Xutang Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/458037/publications.pdf

Version: 2024-02-01

136	5,843	43	71 g-index
papers	citations	h-index	
136	136	136	6346
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultrasensitive and Robust 120ÂkeV Hard Xâ€Ray Imaging Detector based on Mixedâ€Halide Perovskite CsPbBr _{3â^²} <i>_n</i> _n _n _n	21.0	72
2	Fabrication of Wafer-Scale Organic Single-Crystal Films with Uniform In-Plane Orientation via Wetting-Assisted In-Air Sublimation for High-Performance Transistor Arrays. Chemistry of Materials, 2022, 34, 1030-1040.	6.7	8
3	Optimized Bridgman growth and quality improvement of LilnSe2 crystal by annealing in Li2Se vapor atmosphere. Journal of Alloys and Compounds, 2022, 904, 163991.	5.5	2
4	Ultralow Detection Limit and Robust Hard X-ray Imaging Detector Based on Inch-Sized Lead-Free Perovskite Cs ₃ Bi ₂ Br ₉ Single Crystals. ACS Applied Materials & ACS Interfaces, 2022, 14, 9340-9351.	8.0	46
5	Improved Lowâ€Temperature Solutionâ€Growth of CsPbBr _{3â€n} Cl _n Single Crystals for Xâ€Ray Detection. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	1.2	17
6	Novel Polarized Crystal BaTeW ₂ O ₉ : Crystal Growth, Characterization, and Wide-Band Polarized Prism. Crystal Growth and Design, 2022, 22, 2587-2593.	3.0	6
7	<scp>SORTING NEXIN2</scp> proteins mediate stomatal movement and the response to drought stress by modulating trafficking and protein levels of the <scp>ABA</scp> exporter <scp>ABCG25</scp> . Plant Journal, 2022, 110, 1603-1618.	5.7	8
8	Thermochromism Perovskite (COOH(CH ₂) ₃) ₃) ₄ Crystals: Single-Crystal to Single-Crystal Phase Transition and Excitation-Wavelength-Dependent Emission. Journal of Physical Chemistry Letters, 2022, 13, 214-221.	4.6	12
9	Engineering the Hole Extraction Interface Enables Singleâ€Crystal MAPbI ₃ Perovskite Solar Cells with Efficiency Exceeding 22% and Superior Indoor Response. Advanced Energy Materials, 2022, 12, .	19.5	87
10	Organic–Inorganic Hybrid Tin Halide Single Crystals with Sulfhydryl and Hydroxyl Groups: Formation, Optical Properties, and Stability. Inorganic Chemistry, 2022, 61, 6943-6952.	4.0	2
11	Bulk Defect Suppression of Micrometer-Thick Perovskite Single Crystals Enables Stable Photovoltaics. , 2022, 4, 1332-1340.		17
12	<scp>TaSRO1 /scp> plays a dual role in suppressing <scp>TaSIP1</scp> to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance. New Phytologist, 2022, 236, 495-511.</scp>	7.3	11
13	Origin of ultra-wide IR transmission and ultra-large birefringence of mercurous halide series with one dimensional chain-like structure: An ab initio study. Computational Materials Science, 2021, 188, 110139.	3.0	7
14	Low-Dimensional Hybrid Lead Iodide Perovskites Single Crystals via Bifunctional Amino Acid Cross-Linkage: Structural Diversity and Properties Controllability. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3325-3335.	8.0	6
15	Size-dependent solution-mediated phase transformation of piroxicam monohydrate particles. CrystEngComm, 2021, 23, 2928-2932.	2.6	3
16	New near-infrared optical modulator of Co ²⁺ :β-Ga ₂ O ₃ single crystal. Optical Materials Express, 2021, 11, 442.	3.0	6
17	Laser damage mechanism and in situ observation of stacking fault relaxation in a \hat{l}^2 -Ga2O3 single crystal by the EFG method. CrystEngComm, 2021, 23, 3724-3730.	2.6	6
18	Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection. Science China Materials, 2021, 64, 1427-1436.	6.3	38

#	Article	IF	CITATIONS
19	Oriented Crystal Growth of La _{0.557} Li _{0.330} TiO ₃ in Bulk Ceramics Induced by LaAlO ₃ Single-Crystal Fibers. Crystal Growth and Design, 2021, 21, 2093-2100.	3.0	3
20	Lowâ€Symmetry and Nontoxic 2D SiP with Strong Polarizationâ€Sensitivity and Fast Photodetection. Advanced Optical Materials, 2021, 9, 2100198.	7.3	29
21	Chiral halide perovskite crystals for optoelectronic applications. Matter, 2021, 4, 794-820.	10.0	113
22	Novel Formulations of the Antiviral Drug Favipiravir: Improving Permeability and Tabletability. Crystal Growth and Design, 2021, 21, 3807-3817.	3.0	18
23	Li ₂ MTeO ₆ (M=Ti, Sn): Midâ€Infrared Nonlinear Optical Crystal with Strong Second Harmonic Generation Response and Wide Transparency Range. Angewandte Chemie - International Edition, 2021, 60, 23320-23326.	13.8	39
24	Li 2 MTeO 6 (M=Ti, Sn): Midâ€Infrared Nonlinear Optical Crystal with Strong Second Harmonic Generation Response and Wide Transparency Range. Angewandte Chemie, 2021, 133, 23508.	2.0	3
25	Recent progress in terahertz modulation using photonic structures based on twoâ€dimensional materials. InformaÄnÃ-Materiály, 2021, 3, 1110-1133.	17.3	28
26	Long wavelength infrared acousto-optic crystal Hg2Br2: Growth optimization and photosensitivity investigation. Journal of Alloys and Compounds, 2021, 874, 159943.	5.5	8
27	Filter-free color image sensor based on CsPbBr _{3â^'3n} X _{3n} (X = Cl, I) single crystals. Journal of Materials Chemistry C, 2021, 9, 2840-2847.	5.5	27
28	Growth and Temperature-Dependent Mechanical and Thermal Properties of One-Dimensional Chain Structure Hg2Br2 Crystals for Infrared Acousto-Optic Device Application. Crystal Growth and Design, 2021, 21, 7034-7042.	3.0	3
29	Toward emerging gallium oxide semiconductors: A roadmap. Fundamental Research, 2021, 1, 697-716.	3.3	56
30	Strong In-Plane Anisotropic SiP ₂ as a IV–V 2D Semiconductor for Polarized Photodetection. ACS Nano, 2021, 15, 20442-20452.	14.6	45
31	Twoâ€Dimensional GePâ€Based Broadâ€Band Optical Switches and Photodetectors. Advanced Optical Materials, 2020, 8, 1901490.	7.3	45
32	Efficient Anti-solvent-free Spin-Coated and Printed Sn-Perovskite Solar Cells with Crystal-Based Precursor Solutions. Matter, 2020, 2, 167-180.	10.0	38
33	Crystallization of Sulfathiazole in Gel: Polymorph Selectivity and Cross-Nucleation. Crystal Growth and Design, 2020, 20, 9-16.	3.0	14
34	Chemical-Combined Ball-Milling Synthesis of Fluorine-Free Porous MXene for High-Performance Lithium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10234-10241.	5.1	49
35	Thickness-Controlled Wafer-Scale Single-Crystalline MAPbBr ₃ Films Epitaxially Grown on CsPbBr ₃ Substrates by the Droplet-Evaporated Crystallization Method. ACS Applied Materials & Droplet-Evaporated Crystallization Method.	8.0	12
36	Layered Perovskite (CH ₃ NH ₃) ₂ Pb(SCN) ₂ 1 ₂ Single Crystals: Phase Transition and Moisture Stability. ACS Applied Materials & Distriction and Moisture Stability. ACS Applied Materials & Districtio	8.0	20

#	Article	IF	CITATIONS
37	Broadband near-infrared Cr ³⁺ :î²-Ga ₂ O ₃ fluorescent single crystal grown by the EFG method. CrystEngComm, 2020, 22, 7654-7659.	2.6	10
38	Antioxidation and High-Resolution Ultrasonic Temperature Sensor Based on Cr ³⁺ :MgAl ₂ O ₄ Single Crystal Fiber. Crystal Growth and Design, 2020, 20, 6763-6768.	3.0	4
39	Layered hybrid lead perovskite single crystals: phase transformations and tunable optical properties. CrystEngComm, 2020, 22, 6310-6315.	2.6	9
40	Microspacing In-Air Sublimation Growth of Ultrathin Organic Single Crystals. Chemistry of Materials, 2020, 32, 7618-7629.	6.7	22
41	Anisotropic Performance of High-Quality MAPbBr ₃ Single-Crystal Wafers. ACS Applied Materials & Amp; Interfaces, 2020, 12, 51616-51627.	8.0	20
42	Designing Large-Area Single-Crystal Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1797-1803.	17.4	46
43	Enhancing Carrier Transport Properties of Melt-grown CsPbBr ₃ Single Crystals by Eliminating Inclusions. Crystal Growth and Design, 2020, 20, 2424-2431.	3.0	35
44	Bulk Chiral Halide Perovskite Single Crystals for Active Circular Dichroism and Circularly Polarized Luminescence. Journal of Physical Chemistry Letters, 2020, 11, 1689-1696.	4.6	98
45	Growth Regulation of Pentacene-Doped <i>p</i> -Terphenyl Crystals on Their Physical Properties for Promising Maser Gain Medium. Crystal Growth and Design, 2020, 20, 783-792.	3.0	11
46	(1-C5H14N2Br)2MnBr4: A Lead-Free Zero-Dimensional Organic-Metal Halide With Intense Green Photoluminescence. Frontiers in Chemistry, 2020, 8, 352.	3.6	19
47	Nonoxidized MXene Quantum Dots Prepared by Microexplosion Method for Cancer Catalytic Therapy. Advanced Functional Materials, 2020, 30, 2000308.	14.9	87
48	Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics. Advanced Materials, 2019, 31, e1901966.	21.0	96
49	Crystallographic Investigations into the Polar Polymorphism of BaTeW ₂ O ₉ : Phase Transformation, Controlled Crystallization, and Linear and Nonlinear Optical Properties. Crystal Growth and Design, 2019, 19, 1767-1777.	3.0	17
50	Highly Narrow-Band Polarization-Sensitive Solar-Blind Photodetectors Based on β-Ga ₂ O ₃ Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 7131-7137.	8.0	55
51	Characterization of ZnSiP ₂ Films Grown on Si Substrate by Liquid Phase Epitaxy: Morphology, Composition, and Interface Microstructure. Crystal Growth and Design, 2019, 19, 3681-3687.	3.0	4
52	Shedding Light on the Intrinsic Characteristics of 3D Distorted Fluorite-Type Zirconium Tellurite Single Crystals. Inorganic Chemistry, 2019, 58, 7794-7802.	4.0	10
53	1D versus 2D cocrystals growth via microspacing in-air sublimation. Nature Communications, 2019, 10, 761.	12.8	99
54	MnSiP ₂ : A New Mid-IR Ternary Phosphide with Strong SHG Effect and Ultrabroad Transparency Range. Chemistry of Materials, 2019, 31, 2010-2018.	6.7	47

#	Article	IF	CITATIONS
55	Investigations into anisotropic properties of the nonlinear optical material CdTeMoO6 with quasi-two-dimensional structure. Journal of Alloys and Compounds, 2019, 777, 59-66.	5.5	13
56	Tellurium-Based Double Perovskites A ₂ TeX ₆ with Tunable Band Gap and Long Carrier Diffusion Length for Optoelectronic Applications. ACS Energy Letters, 2019, 4, 228-234.	17.4	58
57	Tuning the Solution-Mediated Concomitant Phase Transformation Outcome of the Piroxicam Monohydrate by Two Hydroxyl-Containing Additives: Hydroxypropyl Cellulose and H ₂ O. Crystal Growth and Design, 2019, 19, 583-590.	3.0	9
58	Sr ₄ Cu _{25.37(18)} Sb ₁₂ and Eu ₄ Cu _{26.06(13)} Sb ₁₂ : Copper-Rich Antimonide Intermetallics with Cage Structure. Crystal Growth and Design, 2018, 18, 1722-1729.	3.0	3
59	Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH ₃ NH ₃ Pb _{<i>x</i>} Sn _{1â€"<i>x</i>} Br ₃ Single Crystals. Chemistry of Materials, 2018, 30, 1556-1565.	6.7	93
60	Tailored fabrication of a prospective acousto–optic crystal TiTe ₃ O ₈ endowed with high performance. Journal of Materials Chemistry C, 2018, 6, 2443-2451.	5.5	18
61	Microspacing In-Air Sublimation Growth of Organic Crystals. Chemistry of Materials, 2018, 30, 412-420.	6.7	85
62	Molecularâ€Barrierâ€Enhanced Aromatic Fluorophores in Cocrystals with Unity Quantum Efficiency. Angewandte Chemie - International Edition, 2018, 57, 1928-1932.	13.8	100
63	Controlled Growth of Layered Acentric CdTeMoO ₆ Single Crystals with Linear and Nonlinear Optical Properties. Crystal Growth and Design, 2018, 18, 3376-3384.	3.0	31
64	Insights into the polymorphism of Bi ₂ W ₂ O ₉ : single crystal growth and a complete survey of the variable-temperature thermal and dielectric properties. CrystEngComm, 2018, 20, 2669-2680.	2.6	6
65	Ti-Doped \hat{l}^2 -Ga ₂ O ₃ : A Promising Material for Ultrafast and Tunable Lasers. Crystal Growth and Design, 2018, 18, 3037-3043.	3.0	18
66	Schottky Barrier Rectifier Based on (100) \$eta\$ -Ga ₂ O ₃ and its DC and AC Characteristics. IEEE Electron Device Letters, 2018, 39, 556-559.	3.9	50
67	Narrow band gap and high mobility of lead-free perovskite single crystal Sn-doped MA ₃ Sb ₂ I ₉ . Journal of Materials Chemistry A, 2018, 6, 20753-20759.	10.3	67
68	Anisotropic Magnetoelectric Coupling and Cotton–Mouton Effects in the Organic Magnetic Charge-Transfer Complex Pyrene–F ₄ TCNQ. ACS Applied Materials & amp; Interfaces, 2018, 10, 44654-44659.	8.0	39
69	Reversible Band Gap Narrowing of Snâ€Based Hybrid Perovskite Single Crystal with Excellent Phase Stability. Angewandte Chemie, 2018, 130, 15084-15088.	2.0	17
70	Reversible Band Gap Narrowing of Snâ€Based Hybrid Perovskite Single Crystal with Excellent Phase Stability. Angewandte Chemie - International Edition, 2018, 57, 14868-14872.	13.8	56
71	Exploring Anisotropy on Oriented Wafers of MAPbBr ₃ Crystals Grown by Controlled Antisolvent Diffusion. Crystal Growth and Design, 2018, 18, 6652-6660.	3.0	62
72	Rational Design of a LiNbO ₃ -like Nonlinear Optical Crystal, Li ₂ ZrTeO ₆ , with High Laser-Damage Threshold and Wide Mid-IR Transparency Window. Journal of the American Chemical Society, 2018, 140, 13089-13096.	13.7	108

#	Article	IF	Citations
73	Defect modulation on CaZn _{1â^'x} Ag _{1â^'y} Sb (0 < <i>x</i> < 1; 0 < <i>y</i>) Tj ET	Qq1 1 0.7 10.3	84314 rgB ^T 20
	Materials Chemistry A, 2018, 6, 11773-11782.		
74	Visualization of Single-Crystal-to-Single-Crystal Phase Transition of Luminescent Molecular Polymorphs. Journal of Physical Chemistry C, 2018, 122, 15744-15752.	3.1	38
75	Polymorphic Smooth Interfaces Formation Based on the Biphasic BaTeMo2O9 Using Top Multi-Seeded Growth. Crystal Growth and Design, 2018, 18, 5054-5062.	3.0	9
76	Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility. Sustainable Energy and Fuels, 2018, 2, 2237-2243.	4.9	18
77	Anisotropic Optoelectronic Properties of Melt-Grown Bulk CsPbBr ₃ Single Crystal. Journal of Physical Chemistry Letters, 2018, 9, 5040-5046.	4.6	84
78	Electric–elastic properties of a novel high-quality CdTeMoO ₆ piezoelectric crystal. CrystEngComm, 2018, 20, 5602-5608.	2.6	7
79	Highly sensitive detection of polarized light using a new group IV–V 2D orthorhombic SiP. Journal of Materials Chemistry C, 2018, 6, 7219-7225.	5.5	44
80	Structure, Magnetism, and Thermoelectric Properties of Magnesium-Containing Antimonide Zintl Phases Sr ₁₄ MgSb ₁₁ and Eu ₁₄ MgSb ₁₁ . Inorganic Chemistry, 2017, 56, 1646-1654.	4.0	24
81	An extended application of \hat{l}^2 -Ga ₂ O ₃ single crystals to the laser field: Cr ⁴⁺ : \hat{l}^2 -Ga ₂ O ₃ utilized as a new promising saturable absorber. RSC Advances, 2017, 7, 21815-21819.	3.6	19
82	Surfactant 1-Hexadecyl-3-methylimidazolium Chloride Can Convert One-Dimensional Viologen Bromoplumbate into Zero-Dimensional. Inorganic Chemistry, 2017, 56, 5498-5501.	4.0	16
83	High quality crystal growth and anisotropic physical characterization of \hat{l}^2 -Ga 2 O 3 single crystals grown by EFG method. Journal of Alloys and Compounds, 2017, 714, 453-458.	5.5	94
84	pH-Responsive Low-Power Upconversion Based on Sandwichlike Palladiumphthalocyanine and Rhodamine B. Journal of Physical Chemistry C, 2017, 121, 13524-13531.	3.1	4
85	Growth and polarized Raman spectroscopy investigations of single crystal CdSiP 2 : Experimental measurements and ab initio calculations. Journal of Crystal Growth, 2017, 473, 28-33.	1.5	8
86	Selfâ∈Healing Behavior in a Thermoâ∈Mechanically Responsive Cocrystal during a Reversible Phase Transition. Angewandte Chemie - International Edition, 2017, 56, 198-202.	13.8	164
87	Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties. Journal of Materials Chemistry A, 2017, 5, 21919-21925.	10.3	35
88	Optimized Growth of Large-Sized LilnSe2 Crystals and the Electric–Elastic Properties. Crystal Growth and Design, 2017, 17, 5875-5880.	3.0	13
89	<i>A</i> ₁₄ MgBi ₁₁ (<i>A</i> = Ca, Sr, Eu): Magnesium Bismuth Based Zintl Phases as Potential Thermoelectric Materials. Inorganic Chemistry, 2017, 56, 10576-10583.	4.0	26
90	Formation of Hybrid Perovskite Tin Iodide Single Crystals by Topâ€Seeded Solution Growth. Angewandte Chemie, 2016, 128, 3508-3511.	2.0	28

#	Article	IF	CITATIONS
91	Optimized growth and electro-elastic properties of centimeter-sized piezoelectric crystals of Na ₂ TeW ₂ O ₉ . CrystEngComm, 2016, 18, 5313-5319.	2.6	11
92	Crystalline Mixed Halide Halobismuthates and Their Induced Second Harmonic Generation. Chemistry of Materials, 2016, 28, 4421-4431.	6.7	43
93	Recent progress in the synthesis of hybrid halide perovskite single crystals. CrystEngComm, 2016, 18, 4476-4484.	2.6	119
94	Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals $NH(CH < sub > 3 < /sub > 3 < /sub > SnX < sub > 3 < /sub > (X = Cl, Br). Chemistry of Materials, 2016, 28, 6968-6974.$	6.7	92
95	Surfactants as additives make the structures of organic–inorganic hybrid bromoplumbates diverse. Inorganic Chemistry Frontiers, 2016, 3, 1388-1392.	6.0	31
96	Electron-deficient copper pnictides: A ₂ Mg ₃ Cu ₉ Pn ₇ (A) Tj Electron-deficient copper pnictides: A ₂ Mg ₃ Cu ₉ Pn ₇ 7 (A) Tj Electron-deficient copper pnictides: A ₁₀	ГQq0 0 0 г 6 . 0	gBT /Overloc 9
97	Tuning the Thermoelectric Properties of Ca ₉ Zn _{4+<i>x</i>} Sb ₉ by Controlled Doping on the Interstitial Structure. Chemistry of Materials, 2016, 28, 6917-6924.	6.7	41
98	Formation of Hybrid Perovskite Tin Iodide Single Crystals by Topâ€Seeded Solution Growth. Angewandte Chemie - International Edition, 2016, 55, 3447-3450.	13.8	238
99	A new potential nonlinear optical hybrid semi-organic crystal of ZnMnCl ₄ (TPPO) ₄ with attractive physical properties. CrystEngComm, 2016, 18, 1818-1824.	2.6	8
100	Mechanism of Surface Cracking in a Ca12Al14O33 Crystal during the Cooling Process. Crystal Growth and Design, 2016, 16, 1903-1906.	3.0	4
101	Diode End Pumped Continuous Wave and Graphene Q-Switched Tm:LGGG Lasers. IEEE Photonics Technology Letters, 2016, 28, 825-828.	2.5	6
102	Synthesis and Crystal Structures of the Calcium Silicon Phosphides Ca ₂ Si _{P_{P₄, Ca₃Si_{P₁₄ and Ca₃Si_{P_{P_{P₄. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1545-1549.}}}}}}	1.2	21
103	Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo ₂ O ₉ Single Crystal. Crystal Growth and Design, 2015, 15, 759-763.	3.0	16
104	Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nature Communications, 2015, 6, 5954.	12.8	141
105	New High-Pressure Polymorph of the Nonlinear Optical Crystal BaTeMo ₂ O ₉ . Crystal Growth and Design, 2015, 15, 3110-3113.	3.0	8
106	Top-Seeded Solution Growth, Structure, Morphology, and Functional Properties of a New Polar Crystal â€" Cs ₂ TeW ₃ O ₁₂ . Crystal Growth and Design, 2015, 15, 4484-4489.	3.0	34
107	Bulk crystal growth and characterization of semi-organic nonlinear optical crystal tri-diethylammonium hexachlorobismuthate (TDCB). CrystEngComm, 2015, 17, 2569-2574.	2.6	29
108	Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2015, 86, 34-43.	5.8	57

#	Article	IF	Citations
109	Bulk crystal growth of hybrid perovskite material CH ₃ NH ₃ Pbl ₃ . CrystEngComm, 2015, 17, 665-670.	2.6	483
110	Crystal and Electronic Structures and Magnetic Properties of Eu ₃ Tt ₂ As ₄ (Tt = Si, Ge). European Journal of Inorganic Chemistry, 2014, 2014, 2248-2253.	2.0	8
111	Oriented Single-Crystal-to-Single-Crystal Phase Transition with Dramatic Changes in the Dimensions of Crystals. Journal of the American Chemical Society, 2014, 136, 590-593.	13.7	127
112	Structure and growth of single crystal SiP 2 using flux method. Solid State Sciences, 2014, 37, 1-5.	3.2	21
113	Investigation of the second-order nonlinear optical properties of Cs2TeMo3O12 single crystal. Applied Physics Letters, 2014, 104, .	3.3	30
114	Optical properties and birefringence in LilnS_2 in the terahertz frequency range. Optical Materials Express, 2014, 4, 575.	3.0	8
115	Ca _{1â€"<i>x</i>} RE _{<i>x</i>} Ag _{1â€"<i>y</i>} Sb (RE = La, Ce, Pr, Nd, Sm; 0 â9) Thermoelectric Performance. Journal of the American Chemical Society, 2013, 135, 11840-11848.	‰) Tj ETQ 13.7	q1 1 0.7843 48
116	Synthesis, crystal growth, and characterization of the orthorhombic BaTeW2O9: a new polymorph of BaTeW2O9. CrystEngComm, 2013, 15, 10197.	2.6	23
117	MgTeMoO6: A neutral layered material showing strong second-harmonic generation. Journal of Materials Chemistry, 2012, 22, 9921.	6.7	97
118	Anisotropic thermal properties of the polar crystal Cs2TeMo3O12. Journal of Solid State Chemistry, 2012, 195, 120-124.	2.9	17
119	Growth improvement and quality evaluation of ZnGeP2 single crystals using vertical Bridgman method. Journal of Crystal Growth, 2012, 352, 67-71.	1.5	8
120	A ₅ Sn ₂ As ₆ (A = Sr, Eu). Synthesis, Crystal and Electronic Structure, and Thermoelectric Properties. Inorganic Chemistry, 2012, 51, 5771-5778.	4.0	37
121	A New Family of Dendrimers with Naphthaline Core and Triphenylamine Branching as a Two-Photon Polymerization Initiator. Journal of Physical Chemistry C, 2011, 115, 776-784.	3.1	54
122	Anisotropic Thermal Properties of the Nonlinear Optical and Polar Oxide Material Na2TeW2O9. Crystal Growth and Design, 2011, 11, 3636-3641.	3.0	29
123	Polymorphism of BaTeMo ₂ O ₉ : A New Polar Polymorph and the Phase Transformation. Chemistry of Materials, 2011, 23, 3752-3761.	6.7	167
124	Synthesis, Crystal and Electronic Structures, and Properties of the New Pnictide Semiconductors $\langle i \rangle A \langle i \rangle \langle sub \rangle 2 \langle sub \rangle C d \langle i \rangle Pn \langle i \rangle \langle sub \rangle 2 \langle sub \rangle C d \langle i \rangle A \langle i \rangle \langle sub \rangle C d \langle i \rangle Pn \langle i \rangle \langle sub \rangle C d \langle i \rangle A \langle i \rangle \langle sub \rangle A \langle i \rangle A \langle $	4.0	48
125	Top-Seeded Solution Growth, Morphology, and Properties of a Polar Crystal Cs ₂ TeMo ₃ O ₁₂ . Crystal Growth and Design, 2011, 11, 1863-1868.	3.0	69
126	Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9. CrystEngComm, 2011, 13, 6985.	2.6	87

#	Article	IF	CITATIONS
127	Facile Synthesis of Multiâ€Branched Gold Nanostructures through a TBABâ€Assisted Route in Aqueous Solution and Their SERS Property. Chinese Journal of Chemistry, 2011, 29, 185-190.	4.9	5
128	Electro-optic properties of BaTeMo2O9 single crystal. Applied Physics Letters, 2009, 95, .	3.3	34
129	Structure and Thermal Properties of the Nonlinear Optical Crystal BaTeMo ₂ O ₉ . Crystal Growth and Design, 2009, 9, 2633-2636.	3.0	60
130	Singleâ€Crystal Microribbons of an Indolo[3,2â€ <i>b</i>]carbazole Derivative by Solutionâ€Phase Selfâ€Assembly with Novel Mechanical, Electrical, and Optical Properties. Advanced Materials, 2008, 20, 4835-4839.	21.0	58
131	Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal. Applied Physics Letters, 2008, 93, .	3.3	60
132	Bulk Growth and Characterization of a Novel Nonlinear Optical Crystal BaTeMo ₂ O ₉ . Crystal Growth and Design, 2008, 8, 304-307.	3.0	118
133	Aggregation-Induced Emissions of Fluorenonearylamine Derivatives:  A New Kind of Materials for Nondoped Red Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2008, 112, 3975-3981.	3.1	155
134	Optimized growth and anisotropic properties of Li2ZrTeO6 nonlinear optical crystals. CrystEngComm, 0, , .	2.6	2
135	Microspacing In-Air Sublimation Growth of Thickness-Controllable Lead Halide Crystal and the Morphology Evolution in Conversion to Perovskite. ACS Applied Energy Materials, 0, , .	5.1	3
136	Dielectric, Piezoelectric, and Elastic Properties of a Polar Crystal Rb4Li2TiOGe4O12. Crystal Growth and Design, 0, , .	3.0	2