Lingfei Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4580344/publications.pdf

Version: 2024-02-01

		1040056	940533	
16	371	9	16	
papers	citations	h-index	g-index	
16	16	16	312	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300°C. Materials Research Letters, 2019, 7, 18-25.	8.7	130
2	The Influence of Composition on the Clustering and Precipitation Behavior of Al-Mg-Si-Cu Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 459-473.	2.2	60
3	A highly [001]-textured Sb ₂ Se ₃ photocathode for efficient photoelectrochemical water reduction. Nanoscale, 2019, 11, 22871-22879.	5.6	41
4	Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance. Materials Research Letters, 2020, 8, 446-453.	8.7	33
5	Effect of Heat Treatment Condition on the Flow Behavior and Recrystallization Mechanisms of Aluminum Alloy 7055. Materials, 2019, 12, 311.	2.9	25
6	Combined contribution of Cu-rich precipitates and retained austenite on mechanical properties of a novel low-carbon medium-Mn steel plate. Journal of Materials Science, 2019, 54, 3438-3454.	3.7	17
7	Hot Deformation Behavior and Microstructure Characterization of an Al-Cu-Li-Mg-Ag Alloy. Crystals, 2020, 10, 416.	2.2	16
8	Strain accommodation of <110>-normal direction-oriented grains in micro-shear bands of high-purity tantalum. Journal of Materials Science, 2018, 53, 12543-12552.	3.7	13
9	Effects of pre-recovery on the recrystallization microstructure and texture of high-purity tantalum. Journal of Materials Science, 2018, 53, 2985-2994.	3.7	11
10	Microstructure and Its Effect on the Intergranular Corrosion Properties of 2024-T3 Aluminum Alloy. Crystals, 2022, 12, 395.	2.2	8
11	Crystallographic analysis of nucleation for random orientations in high-purity tantalum. Journal of Materials Research, 2018, 33, 1755-1763.	2.6	4
12	Correlation between bulk and precipitate composition in Al-Zn-Mg-Cu alloys. Philosophical Magazine Letters, 2022, 102, 41-52.	1.2	4
13	Effect of Two-Stage Homogenization Heat Treatment on Microstructure and Mechanical Properties of AA2060 Alloy. Crystals, 2021, 11, 40.	2.2	3
14	" <i>Stand-Out</i> ― A Novel Approach for Preparing Sub-100 nm Samples Through <i>in situ</i> lon Induced Bending. Microscopy and Microanalysis, 2019, 25, 898-899.	0.4	2
15	Effect of Initial Microstructure on the Hot Deformation Behavior and Microstructure Evolution of Aluminum Alloy AA2060. Metals and Materials International, 2022, 28, 1561-1574.	3.4	2
16	Study on the Grain Rotation of High-Purity Tantalum during Compression Deformation. Crystals, 2022, 12, 676.	2.2	2