
## **Charbel Moussa**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4580830/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Influence of crystallographic orientation on the recrystallization of pure tantalum through<br>microstructure-based estimation of the stored energy. International Journal of Refractory Metals<br>and Hard Materials, 2022, 104, 105786.  | 1.7 | 3         |
| 2  | Orientation and deformation conditions dependence of dislocation substructures in cold deformed pure tantalum. Materials Characterization, 2021, 171, 110789.                                                                              | 1.9 | 9         |
| 3  | Influence of pre-recovery on the recrystallization of pure tantalum. Journal of Materials Science, 2021, 56, 15354-15378.                                                                                                                  | 1.7 | 9         |
| 4  | Full field modeling of dynamic recrystallization in a CPFEM context – Application to 304L steel.<br>Computational Materials Science, 2020, 184, 109892.                                                                                    | 1.4 | 11        |
| 5  | Continuous dynamic recrystallization in a Zn–Cu–Ti sheet subjected to bilinear tensile strain.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2020, 789, 139689.                | 2.6 | 21        |
| 6  | Extrema of micro-hardness in fully pearlitic compacted graphite cast iron. International Journal of<br>Cast Metals Research, 2020, 33, 218-225.                                                                                            | 0.5 | 3         |
| 7  | A mean field model of agglomeration as an extension to existing precipitation models. Acta Materialia, 2020, 192, 40-51.                                                                                                                   | 3.8 | 4         |
| 8  | Dynamic and Post-dynamic Recrystallization During Supersolvus Forging of the New Nickel-Based<br>Superalloy—VDM Alloy 780. Minerals, Metals and Materials Series, 2020, , 450-460.                                                         | 0.3 | 7         |
| 9  | DIGIMU®: Full field recrystallization simulations for optimization of multi-pass processes. AIP Conference Proceedings, 2019, , .                                                                                                          | 0.3 | 7         |
| 10 | Estimation of geometrically necessary dislocation density from filtered EBSD data by a local linear adaptation of smoothing splines. Journal of Applied Crystallography, 2019, 52, 548-563.                                                | 1.9 | 30        |
| 11 | Full-Field Approach for Modeling of Microstructural Evolutions During Forming Processes. , 2019, , .                                                                                                                                       |     | 0         |
| 12 | A new topological approach for the mean field modeling of dynamic recrystallization. Materials and Design, 2018, 146, 194-207.                                                                                                             | 3.3 | 21        |
| 13 | On the Coupling between Recrystallization and Precipitation Following Hot Deformation in a γ-γ′<br>Nickel-Based Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2018, 49, 4199-4213. | 1.1 | 31        |
| 14 | Prediction of the grain size evolution during thermal treatments at the mesoscopic scale: a numerical framework and industrial examples. Materiaux Et Techniques, 2018, 106, 105.                                                          | 0.3 | 2         |
| 15 | Statistical analysis of dislocations and dislocation boundaries from EBSD data. Ultramicroscopy, 2017, 179, 63-72.                                                                                                                         | 0.8 | 95        |
| 16 | Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws. Materials and Design, 2017, 133, 498-519.                                                                               | 3.3 | 50        |
| 17 | Full field modeling of dynamic recrystallization in a global level set framework, application to 304L<br>stainless steel. MATEC Web of Conferences, 2016, 80, 02005.                                                                       | 0.1 | 1         |
| 18 | Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations. Journal of Materials Science, 2016, 51, 10970-10981.                                                                              | 1.7 | 14        |

CHARBEL MOUSSA

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mechanical characterization of carbonitrided steel with spherical indentation using the average representative strain. Materials and Design, 2016, 89, 1191-1198.                                                                                                           | 3.3 | 18        |
| 20 | About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum. IOP<br>Conference Series: Materials Science and Engineering, 2015, 89, 012038.                                                                                                 | 0.3 | 110       |
| 21 | Identification of the hardening law of materials with spherical indentation using the average representative strain for several penetration depths. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 409-416. | 2.6 | 41        |
| 22 | Study of the concept of representative strain and constraint factor introduced by Vickers indentation. Mechanics of Materials, 2014, 68, 1-14.                                                                                                                              | 1.7 | 30        |
| 23 | Evaluation of the tensile properties of a material through spherical indentation: definition of an average representative strain and a confidence domain. Journal of Materials Science, 2014, 49, 592-603.                                                                  | 1.7 | 39        |
| 24 | Experimental and numerical investigation on carbonitrided steel characterization with spherical indentation. Surface and Coatings Technology, 2014, 258, 782-789.                                                                                                           | 2.2 | 14        |
| 25 | Comparaison entre les déformations représentatives de l'indentation Vickers et de l'indentation<br>sphérique. Materiaux Et Techniques, 2013, 101, 303.                                                                                                                      | 0.3 | 3         |
| 26 | Revue bibliographique sur la caractérisation mécanique des matériaux utilisant la déformation<br>représentative en indentation sphérique. Materiaux Et Techniques, 2013, 101, 302.                                                                                          | 0.3 | 1         |
| 27 | Characterization of homogenous and plastically graded materials with spherical indentation and inverse analysis. Journal of Materials Research, 2012, 27, 20-27.                                                                                                            | 1.2 | 24        |
| 28 | Determination of the Plastic Strain by Spherical Indentation of Uniaxially Deformed Sheet Metals. Key<br>Engineering Materials, 0, 651-653, 950-956.                                                                                                                        | 0.4 | 2         |