9, 8362.	1.6	50
47	Sex-dependent effects of lead and prenatal stress on post-translational histone modifications in frontal cortex and hippocampus in the early postnatal brain. NeuroToxicology, 2016, 54, 65-71.	1.4	49
48	Striatal Preproenkephalin Gene Expression Is Upregulated in Acute but Not Chronic Parkinsonian Monkeys: Implications for the Contribution of the Indirect Striatopallidal Circuit to Parkinsonian Symptomatology. Journal of Neuroscience, 1999, 19, 6643-6649.	1.7	48
49	Responses of striatal neurons to peripheral sensory stimulation in symptomatic MPTP-exposed cats. Brain Research, 1991, 544, 297-302.	1.1	47
50	Sex-Dependent Effects of Developmental Lead Exposure on the Brain. Frontiers in Genetics, 2018, 9, 89.	1.1	46
51	Effects of the partial glycine agonist d-cycloserine on cognitive functioning in chronic low dose MPTP-treated monkeys. Brain Research, 2000, 860, 190-194.	1.1	45
52	Development of levodopa-induced dyskinesias in parkinsonian monkeys may depend upon rate of symptom onset and/or duration of symptoms. Brain Research, 2003, 990, 38-44.	1.1	44
53	Effects of Developmental Lead Exposure on the Hippocampal Transcriptome: Influences of Sex, Developmental Period, and Lead Exposure Level. Toxicological Sciences, 2012, 129, 108-125.	1.4	44
54	The Subtype-Selective Nicotinic Acetylcholine Receptor Agonist SIB-1553A Improves Both Attention and Memory Components of a Spatial Working Memory Task in Chronic Low Dose 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Treated Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 401-406.	1.3	42

#	Article	IF	CITATIONS
55	GM1 ganglioside in Parkinson's disease: Pilot study of effects on dopamine transporter binding. Journal of the Neurological Sciences, 2015, 356, 118-123.	0.3	42
56	Task persistence and learning ability in normal and chronic low dose MPTP-treated monkeys. Behavioural Brain Research, 1994, 60, 115-124.	1.2	41
57	MPTP-induced parkinsonism: Acceleration of biochemical and behavioral recovery by GM1 ganglioside treatment. Journal of Neuroscience Research, 1992, 31, 112-119.	1.3	40
58	Effects of Chronic Manganese Exposure on Glutamatergic and GABAergic Neurotransmitter Markers in the Nonhuman Primate Brain. Toxicological Sciences, 2009, 111, 131-139.	1.4	40
59	GM1 ganglioside rescues substantia nigra pars compacta neurons and increases dopamine synthesis in residual nigrostriatal dopaminergic neurons in MPTP-treated mice. Journal of Neuroscience Research, 1995, 42, 117-123.	1.3	39
60	Interaction between nicotinic and dopaminergic therapies on cognition in a chronic Parkinson model. Brain Research, 2009, 1262, 109-114.	1.1	39
61	Effects of low level lead exposure on associative learning and memory in the rat: Influences of sex and developmental timing of exposure. Toxicology Letters, 2016, 246, 57-64.	0.4	39
62	GM1 Ganglioside in the Treatment of Parkinson's Diseasea. Annals of the New York Academy of Sciences, 1998, 845, 363-373.	1.8	38
63	Chronic manganese exposure impairs visuospatial associative learning in non-human primates. Toxicology Letters, 2013, 221, 146-151.	0.4	34
64	Relationship between Motor Symptoms, Cognition, and Demographic Characteristics in Treated Mild/Moderate Parkinson's Disease. PLoS ONE, 2015, 10, e0123231.	1.1	34
65	Differential recovery of volitional motor function, lateralized cognitive function, dopamine agonist-induced rotation and dopaminergic parameters in monkeys made hemi-parkinsonian by intracarotid MPTP infusion. Brain Research, 1995, 672, 112-127.	1.1	33
66	Chronic Low-Dose MPTP in Nonhuman Primates: A Possible Model for Attention Deficit Disorder. Journal of Child Neurology, 1991, 6, S82-S89.	0.7	32
67	Attention, executive functioning and memory in normal aged rhesus monkeys. Behavioural Brain Research, 2011, 219, 23-30.	1.2	32
68	Levodopa improves motor deficits but can further disrupt cognition in a macaque parkinson model. Movement Disorders, 2013, 28, 663-667.	2.2	32
69	Intraventricular Sialidase Administration Enhances GM1 Ganglioside Expression and Is Partially Neuroprotective in a Mouse Model of Parkinson's Disease. PLoS ONE, 2015, 10, e0143351.	1.1	32
70	Effects of GM1 ganglioside treatment on pre- and postsynaptic dopaminergic markers in the striatum of parkinsonian monkeys. , 2000, 36, 120-128.		31
71	Effects of developmental lead exposure on the hippocampal methylome: Influences of sex and timing and level of exposure. Toxicology Letters, 2018, 290, 63-72.	0.4	31
72	Alterations in dopamine uptake sites and D1 and D2 receptors in cats symptomatic for and recovered from experimental parkinsonism. Synapse, 1995, 19, 46-55.	0.6	30

#	Article	IF	CITATIONS
73	Effects of low-level lead exposure on cell survival and neurite length in primary mesencephalic cultures. Neurotoxicology and Teratology, 2003, 25, 555-559.	1.2	30
74	Anatomical evidence of the projection of pontine omnipause neurons to midbrain regions controlling vertical eye movements. Journal of Comparative Neurology, 1989, 289, 610-625.	0.9	29
75	Sex- and brain region- specific effects of prenatal stress and lead exposure on permissive and repressive post-translational histone modifications from embryonic development through adulthood. NeuroToxicology, 2017, 62, 207-217.	1.4	29
76	GM1 ganglioside partially rescues cultured dopaminergic neurons from MPP+-induced damage: dependence on initial damage and time of treatment. Brain Research, 1994, 640, 308-315.	1.1	28
77	Effects of nicotinic therapies on attention and executive functions in chronic low-dose MPTP-treated monkeys. European Journal of Neuroscience, 2006, 24, 2098-2104.	1.2	28
78	Sex-based differences in gene expression in hippocampus following postnatal lead exposure. Toxicology and Applied Pharmacology, 2011, 256, 179-190.	1.3	28
79	Effects of chronic manganese exposure on attention and working memory in non-human primates. NeuroToxicology, 2015, 48, 217-222.	1.4	28
80	Sex and rearing condition modify the effects of perinatal lead exposure on learning and memory. NeuroToxicology, 2012, 33, 985-995.	1.4	27
81	Differential Effect of Postnatal Lead Exposure on Gene Expression in the Hippocampus and Frontal Cortex. Journal of Molecular Neuroscience, 2012, 47, 76-88.	1.1	27
82	Caffeine and Progression of Parkinson Disease. Clinical Neuropharmacology, 2015, 38, 163-169.	0.2	25
83	Attentional cueing reverses deficits in spatial working memory task performance in chronic low dose MPTP-treated monkeys. Behavioural Brain Research, 2004, 152, 259-262.	1.2	24
84	Postnatal lead poisoning impairs behavioral recovery following brain damage. NeuroToxicology, 2007, 28, 1153-1157.	1.4	23
85	Caffeine, creatine, GRIN2A and Parkinson's disease progression. Journal of the Neurological Sciences, 2017, 375, 355-359.	0.3	23
86	Inhibition of Progenitor Cell Proliferation in the Dentate Gyrus of Rats Following Post-Weaning Lead Exposure. NeuroToxicology, 2005, 26, 141-145.	1.4	22
87	Behavioral persistence deficit in Parkinson's disease patients. European Journal of Neurology, 2007, 14, 300-304.	1.7	21
88	Effects of the alphaâ€2 adrenoceptor agonist guanfacine on attention and working memory in aged nonâ€human primates. European Journal of Neuroscience, 2011, 34, 1018-1022.	1.2	21
89	Expression of Striatal Preprotachykinin mRNA in Symptomatic and Asymptomatic 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Exposed Monkeys Is Related to Parkinsonian Motor Signs. Journal of Neuroscience, 2001, 21, 4901-4907.	1.7	20
90	Rearing environment, sex and developmental lead exposure modify gene expression in the hippocampus of behaviorally naÃ⁻ve animals. Neurochemistry International, 2013, 62, 510-520.	1.9	20

#	Article	IF	CITATIONS
91	The Tyrosine Phosphatase STEP Is Involved in Age-Related Memory Decline. Current Biology, 2018, 28, 1079-1089.e4.	1.8	20
92	NYXâ€458 Improves Cognitive Performance in a Primate Parkinson's Disease Model. Movement Disorders, 2020, 35, 640-649.	2.2	20
93	Enhanced restoration of striatal dopamine concentrations by combined GM1 ganglioside and neurotrophic factor treatments. Brain Research, 1995, 674, 260-264.	1.1	18
94	Differential regulation of striatal dopamine D1 and D2 receptors in acute and chronic parkinsonian monkeys. Brain Research, 1999, 847, 134-138.	1.1	18
95	Modulation of ATP levels alters the mode of hydrogen peroxide-induced cell death in primary cortical cultures: effects of putative neuroprotective agents. Brain Research, 2004, 997, 79-88.	1.1	17
96	Strain specific effects of low level lead exposure on associative learning and memory in rats. NeuroToxicology, 2017, 62, 186-191.	1.4	17
97	Gangliosides and Glycolipids in Neurodegenerative Disorders. Advances in Neurobiology, 2014, 9, 449-461.	1.3	17
98	Genetic Diversity Influences the Response of the Brain to Developmental Lead Exposure. Toxicological Sciences, 2014, 141, 29-43.	1.4	16
99	Differential recovery of sensorimotor function in GM1 ganglioside-treated vs. spontaneously recovered MPTP-treated cats: partial striatal dopaminergic reinnervation vs. neurochemical compensation. Brain Research, 1998, 813, 82-87.	1.1	15
100	Clonidine improves attentional and memory components of delayed response performance in a model of early Parkinsonism. Behavioural Brain Research, 2010, 211, 236-239.	1.2	15
101	A novel dopamine D3R agonist SK609 with norepinephrine transporter inhibition promotes improvement in cognitive task performance in rodent and non-human primate models of Parkinson's disease. Experimental Neurology, 2021, 335, 113514.	2.0	15
102	Effects of memantine and galantamine on cognitive performance in aged rhesus macaques. Neurobiology of Aging, 2013, 34, 1126-1132.	1.5	14
103	Retinal Pathology detected by optical coherence tomography in an animal model of Parkinson's disease. Movement Disorders, 2014, 29, 1547-1551.	2.2	14
104	The attention set-shifting test is sensitive for revealing sex-based impairments in executive functions following developmental lead exposure in rats. Behavioural Brain Research, 2019, 366, 126-134.	1.2	14
105	Post-translational histone modifications and their interaction with sex influence normal brain development and elaboration of neuropsychiatric disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1968-1981.	1.8	14
106	Experimental parkinsonism is associated with increased pallidal GAD gene expression and is reversed by site-directed antisense gene therapy. Movement Disorders, 2003, 18, 32-40.	2.2	13
107	No Sex Differences in Use of Dopaminergic Medication in Early Parkinson Disease in the US and Canada - Baseline Findings of a Multicenter Trial. PLoS ONE, 2014, 9, e112287.	1.1	12
108	The Therapeutic Role of Gangliosides in Neurological Disorders. CNS Drugs, 1994, 1, 213-222.	2.7	11

#	Article	IF	CITATIONS
109	The synthetic ceramide analog l-PDMP partially protects striatal dopamine levels but does not promote dopamine neuron survival in murine models of parkinsonism. Brain Research, 2006, 1099, 199-205.	1.1	11
110	Postnatal lead exposure alters expression of forebrain p75 and TrkA nerve growth factor receptors. Brain Research, 2008, 1195, 113-119.	1.1	10
111	Predictors of cognitive outcomes in early Parkinson disease patients: The National Institutes of Health Exploratory Trials in Parkinson Disease (NET-PD) experience. Parkinsonism and Related Disorders, 2010, 16, 507-512.	1.1	10
112	siRNA-mediated knockdown of B3GALT4 decreases GM1 ganglioside expression and enhances vulnerability for neurodegeneration. Molecular and Cellular Neurosciences, 2019, 95, 25-30.	1.0	10
113	A critical role for GM1 ganglioside in the pathophysiology and potential treatment of Parkinson's disease. Glycoconjugate Journal, 2021, , 1.	1.4	10
114	Low-level lead exposure impairs fronto-executive functions: A call to update the DSM–5 with lead poisoning as a neurodevelopmental disorder Psychology and Neuroscience, 2020, 13, 299-325.	0.5	10
115	PET imaging of dopamine release in the frontal cortex of manganeseâ€exposed nonâ€human primates. Journal of Neurochemistry, 2019, 150, 188-201.	2.1	9
116	GM1 ganglioside treatment partially reverses the nigrostriatal dopamine defect in the weaver mutant mouse. Brain Research, 1994, 636, 353-356.	1.1	8
117	Developmental lead and/or prenatal stress exposures followed by different types of behavioral experience result in the divergence of brain epigenetic profiles in a sex, brain region, and time-dependent manner: Implications for neurotoxicology. Current Opinion in Toxicology, 2017, 6, 60-70.	2.6	8
118	Different Behavioral Experiences Produce Distinctive Parallel Changes in, and Correlate With, Frontal Cortex and Hippocampal Global Post-translational Histone Levels. Frontiers in Integrative Neuroscience, 2018, 12, 29.	1.0	8
119	Differential effects of GDNF treatment on rotational asymmetry, skilled forelimb use deficits and sensory neglect in unilateral 6-OHDA-lesioned rats. Restorative Neurology and Neuroscience, 1998, 13, 205-12.	0.4	8
120	β2⎠and β4⎠nicotinic acetylcholine receptor expression changes with progressive parkinsonism in non-human primates. Neurobiology of Disease, 2007, 27, 312-319.	2.1	6
121	Cognitive function in 1736 participants in NINDS Exploratory Trials in PD Long-term Study-1. Parkinsonism and Related Disorders, 2016, 33, 127-133.	1.1	6
122	Current concepts in treating mild cognitive impairment in Parkinson's disease. Neuropharmacology, 2022, 203, 108880.	2.0	5
123	GM1 ganglioside modifies microglial and neuroinflammatory responses to α-synuclein in the rat AAV-A53T α-synuclein model of Parkinson's disease. Molecular and Cellular Neurosciences, 2022, 120, 103729.	1.0	5
124	Modeling Cognitive Deficits Associated with Parkinsonism in the Chronic-Low-Dose MPTP-Treated Monkey. Frontiers in Neuroscience, 2006, , 169-180.	0.0	4
125	Impaired spatial working memory learning and performance in normal aged rhesus monkeys. Behavioural Brain Research, 2012, 232, 287-293.	1.2	4
126	Preservation of autoreceptor-mediated increases in dopamine synthesis in aged mice with experimentally-induced parkinsonism. Neuroscience Letters, 1997, 222, 138-140.	1.0	1

#	Article	IF	CITATIONS
127	GABAergic Pathway from Zona Incerta to Neocortex: Clarification. Science, 1991, 251, 1162-1162.	6.0	1
128	Epigenetic Mechanisms of Adverse Neurodevelopment in Response to Lead Exposure and Prenatal Stress and the Combination: The Road Ahead. , 2016, , 251-277.		1
129	Erratum. Science, 1991, 251, 1162-1162.	6.0	0