Willy Supatto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4580009/publications.pdf Version: 2024-02-01

Μίιιν ςιιράττο

#	Article	IF	CITATIONS
1	Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nature Methods, 2006, 3, 47-53.	9.0	522
2	Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nature Methods, 2011, 8, 757-760.	9.0	453
3	Tissue Deformation Modulates Twist Expression to Determine Anterior Midgut Differentiation in Drosophila Embryos. Developmental Cell, 2008, 15, 470-477.	3.1	306
4	In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1047-1052.	3.3	243
5	Multicolor two-photon tissue imaging by wavelength mixing. Nature Methods, 2012, 9, 815-818.	9.0	165
6	Multiplex Cell and Lineage Tracking with Combinatorial Labels. Neuron, 2014, 81, 505-520.	3.8	142
7	Dynamic Analyses of <i>Drosophila</i> Gastrulation Provide Insights into Collective Cell Migration. Science, 2008, 322, 1546-1550.	6.0	141
8	Multicolor two-photon light-sheet microscopy. Nature Methods, 2014, 11, 600-601.	9.0	130
9	Whole-brain functional imaging with two-photon light-sheet microscopy. Nature Methods, 2015, 12, 379-380.	9.0	129
10	Advances in whole-embryo imaging: a quantitative transition is underway. Nature Reviews Molecular Cell Biology, 2014, 15, 327-339.	16.1	102
11	Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing. Scientific Reports, 2017, 7, 3792.	1.6	99
12	Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light: Science and Applications, 2018, 7, 12.	7.7	91
13	Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nature Communications, 2019, 10, 1662.	5.8	75
14	An All-Optical Approach for Probing Microscopic Flows in Living Embryos. Biophysical Journal, 2008, 95, L29-L31.	0.2	71
15	Mesoderm migration in <i>Drosophila</i> is a multi-step process requiring FGF signaling and integrin activity. Development (Cambridge), 2010, 137, 2167-2175.	1.2	71
16	Structure sensitivity in third-harmonic generation microscopy. Optics Letters, 2005, 30, 2134.	1.7	63
17	Mitigating Phototoxicity during Multiphoton Microscopy of Live Drosophila Embryos in the 1.0–1.2 µm Wavelength Range. PLoS ONE, 2014, 9, e104250.	1.1	59
18	Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis. Nature Protocols, 2009, 4, 1397-1412.	5.5	58

WILLY SUPATTO

#	Article	IF	CITATIONS
19	Advances in multiphoton microscopy for imaging embryos. Current Opinion in Genetics and Development, 2011, 21, 538-548.	1.5	54
20	Velocimetric third-harmonic generation microscopy:â€∫micrometer-scale quantification of morphogenetic movements in unstained embryos. Optics Letters, 2004, 29, 2881.	1.7	52
21	Large-scale live imaging of adult neural stem cells in their endogenous niche. Development (Cambridge), 2015, 142, 3592-600.	1.2	51
22	Physical limits of flow sensing in the left-right organizer. ELife, 2017, 6, .	2.8	45
23	Fast <i>In Vivo</i> Imaging of SHG Nanoprobes with Multiphoton Light-Sheet Microscopy. ACS Photonics, 2020, 7, 1036-1049.	3.2	29
24	Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. Cell Stem Cell, 2021, 28, 1457-1472.e12.	5.2	29
25	Toward highâ€content/highâ€throughput imaging and analysis of embryonic morphogenesis. Genesis, 2011, 49, 555-569.	0.8	26
26	High-speed polarization-resolved third-harmonic microscopy. Optica, 2019, 6, 385.	4.8	24
27	Is mechano-sensitive expression of twist involved In mesoderm formation?. Biology of the Cell, 2004, 96, 471-477.	0.7	23
28	Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation. Scientific Reports, 2016, 6, 29863.	1.6	22
29	Fast in vivo multiphoton light-sheet microscopy with optimal pulse frequency. Biomedical Optics Express, 2020, 11, 6012.	1.5	19
30	Femtosecond pulse-induced microprocessing of live Drosophila embryos. Medical Laser Application: International Journal for Laser Treatment and Research, 2005, 20, 207-216.	0.4	18
31	From Cilia Hydrodynamics to Zebrafish Embryonic Development. Current Topics in Developmental Biology, 2011, 95, 33-66.	1.0	17
32	Metrology of Multiphoton Microscopes Using Second Harmonic Generation Nanoprobes. Small, 2017, 13, 1701442.	5.2	16
33	Chiral Cilia Orientation in the Left-Right Organizer. Cell Reports, 2018, 25, 2008-2016.e4.	2.9	14
34	Three-Photon Microscopy with a Monolithic All-Fiber Format Laser Emitting at 1650 nm. , 2016, , .		2
35	An Efficient Multicolor Two-Photon Imaging of Endogenous Fluorophores in Living Tissues by Wavelength Mixing. Biophysical Journal, 2017, 112, 186a.	0.2	2
36	In vivo microdissection and live embryo imaging by two-photon microscopy to study Drosophila melanogaster early development. , 2004, 5463, 13.		1

WILLY SUPATTO

#	Article	IF	CITATIONS
37	In vivo analysis of Drosophila embryo developmental dynamics by femtosecond pulse-induced ablation and multimodal nonlinear microscopy. , 2005, 5700, 256.		0
38	An all-optical approach to modulate and quantitatively analyse embryo morphogenetic movements by using ultrashort laser pulses. , 2006, , .		0
39	Structure sensitivity and sources of contrast in third-harmonic generation (THG) microscopy of cells and tissues. , 2006, 6089, 229.		0
40	Quantitative imaging of the collective cell movements shaping an embryo. , 2008, , .		0
41	Probing cilia-driven flow in living embryos using femtosecond laser ablation and fast imaging. Proceedings of SPIE, 2009, , .	0.8	0
42	Challenges session. , 2011, , .		0
43	Multiphoton light-sheet microscopy using wavelength mixing: fast multicolor imaging of the beating Zebrafish heart with low photobleaching. , 2015, , .		0
44	Volumetric multicolor multiphoton microscopy for neuron connectivity and cell lineage analysis. , 2017, , .		0
45	Microscopie multiphoton illuminée par nappe : imagerie de fluorescence rapide et en profondeur dans les tissus vivants. Photoniques, 2012, , 33-37.	0.0	0
46	Studying connectivity and brain development with combinatorial Brainbow labels. Frontiers in Neuroinformatics, 0, 7, .	1.3	0
47	Large-scale live imaging of adult neural stem cells in their endogenous niche. Journal of Cell Science, 2015, 128, e1.2-e1.2.	1.2	0
48	Chromatic serial multiphoton microscopy for high-content multiscale analysis of large brain volumes. , 2019, , .		0
49	Chromatic serial multiphoton microscopy for multicolor imaging of large brain volumes. , 2019, , .		0
50	Fast P-THG microscopy for the characterization of biomaterials. , 2019, , .		0
51	Multiphoton Light-sheet Microscopy at Optimal Pulse Frequency for Fast In Vivo Imaging. , 2020, , .		0
52	Advances in fast multiphoton microscopy using light-sheet illumination. , 2020, , .		0
53	Fast cardiac imaging in live embryos using multiphoton light-sheet microscopy at low laser repetition rate. , 2021, , .		0