
Ricardo de Oliveira Bordonal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/458065/publications.pdf Version: 2024-02-01

Ricardo de Oliveira

#	Article	lF	CITATIONS
1	Avoiding burning practice and its consequences on the greenhouse gas emission in sugarcane areas southern Brazil. Environmental Science and Pollution Research, 2022, 29, 719-730.	2.7	10
2	Implications of regional agricultural land use dynamics and deforestation associated with sugarcane expansion for soil carbon stocks in Brazil. Regional Environmental Change, 2022, 22, 1.	1.4	9
3	Soil structure changes induced by tillage and reduction of machinery traffic on sugarcane – A diversity of assessment scales. Soil and Tillage Research, 2022, 223, 105469.	2.6	10
4	Long term sugarcane straw removal affects soil phosphorus dynamics. Soil and Tillage Research, 2021, 208, 104898.	2.6	13
5	Mapping the environmental and technoâ€economic potential of biojet fuel production from biomass residues in Brazil. Biofuels, Bioproducts and Biorefining, 2021, 15, 282-304.	1.9	16
6	Untrafficked furrowed seedbed sustains soil physical quality in sugarcane mechanized fields. European Journal of Soil Science, 2021, 72, 2150-2164.	1.8	9
7	Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil. Environment, Development and Sustainability, 2021, 23, 16410-16427.	2.7	2
8	Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 2021, 163, 113315.	2.5	33
9	Multilocation changes in soil carbon stocks from sugarcane straw removal for bioenergy production in Brazil. GCB Bioenergy, 2021, 13, 1099-1111.	2.5	9
10	How do nitrogen fertilization and cover crop influence soil C-N stocks and subsequent yields of sugarcane?. Soil and Tillage Research, 2021, 211, 104999.	2.6	5
11	Machinery traffic in sugarcane straw removal operation: Stress transmitted and soil compaction. Soil and Tillage Research, 2021, 213, 105122.	2.6	12
12	Implications of regional N2O–N emission factors on sugarcane ethanol emissions and granted decarbonization certificates. Renewable and Sustainable Energy Reviews, 2021, 149, 111423.	8.2	16
13	A Multivariate Approach to Determine the Economic Profitability of Sugarcane Production Under Diverse Climatic Conditions in Brazil. Sugar Tech, 2020, 22, 954-966.	0.9	4
14	Implications of Sugarcane Straw Removal for Soil Greenhouse Gas Emissions in São Paulo State, Brazil. Bioenergy Research, 2019, 12, 843-857.	2.2	16
15	Sugarcane Straw Removal: Implications to Soil Fertility and Fertilizer Demand in Brazil. Bioenergy Research, 2019, 12, 888-900.	2.2	40
16	Multilocation Straw Removal Effects on Sugarcane Yield in South-Central Brazil. Bioenergy Research, 2019, 12, 813-829.	2.2	37
17	Can reduced tillage sustain sugarcane yield and soil carbon if straw is removed?. Bioenergy Research, 2019, 12, 764-777.	2.2	41
18	Changes in Soil Pest Populations Caused by Sugarcane Straw Removal in Brazil. Bioenergy Research, 2019, 12, 878-887.	2.2	10

RICARDO DE OLIVEIRA

#	Article	IF	CITATIONS
19	Straw Removal Affects Soil Physical Quality and Sugarcane Yield in Brazil. Bioenergy Research, 2019, 12, 789-800.	2.2	37
20	Microscale Analyses of Mineral Particles in Sugar Cane Bagasse and Straw Shed Light on How Debris Can Be Incorporated into Biomass. Energy & Fuels, 2019, 33, 9965-9973.	2.5	6
21	Soil physical quality associated with tillage practices during sugarcane planting in south-central Brazil. Soil and Tillage Research, 2019, 195, 104383.	2.6	37
22	Short-term impacts of high levels of nitrogen fertilization on soil carbon dynamics in a tropical pasture. Catena, 2019, 174, 413-416.	2.2	10
23	Greenhouse gas emissions in conversion from extensive pasture to other agricultural systems in the Andean region of Colombia. Environment, Development and Sustainability, 2019, 21, 249-262.	2.7	14
24	Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development, 2018, 38, 1.	2.2	251
25	Sustainable intensification of sugarcane production under irrigation systems, considering climate interactions and agricultural efficiency. Journal of Cleaner Production, 2018, 204, 861-871.	4.6	20
26	Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, 2018, 328, 79-90.	2.3	52
27	Soil physical quality response to sugarcane straw removal in Brazil: A multi-approach assessment. Soil and Tillage Research, 2018, 184, 301-309.	2.6	66
28	Evaluation of Nitrogen Fertilization in Sugarcane Leaves Using Laser-Induced Breakdown Spectroscopy (LIBS) Coupled with Principal Component Analysis (PCA). , 2018, , .		1
29	Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production, 2017, 142, 420-431.	4.6	104
30	Soil CO ₂ –C Emissions and Correlations with Soil Properties in Degraded and Managed Pastures in Southern Brazil. Land Degradation and Development, 2017, 28, 1263-1273.	1.8	9
31	Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy, 2017, 9, 1181-1195.	2.5	164
32	Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane () Tj ETQq0 0 0 rgBT / 2017, 240, 54-65.	Overlock 1 2.5	10 Tf 50 227 38
33	Sugarcane Fields: Harvest Systems and Residue Management. , 2017, , 2231-2237.		0
34	Environmental and economic impacts of different sugarcane production systems in the ethanol biorefinery. Biofuels, Bioproducts and Biorefining, 2016, 10, 89-106.	1.9	55
35	Carbon sequestration associated to the land-use and land-cover changes in the forestry sector in Southern Brazil. , 2016, , .		2
36	Greenhouse gas emission estimate in sugarcane irrigation in Brazil: is it possible to reduce it, and still increase crop yield?. Journal of Cleaner Production, 2016, 112, 3988-3997.	4.6	27

RICARDO DE OLIVEIRA

#	Article	IF	CITATIONS
37	Temporal Variability of Soil CO2 Emission Contrasting Degraded and Managed Pasture in Brazil. Procedia Environmental Sciences, 2015, 29, 100-101.	1.3	3
38	Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil. Renewable and Sustainable Energy Reviews, 2015, 52, 547-556.	8.2	27
39	Greenhouse gas mitigation potential from green harvested sugarcane scenarios in São Paulo State, Brazil. Biomass and Bioenergy, 2013, 59, 195-207.	2.9	24
40	Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest, considering other conservationist management practices. GCB Bioenergy, 2012, 4, 846-858.	2.5	33