
Arkaitz Carracedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/457986/publications.pdf Version: 2024-02-01

ADVAITZ CADDACEDO

#	Article	IF	CITATIONS
1	Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. Journal of Clinical Investigation, 2008, 118, 3065-74.	8.2	1,132
2	Cancer metabolism: fatty acid oxidation in the limelight. Nature Reviews Cancer, 2013, 13, 227-232.	28.4	969
3	Tenets of PTEN Tumor Suppression. Cell, 2008, 133, 403-414.	28.9	951
4	The PTEN–PI3K pathway: of feedbacks and cross-talks. Oncogene, 2008, 27, 5527-5541.	5.9	778
5	SIRT3 Opposes Reprogramming of Cancer Cell Metabolism through HIF1α Destabilization. Cancer Cell, 2011, 19, 416-428.	16.8	690
6	A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nature Medicine, 2012, 18, 1350-1358.	30.7	612
7	Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nature Genetics, 2009, 41, 619-624.	21.4	595
8	Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. Journal of Clinical Investigation, 2009, 119, 1359-1372.	8.2	585
9	Subtle variations in Pten dose determine cancer susceptibility. Nature Genetics, 2010, 42, 454-458.	21.4	506
10	The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network. Nature, 2008, 455, 813-817.	27.8	466
11	High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood, 2009, 114, 647-650.	1.4	414
12	Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State. Cell, 2012, 149, 49-62.	28.9	339
13	Nuclear PTEN Regulates the APC-CDH1 Tumor-Suppressive Complex inÂa Phosphatase-Independent Manner. Cell, 2011, 144, 187-199.	28.9	333
14	Cannabinoids Induce Apoptosis of Pancreatic Tumor Cells via Endoplasmic Reticulum Stress–Related Genes. Cancer Research, 2006, 66, 6748-6755.	0.9	302
15	The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell, 2006, 9, 301-312.	16.8	299
16	A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. Journal of Clinical Investigation, 2010, 120, 681-693.	8.2	290
17	Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB Journal, 2006, 20, 2633-2635.	0.5	244
18	PTEN Level in Tumor Suppression: How Much Is Too Little?. Cancer Research, 2011, 71, 629-633.	0.9	222

#	Article	IF	CITATIONS
19	A metabolic prosurvival role for PML in breast cancer. Journal of Clinical Investigation, 2012, 122, 3088-3100.	8.2	220
20	Rewiring urea cycle metabolism inÂcancer to support anabolism. Nature Reviews Cancer, 2018, 18, 634-645.	28.4	192
21	Urea Cycle Dysregulation Generates Clinically Relevant Genomic and Biochemical Signatures. Cell, 2018, 174, 1559-1570.e22.	28.9	183
22	The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nature Cell Biology, 2016, 18, 645-656.	10.3	176
23	Cannabinoids Inhibit Glioma Cell Invasion by Down-regulating Matrix Metalloproteinase-2 Expression. Cancer Research, 2008, 68, 1945-1952.	0.9	161
24	Ubiquitination of K-Ras Enhances Activation and Facilitates Binding to Select Downstream Effectors. Science Signaling, 2011, 4, ra13.	3.6	152
25	mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature, 2017, 547, 109-113.	27.8	142
26	Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nature Genetics, 2018, 50, 219-228.	21.4	139
27	Cannabinoids Induce Glioma Stem-like Cell Differentiation and Inhibit Gliomagenesis. Journal of Biological Chemistry, 2007, 282, 6854-6862.	3.4	116
28	Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. Journal of Extracellular Vesicles, 2016, 5, 29497.	12.2	112
29	Aberrant <i>Rheb</i> -mediated mTORC1 activation and <i>Pten</i> haploinsufficiency are cooperative oncogenic events. Genes and Development, 2008, 22, 2172-2177.	5.9	109
30	Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology, 2012, 55, 1237-1248.	7.3	104
31	Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression. Journal of Extracellular Vesicles, 2018, 7, 1470442.	12.2	103
32	ETS rearrangements and prostate cancer initiation. Nature, 2009, 457, E1-E1.	27.8	98
33	Deconstructing feedback-signaling networks to improve anticancer therapy with mTORC1 inhibitors. Cell Cycle, 2008, 7, 3805-3809.	2.6	95
34	Expression and Localization of δ-, β-, and μ-Opioid Receptors in Human Spermatozoa and Implications for Sperm Motility. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4969-4975.	3.6	93
35	PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nature Communications, 2015, 6, 7935.	12.8	86
36	The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway. Experimental Cell Research, 2006, 312, 2121-2131.	2.6	84

#	Article	IF	CITATIONS
37	Cannabinoids and Gliomas. Molecular Neurobiology, 2007, 36, 60-67.	4.0	82
38	Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action. Cell Death and Differentiation, 2011, 18, 959-973.	11.2	76
39	Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism. Science Advances, 2018, 4, eaar2606.	10.3	76
40	CANCERTOOL: A Visualization and Representation Interface to Exploit Cancer Datasets. Cancer Research, 2018, 78, 6320-6328.	0.9	76
41	MicroRNAâ€506 promotes primary biliary cholangitis–like features in cholangiocytes and immune activation. Hepatology, 2018, 67, 1420-1440.	7.3	72
42	p38 MAPK is involved in CB2receptor-induced apoptosis of human leukaemia cells. FEBS Letters, 2005, 579, 5084-5088.	2.8	71
43	Multiplex SERS Detection of Metabolic Alterations in Tumor Extracellular Media. Advanced Functional Materials, 2020, 30, 1910335.	14.9	71
44	Loss of Tribbles pseudokinase-3 promotes Akt-driven tumorigenesis via FOXO inactivation. Cell Death and Differentiation, 2015, 22, 131-144.	11.2	70
45	TRB3 links ER stress to autophagy in cannabinoid antitumoral action. Autophagy, 2009, 5, 1048-1049.	9.1	68
46	<i><scp>RARRES</scp>3</i> suppresses breast cancer lung metastasis by regulating adhesion and differentiation. EMBO Molecular Medicine, 2014, 6, 865-881.	6.9	65
47	Differential Requirement of mTOR in Postmitotic Tissues and Tumorigenesis. Science Signaling, 2009, 2, ra2.	3.6	64
48	The CB2 cannabinoid receptor regulates human sperm cell motility. Fertility and Sterility, 2010, 93, 1378-1387.	1.0	64
49	Nupr1-Aurora Kinase A Pathway Provides Protection against Metabolic Stress-Mediated Autophagic-Associated Cell Death. Clinical Cancer Research, 2012, 18, 5234-5246.	7.0	63
50	VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression. Cell Death and Differentiation, 2019, 26, 348-361.	11.2	61
51	Mitochondrial Metabolism: Yin and Yang for Tumor Progression. Trends in Endocrinology and Metabolism, 2017, 28, 748-757.	7.1	59
52	Differential p53-Independent Outcomes of p19 ^{Arf} Loss in Oncogenesis. Science Signaling, 2009, 2, ra44.	3.6	58
53	Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer. Current Opinion in Pharmacology, 2016, 29, 47-53.	3.5	55
54	Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1335-1344.	3.8	55

#	Article	IF	CITATIONS
55	Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer. Oncotarget, 2016, 7, 6835-6846.	1.8	55
56	Ceramide sensitizes astrocytes to oxidative stress: protective role of cannabinoids. Biochemical Journal, 2004, 380, 435-440.	3.7	54
57	The antidepressant sertraline downregulates Akt and has activity against melanoma cells. Pigment Cell and Melanoma Research, 2008, 21, 451-456.	3.3	54
58	Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS Photonics, 2022, 9, 333-350.	6.6	53
59	A Unified Nomenclature and Amino Acid Numbering for Human PTEN. Science Signaling, 2014, 7, pe15.	3.6	50
60	Down-regulation of tissue inhibitor of metalloproteinases-1 in gliomas: a new marker of cannabinoid antitumoral activity?. Neuropharmacology, 2008, 54, 235-243.	4.1	45
61	Stratification and therapeutic potential of PML in metastatic breast cancer. Nature Communications, 2016, 7, 12595.	12.8	45
62	Hepatic p63 regulates steatosis via IKKβ/ER stress. Nature Communications, 2017, 8, 15111.	12.8	45
63	PGC1α Suppresses Prostate Cancer Cell Invasion through ERRα Transcriptional Control. Cancer Research, 2019, 79, 6153-6165.	0.9	43
64	Comparative miRNA Analysis of Urine Extracellular Vesicles Isolated through Five Different Methods. Cancers, 2016, 8, 112.	3.7	41
65	HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. Journal of Clinical Investigation, 2020, 130, 3848-3864.	8.2	38
66	Amphiregulin is a factor for resistance of glioma cells to cannabinoidâ€induced apoptosis. Glia, 2009, 57, 1374-1385.	4.9	37
67	The nuclear bodies inside out: PML conquers the cytoplasm. Current Opinion in Cell Biology, 2011, 23, 360-366.	5.4	37
68	Metabolism and Transcription in Cancer: Merging Two Classic Tales. Frontiers in Cell and Developmental Biology, 2017, 5, 119.	3.7	35
69	Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition. Oncogene, 2017, 36, 2737-2749.	5.9	34
70	Analysis of SUMOylated proteins using SUMO-traps. Scientific Reports, 2013, 3, 1690.	3.3	32
71	Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of I-asparaginase in childhood ALL cells. Leukemia, 2016, 30, 209-218.	7.2	31
72	Angiocrine polyamine production regulates adiposity. Nature Metabolism, 2022, 4, 327-343.	11.9	31

#	Article	IF	CITATIONS
73	Faithfull Modeling of PTEN Loss Driven Diseases in the Mouse. Current Topics in Microbiology and Immunology, 2010, 347, 135-168.	1.1	29
74	Phosphoinositide 3-Kinase–Regulated Pericyte Maturation Governs Vascular Remodeling. Circulation, 2020, 142, 688-704.	1.6	29
75	Stimulation of ALK by the growth factor midkine renders glioma cells resistant to autophagy-mediated cell death. Autophagy, 2011, 7, 1071-1073.	9.1	27
76	CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. Journal of Clinical Investigation, 2020, 130, 2435-2450.	8.2	27
77	LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome. ELife, 2020, 9, .	6.0	27
78	Identification of proximal SUMO-dependent interactors using SUMO-ID. Nature Communications, 2021, 12, 6671.	12.8	27
79	Targeting PML in triple negative breast cancer elicits growth suppression and senescence. Cell Death and Differentiation, 2020, 27, 1186-1199.	11.2	26
80	Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers, 2020, 12, 2593.	3.7	26
81	NUPR1 works against the metabolic stress-induced autophagy-associated cell death in pancreatic cancer cells. Autophagy, 2013, 9, 95-97.	9.1	22
82	Ikaros mediates the DNA methylation-independent silencing of MCJ/DNAJC15 gene expression in macrophages. Scientific Reports, 2015, 5, 14692.	3.3	21
83	1H NMR-Based Urine Metabolomics Reveals Signs of Enhanced Carbon and Nitrogen Recycling in Prostate Cancer. Journal of Proteome Research, 2020, 19, 2419-2428.	3.7	21
84	Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment. Journal of Clinical Investigation, 2022, 132, .	8.2	21
85	p8 Upregulation sensitizes astrocytes to oxidative stress. FEBS Letters, 2006, 580, 1571-1575.	2.8	20
86	Tetramerizationâ€defects of p53 result in aberrant ubiquitylation and transcriptional activity. Molecular Oncology, 2014, 8, 1026-1042.	4.6	20
87	Oncosuppressive functions of tribbles pseudokinase 3. Biochemical Society Transactions, 2015, 43, 1122-1126.	3.4	20
88	PPARδElicits Ligand-Independent Repression of Trefoil Factor Family to Limit Prostate Cancer Growth. Cancer Research, 2018, 78, 399-409.	0.9	20
89	Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer. Journal of Experimental Medicine, 2020, 217, .	8.5	19
90	Methodological aspects of the molecular and histological study of prostate cancer: Focus on PTEN. Methods, 2015, 77-78, 25-30.	3.8	16

#	Article	IF	CITATIONS
91	Promyelocytic Leukemia Protein, a Protein at the Crossroad of Oxidative Stress and Metabolism. Antioxidants and Redox Signaling, 2017, 26, 432-444.	5.4	16
92	TRIB3 suppresses tumorigenesis by controlling mTORC2/AKT/FOXO signaling. Molecular and Cellular Oncology, 2015, 2, e980134.	0.7	16
93	Low-dose statin treatment increases prostate cancer aggressiveness. Oncotarget, 2018, 9, 1494-1504.	1.8	15
94	Nanocomposite Scaffolds for Monitoring of Drug Diffusion in Three-Dimensional Cell Environments by Surface-Enhanced Raman Spectroscopy. Nano Letters, 2021, 21, 8785-8793.	9.1	15
95	SnapShot: PTEN Signaling Pathways. Cell, 2008, 133, 550-550.e1.	28.9	14
96	The immunosuppressive effect of the tick protein, Salp15, is long-lasting and persists in a murine model of hematopoietic transplant. Scientific Reports, 2017, 7, 10740.	3.3	14
97	Integrative analysis of transcriptomics and clinical data uncovers the tumor-suppressive activity of MITF in prostate cancer. Cell Death and Disease, 2018, 9, 1041.	6.3	14
98	The Urinary Transcriptome as a Source of Biomarkers for Prostate Cancer. Cancers, 2020, 12, 513.	3.7	14
99	Implication of Ceramide Kinase/C1P in Cancer Development and Progression. Cancers, 2022, 14, 227.	3.7	13
100	PML: Not all about Tumor Suppression. Frontiers in Oncology, 2013, 3, 200.	2.8	11
101	The Promyelocytic Leukemia Protein Is Upregulated in Conditions of Obesity and Liver Steatosis. International Journal of Biological Sciences, 2015, 11, 629-632.	6.4	11
102	rMTA: robust metabolic transformation analysis. Bioinformatics, 2019, 35, 4350-4355.	4.1	11
103	LUZP1 Controls Cell Division, Migration and Invasion Through Regulation of the Actin Cytoskeleton. Frontiers in Cell and Developmental Biology, 2021, 9, 624089.	3.7	11
104	In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer. Scientific Reports, 2017, 7, 14358.	3.3	10
105	Pyruvate Kinase M1 Suppresses Development and Progression of Prostate Adenocarcinoma. Cancer Research, 2022, 82, 2403-2416.	0.9	10
106	Identification of Androgen Receptor Metabolic Correlome Reveals the Repression of Ceramide Kinase by Androgens. Cancers, 2021, 13, 4307.	3.7	7
107	PI3K-regulated Glycine N-methyltransferase is required for the development of prostate cancer. Oncogenesis, 2022, 11, 10.	4.9	6
108	Is the Bench Getting Closer to the Bedside in the War on Cancer? A Quick Look at Prostate Cancer. Frontiers in Endocrinology, 2012, 3, 53.	3.5	5

#	Article	IF	CITATIONS
109	Quiescence-like Metabolism to Push Cancer Out of the Race. Cell Metabolism, 2017, 25, 997-999.	16.2	5
110	New insights on prostate cancer progression. Cell Cycle, 2017, 16, 13-14.	2.6	4
111	Oligometastatic Prostate Adenocarcinoma. Clinical-Pathologic Study of a Histologically Under-Recognized Prostate Cancer. Journal of Personalized Medicine, 2020, 10, 265.	2.5	3
112	High SOX9 Maintains Glioma Stem Cell Activity through a Regulatory Loop Involving STAT3 and PML. International Journal of Molecular Sciences, 2022, 23, 4511.	4.1	3
113	Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. Antioxidants, 2022, 11, 897.	5.1	3
114	CK1α promotes tumour suppressive autophagy. Nature Cell Biology, 2018, 20, 369-371.	10.3	1
115	Cannabinoids as Potential Antitumoral Agents in Pancreatic Cancer. , 2009, , 39-49.		1
116	Targeting Cannabinoid Receptors in Brain Tumors. , 2008, , 361-374.		1
117	Arkaitz Carracedo: If the scientific question is good, the result will be interesting. Journal of Experimental Medicine, 2019, 216, 2449-2450.	8.5	0
118	Re-evaluating statin activity in cancer. Aging, 2018, 10, 1538-1539.	3.1	0