Jon E Keeley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4580818/publications.pdf

Version: 2024-02-01

		18482		13379
152	19,575	62		130
papers	citations	h-index		g-index
			. '	
157	157	157		12622
157	157	157		12623
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Fire in the Earth System. Science, 2009, 324, 481-484.	12.6	2,330
2	Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 2009, 18, 116.	2.4	1,470
3	Effects of Invasive Alien Plants on Fire Regimes. BioScience, 2004, 54, 677.	4.9	1,193
4	The human dimension of fire regimes on Earth. Journal of Biogeography, 2011, 38, 2223-2236.	3.0	845
5	A Burning Story: The Role of Fire in the History of Life. BioScience, 2009, 59, 593-601.	4.9	749
6	Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 2011, 16, 406-411.	8.8	735
7	PLANT FUNCTIONAL TRAITS IN RELATION TO FIRE IN CROWN-FIRE ECOSYSTEMS. Ecology, 2004, 85, 1085-1100.	3.2	539
8	HUMAN INFLUENCE ON CALIFORNIA FIRE REGIMES. , 2007, 17, 1388-1402.		515
9	Evolutionary ecology of resprouting and seeding in fireâ€prone ecosystems. New Phytologist, 2014, 204, 55-65.	7.3	380
10	Seed germination and life history syndromes in the California chaparral. Botanical Review, The, 1991, 57, 81-116.	3.9	372
11	Reproduction of Chaparral Shrubs After Fire: A Comparison of Sprouting and Seeding Strategies. American Midland Naturalist, 1978, 99, 142.	0.4	345
12	Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecological Applications, 2009, 19, 305-320.	3.8	326
13	Fire and the Miocene expansion of C4 grasslands. Ecology Letters, 2005, 8, 683-690.	6.4	291
14	Fire Management Impacts on Invasive Plants in the Western United States. Conservation Biology, 2006, 20, 375-384.	4.7	250
15	SMOKE-INDUCED SEED GERMINATION IN CALIFORNIA CHAPARRAL. Ecology, 1998, 79, 2320-2336.	3.2	230
16	Resilience of mediterranean shrub communities to fires. Tasks for Vegetation Science, 1986, , 95-112.	0.6	225
17	FIRE AND GRAZING IMPACTS ON PLANT DIVERSITY AND ALIEN PLANT INVASIONS IN THE SOUTHERN SIERRA NEVADA. , 2003, 13, 1355-1374.		217
18	The national Fire and Fire Surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels. Ecological Applications, 2009, 19, 285-304.	3.8	213

#	Article	IF	CITATIONS
19	Historic Fire Regime in Southern California Shrublands. Conservation Biology, 2001, 15, 1536-1548.	4.7	199
20	Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 2019, 17, 289-295.	4.0	199
21	Towards understanding resprouting at the global scale. New Phytologist, 2016, 209, 945-954.	7.3	197
22	Flammability as an ecological and evolutionary driver. Journal of Ecology, 2017, 105, 289-297.	4.0	196
23	Ecological effects of large fires on US landscapes: benefit or catastrophe?. International Journal of Wildland Fire, 2008, 17, 696.	2.4	195
24	CAM photosynthesis in submerged aquatic plants. Botanical Review, The, 1998, 64, 121-175.	3.9	188
25	Seed Production, Seed Populations in Soil, and Seedling Production After Fire for Two Congeneric Pairs of Sprouting and Nonsprouting Chaparal Shrubs. Ecology, 1977, 58, 820-829.	3.2	182
26	Ecology and evolution of pine life histories. Annals of Forest Science, 2012, 69, 445-453.	2.0	176
27	DETERMINANTS OF POSTFIRE RECOVERY AND SUCCESSION IN MEDITERRANEAN-CLIMATE SHRUBLANDS OF CALIFORNIA. , 2005, 15, 1515-1534.		169
28	Native American impacts on fire regimes of the California coastal ranges. Journal of Biogeography, 2002, 29, 303-320.	3.0	168
29	A Structural Equation Model Analysis Of Postfire Plant Diversity In California Shrublands. , 2006, 16, 503-514.		166
30	Wildfires and global change. Frontiers in Ecology and the Environment, 2021, 19, 387-395.	4.0	153
31	Mast Flowering and Semelparity in Bamboos: The Bamboo Fire Cycle Hypothesis. American Naturalist, 1999, 154, 383-391.	2.1	146
32	Postfire Succession of the Herbaceous Flora in Southern California Chaparral. Ecology, 1981, 62, 1608-1621.	3.2	143
33	Testing a basic assumption of shrubland fire management: how important is fuel age?. Frontiers in Ecology and the Environment, 2004, 2, 67-72.	4.0	142
34	Abrupt Climate-Independent Fire Regime Changes. Ecosystems, 2014, 17, 1109-1120.	3.4	139
35	Human presence diminishes the importance of climate in driving fire activity across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13750-13755.	7.1	137
36	Convergent seed germination in South African fynbos and Californian chaparral., 1997, 133, 153-167.		135

#	Article	IF	CITATIONS
37	Fire-driven alien invasion in a fire-adapted ecosystem. Oecologia, 2012, 169, 1043-1052.	2.0	135
38	Recruitment of Seedlings and Vegetative Sprouts in Unburned Chaparral. Ecology, 1992, 73, 1194-1208.	3.2	131
39	Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire. PLoS ONE, 2012, 7, e33954.	2.5	131
40	ALIEN PLANT DYNAMICS FOLLOWING FIRE IN MEDITERRANEAN-CLIMATE CALIFORNIA SHRUBLANDS. , 2005, 15, 2109-2125.		129
41	Location, timing and extent of wildfire vary by cause of ignition. International Journal of Wildland Fire, 2015, 24, 37.	2.4	121
42	The role of defensible space for residential structure protection during wildfires. International Journal of Wildland Fire, 2014, 23, 1165.	2.4	118
43	FIRE SEVERITY AND ECOSYTEM RESPONSES FOLLOWING CROWN FIRES IN CALIFORNIA SHRUBLANDS. Ecological Applications, 2008, 18, 1530-1546.	3.8	117
44	Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature, 1984, 310, 694-695.	27.8	116
45	Epicormic Resprouting in Fire-Prone Ecosystems. Trends in Plant Science, 2017, 22, 1008-1015.	8.8	112
46	Large, highâ€intensity fire events in southern California shrublands: debunking the fineâ€grain age patch model. Ecological Applications, 2009, 19, 69-94.	3.8	110
47	Climate Change and Future Fire Regimes: Examples from California. Geosciences (Switzerland), 2016, 6, 37.	2.2	107
48	Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest. International Journal of Wildland Fire, 2006, 15, 37.	2.4	103
49	Fire Management of California Shrubland Landscapes. Environmental Management, 2002, 29, 395-408.	2.7	97
50	Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecology, 2019, 15, .	3.0	93
51	Impact of antecedent climate on fire regimes in coastal California. International Journal of Wildland Fire, 2004, 13, 173.	2.4	91
52	Ecological effects of alternative fuel-reduction treatments: highlights of the National Fire and Fire Surrogate study (FFS). International Journal of Wildland Fire, 2013, 22, 63.	2.4	90
53	DEMOGRAPHIC PATTERNS OF POSTFIRE REGENERATION IN MEDITERRANEAN-CLIMATE SHRUBLANDS OF CALIFORNIA. Ecological Monographs, 2006, 76, 235-255.	5.4	89
54	Land Use Planning and Wildfire: Development Policies Influence Future Probability of Housing Loss. PLoS ONE, 2013, 8, e71708.	2.5	89

#	Article	IF	CITATIONS
55	Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environmental Research Letters, 2015, 10, 114013.	5.2	85
56	Historical patterns of wildfire ignition sources in California ecosystems. International Journal of Wildland Fire, 2018, 27, 781.	2.4	83
57	Fire and Plant Diversification in Mediterranean-Climate Regions. Frontiers in Plant Science, 2018, 9, 851.	3.6	81
58	SIMULATING THE EFFECTS OF FREQUENT FIRE ON SOUTHERN CALIFORNIA COASTAL SHRUBLANDS. , 2006, 16, 1744-1756.		80
59	DISTRIBUTION OF DIURNAL ACID METABOLISM IN THE GENUS ISOETES. American Journal of Botany, 1982, 69, 254-257.	1.7	77
60	Large California wildfires: 2020 fires in historical context. Fire Ecology, 2021, 17, .	3.0	77
61	Demographic structure of California chaparral in the long-term absence of fire. Journal of Vegetation Science, 1992, 3, 79-90.	2.2	75
62	Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA. Diversity and Distributions, 2005, 11, 525-537.	4.1	75
63	Carbon Assimilation Characteristics of the Aquatic CAM Plant, <i>Isoetes howellii</i> Physiology, 1984, 76, 525-530.	4.8	74
64	Comparing the role of fuel breaks across southern California national forests. Forest Ecology and Management, 2011, 261, 2038-2048.	3.2	73
65	POSTâ€FIRE REGENERATION OF SOUTHERN CALIFORNIA CHAPARRAL. American Journal of Botany, 1981, 68, 524-530.	1.7	72
66	Mechanisms of forest resilience. Forest Ecology and Management, 2022, 512, 120129.	3.2	70
67	ISOETES HOWELLII: A SUBMERGED AQUATIC CAM PLANT?. American Journal of Botany, 1981, 68, 420-424.	1.7	69
68	Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest. International Journal of Wildland Fire, 2007, 16, 96.	2.4	69
69	Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest. Canadian Journal of Forest Research, 2007, 37, 11-22.	1.7	68
70	C 4 photosynthetic modifications in the evolutionary transition from land to water in aquatic grasses. Oecologia, 1998, 116, 85-97.	2.0	61
71	Postfire Recovery of California Coastal Sage Scrub. American Midland Naturalist, 1984, 111, 105.	0.4	60
72	Fuel Breaks Affect Nonnative Species Abundance In Californian Plant Communities., 2006, 16, 515-527.		58

#	Article	IF	CITATIONS
73	The importance of building construction materials relative to other factors affecting structure survival during wildfire. International Journal of Disaster Risk Reduction, 2017, 21, 140-147.	3.9	57
74	History and Management of Crown-Fire Ecosystems: a Summary and Response. Conservation Biology, 2001, 15, 1561-1567.	4.7	55
75	Isoetes howellii: A Submerged Aquatic Cam Plant?. American Journal of Botany, 1981, 68, 420.	1.7	54
76	Impact of Past, Present, and Future Fire Regimes on North American Mediterranean Shrublands. , 2003, , 218-262.		53
77	Gas Exchange Characteristics of the Submerged Aquatic Crassulacean Acid Metabolism Plant, <i>Isoetes howellii</i> Isoetes howelliiIsoetes howellii	4.8	52
78	Crassulacean acid metabolism in the seasonally submerged aquatic Isoetes howellii. Oecologia, 1983, 58, 57-62.	2.0	49
79	Species-area relationships in Mediterranean-climate plant communities. Journal of Biogeography, 2003, 30, 1629-1657.	3.0	49
80	Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California. International Journal of Wildland Fire, 2011, 20, 764.	2.4	49
81	Different historical fire–climate patterns in California. International Journal of Wildland Fire, 2017, 26, 253.	2.4	48
82	Plot shape effects on plant species diversity measurements. Journal of Vegetation Science, 2005, 16, 249-256.	2.2	47
83	Post-Fire Regeneration of Southern California Chaparral. American Journal of Botany, 1981, 68, 524.	1.7	46
84	Factors Associated with Structure Loss in the 2013–2018 California Wildfires. Fire, 2019, 2, 49.	2.8	45
85	Exotic Annual Bromus Invasions: Comparisons Among Species and Ecoregions in the Western United States. Springer Series on Environmental Management, 2016, , 11-60.	0.3	44
86	Fire history of the San Francisco East Bay region and implications for landscape patterns. International Journal of Wildland Fire, 2005, 14, 285.	2.4	43
87	The impact of antecedent fire area on burned area in southern California coastal ecosystems. Journal of Environmental Management, 2012, 113, 301-307.	7.8	42
88	Faunal Responses to Fire in Chaparral and Sage Scrub in California, USA. Fire Ecology, 2015, 11, 128-148.	3.0	42
89	Distribution of Diurnal Acid Metabolism in the Genus Isoetes. American Journal of Botany, 1982, 69, 254.	1.7	40
90	Crassulacean acid metabolism in Isoetes bolanderi in high elevation oligotrophic lakes. Oecologia, 1983, 58, 63-69.	2.0	39

#	Article	IF	CITATIONS
91	Ecological strategies in California chaparral: interacting effects of soils, climate, and fire on specific leaf area. Plant Ecology and Diversity, 2011, 4, 179-188.	2.4	38
92	Ecological impacts of wheat seeding after a Sierra Nevada wildfire. International Journal of Wildland Fire, 2004, 13, 73.	2.4	37
93	Fire, climate and changing forests. Nature Plants, 2019, 5, 774-775.	9.3	36
94	Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. Diversity and Distributions, 2019, 25, 90-101.	4.1	34
95	Effects of postfire climate and seed availability on postfire conifer regeneration. Ecological Applications, 2021, 31, e02280.	3.8	33
96	Fire suppression impacts on postfire recovery of Sierra Nevada chaparral shrublands. International Journal of Wildland Fire, 2005, 14, 255.	2.4	33
97	The Effect of Ecophysiological Traits on Live Fuel Moisture Content. Fire, 2019, 2, 28.	2.8	32
98	Plot shape effects on plant species diversity measurements. Journal of Vegetation Science, 2005, 16, 249.	2.2	32
99	Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona. Ecosphere, 2012, 3, 1-17.	2.2	31
100	Influence of Fuels, Weather and the Built Environment on the Exposure of Property to Wildfire. PLoS ONE, 2014, 9, e111414.	2.5	31
101	A Plant Distribution Shift: Temperature, Drought or Past Disturbance?. PLoS ONE, 2012, 7, e31173.	2.5	29
102	ENDOMYCORRHIZAE INFLUENCE GROWTH OF BLACKGUM SEEDLINGS IN FLOODED SOILS. American Journal of Botany, 1980, 67, 6-9.	1.7	26
103	On Incorporating Fire into Our Thinking about Natural Ecosystems: A Response to Saha and Howe. American Naturalist, 2001, 158, 664-670.	2.1	25
104	THE ROLE OF FIRE REFUGIA IN THE DISTRIBUTION OF PINUS SABINIANA (PINACEAE) IN THE SOUTHERN SIERRA NEVADA. Madroñ0, 2006, 53, 364-372.	0.4	25
105	Historical reconstructions of California wildfires vary by data source. International Journal of Wildland Fire, 2016, 25, 1221.	2.4	25
106	Chaparral Landscape Conversion in Southern California. Springer Series on Environmental Management, 2018, , 323-346.	0.3	25
107	Extent and drivers of vegetation type conversion in Southern California chaparral. Ecosphere, 2019, 10, e02796.	2.2	25
108	Different fire–climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion. International Journal of Wildland Fire, 2015, 24, 27.	2.4	22

#	Article	IF	CITATIONS
109	Malic Acid Accumulation in Roots in Response to Flooding: Evidence Contrary to its Role as an Alternative to Ethanol. Journal of Experimental Botany, 1978, 29, 1345-1349.	4.8	21
110	Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands. Diversity and Distributions, 2003, 9, 253-259.	4.1	21
111	Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands. Environmental Modelling and Software, 2007, 22, 1641-1653.	4.5	21
112	Resprouting and seeding hypotheses: a test of the gap-dependent model using resprouting and obligate seeding subspecies of Arctostaphylos. Plant Ecology, 2016, 217, 743-750.	1.6	21
113	Trends and drivers of fire activity vary across California aridland ecosystems. Journal of Arid Environments, 2017, 144, 110-122.	2.4	21
114	ANAEROBIOSIS AS A STIMULUS TO GERMINATION IN TWO VERNAL POOL GRASSES. American Journal of Botany, 1988, 75, 1086-1089.	1.7	20
115	Fire and Invasive Plants on California Landscapes. Ecological Studies, 2011, , 193-221.	1.2	20
116	Setting priorities for private land conservation in fire-prone landscapes: Are fire risk reduction and biodiversity conservation competing or compatible objectives?. Ecology and Society, 2016, 21, .	2.3	18
117	Endomycorrhizae Influence Growth of Blackgum Seedlings in Flooded Soils. American Journal of Botany, 1980, 67, 6.	1.7	18
118	DIURNAL ACID METABOLISM IN ISOETES HOWELLII FROM A TEMPORARY POOL AND A PERMANENT LAKE. American Journal of Botany, 1983, 70, 854-857.	1.7	17
119	Vegetation type conversion in the US Southwest: frontline observations and management responses. Fire Ecology, 2022, 18, .	3.0	17
120	Biogeochemical legacy of prescribed fire in a giant sequoia–mixed conifer forest: A 16â€year record of watershed balances. Journal of Geophysical Research, 2008, 113, .	3.3	16
121	Can private land conservation reduce wildfire risk to homes? A case study in San Diego County, California, USA. Landscape and Urban Planning, 2017, 157, 161-169.	7.5	15
122	Multiple-Scale Relationships between Vegetation, the Wildland–Urban Interface, and Structure Loss to Wildfire in California. Fire, 2021, 4, 12.	2.8	14
123	A critical assessment of the Burning Index in Los Angeles County, California. International Journal of Wildland Fire, 2007, 16, 473.	2.4	14
124	Mapping fire regime ecoregions in California. International Journal of Wildland Fire, 2020, 29, 595.	2.4	14
125	Carbon, oxygen and hydrogen isotope abundances inStylites reflect its unique physiology. Oecologia, 1985, 67, 598-600.	2.0	12
126	CARBON UPTAKE CHARACTERISTICS IN TWO HIGH ELEVATION POPULATIONS OF THE AQUATIC CAM PLANT ISOETES BOLANDERI (ISOETACAE). American Journal of Botany, 1990, 77, 682-688.	1.7	11

#	Article	IF	Citations
127	Impacts of Mastication Fuel Treatments on California, USA, Chaparral Vegetation Structure and Composition. Fire Ecology, 2017, 13, 120-138.	3.0	11
128	Ignitions explain more than temperature or precipitation in driving Santa Ana wind fires. Science Advances, $2021, 7, .$	10.3	11
129	Anaerobiosis as a Stimulus to Germination in Two Vernal Pool Grasses. American Journal of Botany, 1988, 75, 1086.	1.7	11
130	Changes in fire intensity have carryâ€over effects on plant responses after the next fire in southern <scp>C</scp> alifornia chaparral. Journal of Vegetation Science, 2013, 24, 395-404.	2.2	10
131	Carbon Uptake Characteristics in Two High Elevation Populations of the Aquatic Cam Plant Isoetes bolanderi (Isoetacae). American Journal of Botany, 1990, 77, 682.	1.7	10
132	Fireâ€driven vegetation type conversion in Southern California. Ecological Applications, 2022, 32, e2626.	3.8	10
133	Demographic Structure of Ceanothus Megacarpus Chaparral in the Long Absence of Fire. Ecology, 1987, 68, 211-213.	3.2	9
134	Aquatic CAM photosynthesis: A brief history of its discovery. Aquatic Botany, 2014, 118, 38-44.	1.6	9
135	Postfire Chaparral Regeneration Under Mediterranean and Non-Mediterranean Climates. Madroño, 2012, 59, 109-127.	0.4	8
136	Diurnal Acid Metabolism in Isoetes howellii from a Temporary Pool and a Permanent Lake. American Journal of Botany, 1983, 70, 854.	1.7	8
137	The application of prototype point processes for the summary and description of California wildfires. Journal of Time Series Analysis, 2011, 32, 420-429.	1.2	7
138	The 2003 and 2007 Wildfires in Southern California., 2013,, 42-52.		7
139	Native Peoples' Relationship to theÂCalifornia Chaparral. Springer Series on Environmental Management, 2018, , 79-121.	0.3	7
140	Short note Report of diurnal acid metabolism in two aquatic Australian species of Isoetes. Austral Ecology, 1983, 8, 203-204.	1.5	5
141	Postfire population dynamics of a fire-dependent cypress. Plant Ecology, 2019, 220, 605-617.	1.6	5
142	NO news is no new news. Seed Science Research, 2005, 15, 367-371.	1.7	3
143	Dispersal Limitation Does Not Control High Elevational Distribution of Alien Plant Species in the Southern Sierra Nevada, California. Natural Areas Journal, 2016, 36, 277-287.	0.5	3
144	Attacking invasive grasses. Applied Vegetation Science, 2015, 18, 541-542.	1.9	2

#	Article	IF	CITATIONS
145	SMOKE-INDUCED SEED GERMINATION IN CALIFORNIA CHAPARRAL. , 1998, 79, 2320.		2
146	Climate change and plant regeneration from seeds in Mediterranean regions of the Northern Hemisphere. , 2022 , , $101-114$.		2
147	Three Papers That Influenced The Direction of My Career. Bulletin of the Ecological Society of America, 2014, 95, 216-217.	0.2	1
148	Drivers of Chaparral Plant Diversity. Springer Series on Environmental Management, 2018, , 29-51.	0.3	1
149	THREE. Fire as an Ecosystem Process. , 2019, , 27-46.		1
150	A Structural Equation Model Analysis Of Postfire Plant Diversity In California Shrublands., 2006, 16, 503.		1
151	Characters in Arctostaphylos Taxonomy. Madroño, 2017, 64, 138-153.	0.4	O
152	Framework for monitoring shrubland community integrity in California Mediterranean type ecosystems: Information for policy makers and land managers. Conservation Science and Practice, 2019, 1, e109.	2.0	0