Wantong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4580989/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Reprogramming of Tumors for Activating the OX40/OX40 Ligand Checkpoint Pathway and Boosting Antitumor Immunity. ACS Biomaterials Science and Engineering, 2023, 9, 4108-4116.	2.6	4
2	Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Research, 2022, 15, 1183-1192.	5.8	7
3	Hydrophobic modified poly(<scp>l</scp> â€glutamic acid) graft copolymer micelles with ultrahigh drug loading capacity for anticancer drug delivery. Polymer International, 2022, 71, 487-494.	1.6	6
4	A Minimalist Binary Vaccine Carrier for Personalized Postoperative Cancer Vaccine Therapy. Advanced Materials, 2022, 34, e2109254.	11.1	44
5	Nano-trapping CXCL13 reduces regulatory B cells in tumor microenvironment and inhibits tumor growth. Journal of Controlled Release, 2022, 343, 303-313.	4.8	11
6	Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials, 2022, 284, 121489.	5.7	33
7	Macromolecular Effects in Medicinal Chemistry [※] . Acta Chimica Sinica, 2022, 80, 563.	0.5	2
8	Nucleobase-crosslinked poly(2-oxazoline) nanoparticles as paclitaxel carriers with enhanced stability and ultra-high drug loading capacity for breast cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 571-582.	4.3	8
9	Biopolymer Immune Implants' Sequential Activation of Innate and Adaptive Immunity for Colorectal Cancer Postoperative Immunotherapy. Advanced Materials, 2021, 33, e2004559.	11.1	60
10	In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy. Biomaterials, 2021, 268, 120542.	5.7	57
11	Polyethyleneimine pG Nanocomplex as an In Situ Vaccine for Boosting Anticancer Immunity in Melanoma. Macromolecular Bioscience, 2021, 21, 2000207.	2.1	15
12	Supramolecular Assembled Programmable Nanomedicine As In Situ Cancer Vaccine for Cancer Immunotherapy. Advanced Materials, 2021, 33, e2007293.	11.1	106
13	A simple and general strategy for postsurgical personalized cancer vaccine therapy based on an injectable dynamic covalent hydrogel. Biomaterials Science, 2021, 9, 6879-6888.	2.6	10
14	Functional bionanomaterials for cell surface engineering in cancer immunotherapy. APL Bioengineering, 2021, 5, 021506.	3.3	7
15	In–Situ‧prayed Dualâ€Functional Immunotherapeutic Gel for Colorectal Cancer Postsurgical Treatment. Advanced Healthcare Materials, 2021, 10, e2100862.	3.9	24
16	Manipulating Liver Bile Acid Signaling by Nanodelivery of Bile Acid Receptor Modulators for Liver Cancer Immunotherapy. Nano Letters, 2021, 21, 6781-6791.	4.5	15
17	Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Advanced Drug Delivery Reviews, 2021, 178, 113964.	6.6	71
18	Combatting <i>Helicobacter pylori</i> with oral nanomedicines. Journal of Materials Chemistry B, 2021, 9, 9826-9838.	2.9	11

#	Article	IF	CITATIONS
19	Cisplatin Loaded Poly(L-glutamic acid)-g-Methoxy Polyethylene Glycol Complex Nanoparticles Combined with Gemcitabine Presents Improved Safety and Lasting Anti-Tumor Efficacy in a Murine Xenograft Model of Human Aggressive B Cell Lymphoma. Journal of Biomedical Nanotechnology, 2021, 17, 652-661.	0.5	2
20	Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Biomaterials, 2020, 232, 119676.	5.7	62
21	Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy. Acta Pharmaceutica Sinica B, 2020, 10, 2171-2182.	5.7	32
22	Oral Metformin and Polymetformin Reprogram Immunosuppressive Microenvironment and Boost Immune Checkpoint Inhibitor Therapy in Colorectal Cancer. Advanced Therapeutics, 2020, 3, 2000168.	1.6	4
23	Biodegradable Implants Combined with Immunogenic Chemotherapy and Immune Checkpoint Therapy for Peritoneal Metastatic Carcinoma Postoperative Treatment. ACS Biomaterials Science and Engineering, 2020, 6, 5281-5289.	2.6	15
24	Co-delivery of Doxorubicin and Curcumin with Polypeptide Nanocarrier for Synergistic Lymphoma Therapy. Scientific Reports, 2020, 10, 7832.	1.6	31
25	Supramolecular Self-Assembled Nanostructures for Cancer Immunotherapy. Frontiers in Chemistry, 2020, 8, 380.	1.8	25
26	Nanotherapeutics for Immuno-Oncology: A Crossroad for New Paradigms. Trends in Cancer, 2020, 6, 288-298.	3.8	27
27	Rationally Designed Polymer Conjugate for Tumor-Specific Amplification of Oxidative Stress and Boosting Antitumor Immunity. Nano Letters, 2020, 20, 2514-2521.	4.5	140
28	Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic. Journal of Controlled Release, 2020, 320, 83-95.	4.8	54
29	A ROS-Responsive Aspirin Polymeric Prodrug for Modulation of Tumor Microenvironment and Cancer Immunotherapy. CCS Chemistry, 2020, 2, 390-400.	4.6	49
30	Glucose and pH Dualâ€Responsive Nanogels for Efficient Protein Delivery. Macromolecular Bioscience, 2019, 19, e1900148.	2.1	9
31	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	15.6	149
32	Nanoformulated Codelivery of Quercetin and Alantolactone Promotes an Antitumor Response through Synergistic Immunogenic Cell Death for Microsatellite-Stable Colorectal Cancer. ACS Nano, 2019, 13, 12511-12524.	7.3	110
33	Disease Immunotherapy: Immunomodulatory Nanosystems (Adv. Sci. 17/2019). Advanced Science, 2019, 6, 1970100.	5.6	8
34	Locally Trapping the C Chemokine Receptor Type 7 by Gene Delivery Nanoparticle Inhibits Lymphatic Metastasis Prior to Tumor Resection. Small, 2019, 15, e1805182.	5.2	25
35	Immunomodulatory Nanosystems. Advanced Science, 2019, 6, 1900101.	5.6	255
36	Response to Comment on "Trapping of Lipopolysaccharide to Promote Immunotherapy against Colorectal Cancer and Attenuate Liver Metastasis― Advanced Materials, 2019, 31, e1902569.	11.1	0

#	Article	IF	CITATIONS
37	Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma. Acta Biomaterialia, 2019, 92, 229-240.	4.1	33
38	Drug delivery systems targeting tumor-associated fibroblasts for cancer immunotherapy. Cancer Letters, 2019, 448, 31-39.	3.2	55
39	Combretastatin A4 nanodrug combined plerixafor for inhibiting tumor growth and metastasis simultaneously. Biomaterials Science, 2019, 7, 5283-5291.	2.6	14
40	Nanotechnology intervention of the microbiome for cancer therapy. Nature Nanotechnology, 2019, 14, 1093-1103.	15.6	151
41	Vasodilator Hydralazine Promotes Nanoparticle Penetration in Advanced Desmoplastic Tumors. ACS Nano, 2019, 13, 1751-1763.	7.3	44
42	Local Blockade of Interleukin 10 and C-X-C Motif Chemokine Ligand 12 with Nano-Delivery Promotes Antitumor Response in Murine Cancers. ACS Nano, 2018, 12, 9830-9841.	7.3	101
43	Trapping of Lipopolysaccharide to Promote Immunotherapy against Colorectal Cancer and Attenuate Liver Metastasis. Advanced Materials, 2018, 30, e1805007.	11.1	125
44	Reducing the toxicity of amphotericin B by encapsulation using methoxy poly(ethylene) Tj ETQq0 0 0 rgBT /Overl Science, 2018, 6, 2189-2196.	ock 10 Tf 2.6	50 467 Td (g 23
45	Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 2018, 87, 70-106.	11.8	144
46	Nanoparticleâ€mediated HMGA1 Silencing Promotes Lymphocyte Infiltration and Boosts Checkpoint Blockade Immunotherapy for Cancer. Advanced Functional Materials, 2018, 28, 1802847.	7.8	29
47	Poly (l-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate improves the anticancer efficacy of gemcitabine. International Journal of Pharmaceutics, 2018, 550, 79-88.	2.6	13
48	Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nature Communications, 2018, 9, 2237.	5.8	329
49	Inhibiting Solid Tumor Growth In Vivo by Non‶umorâ€Penetrating Nanomedicine. Small, 2017, 13, 1600954.	5.2	41
50	A poly(l-glutamic acid)-combretastatin A4 conjugate for solid tumor therapy: Markedly improved therapeutic efficiency through its low tissue penetration in solid tumor. Acta Biomaterialia, 2017, 53, 179-189.	4.1	69
51	Curcumin-encapsulated polymeric nanoparticles for metastatic osteosarcoma cells treatment. Science China Materials, 2017, 60, 995-1007.	3.5	10
52	Nanomaterials for cancer immunotherapy. Biomaterials, 2017, 148, 16-30.	5.7	226
53	Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy. Theranostics, 2016, 6, 1023-1030.	4.6	24
54	Exploring the in vivo fates of RGD and PEG modified PEI/DNA nanoparticles by optical imaging and optoacoustic imaging. RSC Advances, 2016, 6, 112552-112561.	1.7	4

#	Article	IF	CITATIONS
55	Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. Journal of Controlled Release, 2016, 231, 94-102.	4.8	54
56	Functional computer-to-plate near-infrared absorbers as highly efficient photoacoustic dyes. Acta Biomaterialia, 2016, 43, 262-268.	4.1	6
57	Cisplatin Loaded Poly(L-glutamic acid)-<1>g 1 -Methoxy Poly(ethylene glycol) Complex Nanoparticles for Potential Cancer Therapy: Preparation, <1>In 1 <1>Vitro 1 and <1>In Vivo 1 Evaluation. Journal of Biomedical Nanotechnology, 2016, 12, 69-78.	0.5	58
58	Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 377-386.	1.7	69
59	A cooperative polymeric platform for tumor-targeted drug delivery. Chemical Science, 2016, 7, 728-736.	3.7	46
60	Co-administration of iRGD enhancing the anticancer efficacy of cisplatin-loaded polypeptide nanoparticles. Journal of Controlled Release, 2015, 213, e145-e146.	4.8	8
61	Coadministration of Vascular Disrupting Agents and Nanomedicines to Eradicate Tumors from Peripheral and Central Regions. Small, 2015, 11, 3755-3761.	5.2	53
62	Poly(ornithineâ€coâ€arginineâ€coâ€glycineâ€coâ€aspartic Acid): Preparation via NCA Polymerization and its Potential as a Polymeric Tumorâ€Penetrating Agent. Macromolecular Bioscience, 2015, 15, 829-838.	2.1	4
63	Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(l-glutamic) Tj ETQq1 1 0.784314 rgE Controlled Release, 2015, 205, 89-97.	T /Overloc 4.8	2k 10 Tf 50 122
64	Comprehensive studies of pharmacokinetics and biodistribution of indocyanine green and liposomal indocyanine green by multispectral optoacoustic tomography. RSC Advances, 2015, 5, 3807-3813.	1.7	39
65	PEG-polypeptide conjugated with LHRH as an efficient vehicle for targeted delivery of doxorubicin to breast cancer. Journal of Controlled Release, 2015, 213, e99.	4.8	7
66	Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomaterialia, 2014, 10, 1392-1402.	4.1	113
67	Synergistic Antitumor Effects of Doxorubicin‣oaded Carboxymethyl Cellulose Nanoparticle in Combination with Endostar for Effective Treatment of Nonâ€Smallâ€Cell Lung Cancer. Advanced Healthcare Materials, 2014, 3, 1877-1888.	3.9	33
68	Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. Journal of Controlled Release, 2014, 194, 220-227.	4.8	169
69	Charge-Conversional PEG-Polypeptide Polyionic Complex Nanoparticles from Simple Blending of a Pair of Oppositely Charged Block Copolymers as an Intelligent Vehicle for Efficient Antitumor Drug Delivery. Molecular Pharmaceutics, 2014, 11, 1562-1574.	2.3	55
70	Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials, 2014, 35, 6118-6129.	5.7	304
71	Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials, 2014, 35, 3005-3014.	5.7	126
72	Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials, 2014, 35, 3851-3864.	5.7	244

#	Article	IF	CITATIONS
73	Polypeptide/Doxorubicin Hydrochloride Polymersomes Prepared Through Organic Solvent-free Technique as a Smart Drug Delivery Platform. Macromolecular Bioscience, 2013, 13, 1150-1162.	2.1	37
74	Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomaterialia, 2013, 9, 9330-9342.	4.1	180
75	pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. Polymer Chemistry, 2013, 4, 1199-1207.	1.9	121
76	Nanoscaled Poly(<scp> </scp> -glutamic acid)/Doxorubicin-Amphiphile Complex as pH-responsive Drug Delivery System for Effective Treatment of Nonsmall Cell Lung Cancer. ACS Applied Materials & Interfaces, 2013, 5, 1781-1792.	4.0	190
77	pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter, 2013, 9, 2637.	1.2	103
78	Methoxypoly(ethylene glycol) <i>â€blockâ€</i> Poly(<scp>L</scp> â€glutamic acid)‣oaded Cisplatin and a Combination With iRGD for the Treatment of Nonâ€Smallâ€Cell Lung Cancers. Macromolecular Bioscience, 2012, 12, 1514-1523.	2.1	83
79	Tunable pHâ€Sensitive Poly(<i>β</i> â€amino ester)s Synthesized from Primary Amines and Diacrylates for Intracellular Drug Delivery. Macromolecular Bioscience, 2012, 12, 1375-1383.	2.1	50
80	Facile construction of functional biosurface via SI-ATRP and "click glycosylation― Colloids and Surfaces B: Biointerfaces, 2012, 93, 188-194.	2.5	23