Qingchun Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4579216/publications.pdf Version: 2024-02-01

		117625	114465
94	4,511	34	63
papers	citations	h-index	g-index
119	119	119	6458
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The hypothalamus for whole-body physiology: from metabolism to aging. Protein and Cell, 2022, 13, 394-421.	11.0	41
2	An estrogen-sensitive hypothalamus-midbrain neural circuit controls thermogenesis and physical activity. Science Advances, 2022, 8, eabk0185.	10.3	11
3	A D2 to D1 shift in dopaminergic inputs to midbrain 5-HT neurons causes anorexia in mice. Nature Neuroscience, 2022, 25, 646-658.	14.8	21
4	The ventromedial hypothalamic nucleus: watchdog of whole-body glucose homeostasis. Cell and Bioscience, 2022, 12, .	4.8	17
5	AgRP neurons trigger long-term potentiation and facilitate food seeking. Translational Psychiatry, 2021, 11, 11.	4.8	22
6	Centrally circulating α-klotho inversely correlates with human obesity and modulates arcuate cell populations in mice. Molecular Metabolism, 2021, 44, 101136.	6.5	18
7	Corticotropin Releasing Hormone Signaling in the Bed Nuclei of the Stria Terminalis as a Link to Maladaptive Behaviors. Frontiers in Neuroscience, 2021, 15, 642379.	2.8	6
8	Neurotransmitter Co-transmission in Brain Control of Feeding and Body Weight. , 2021, , 41-66.		1
9	A neural basis for brain leptin action on reducing type 1 diabetic hyperglycemia. Nature Communications, 2021, 12, 2662.	12.8	11
10	Barbadin potentiates long-term effects of lorcaserin on POMC neurons and weight loss. Journal of Neuroscience, 2021, 41, JN-RM-3210-20.	3.6	11
11	5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding. Molecular Psychiatry, 2021, 26, 7211-7224.	7.9	17
12	Effects of Intermittent Fasting on the Circulating Levels and Circadian Rhythms of Hormones. Endocrinology and Metabolism, 2021, 36, 745-756.	3.0	29
13	Hypothalamic steroid receptor coactivator-2 regulates adaptations to fasting and overnutrition. Cell Reports, 2021, 37, 110075.	6.4	8
14	Paraventricular hypothalamus mediates diurnal rhythm of metabolism. Nature Communications, 2020, 11, 3794.	12.8	36
15	Disrupted hypothalamic <scp>CRH</scp> neuron responsiveness contributes to dietâ€induced obesity. EMBO Reports, 2020, 21, e49210.	4.5	14
16	Profound and redundant functions of arcuate neurons in obesity development. Nature Metabolism, 2020, 2, 763-774.	11.9	55
17	Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance. Nature Communications, 2020, 11, 2165.	12.8	48
18	Identification of a neurocircuit underlying regulation of feeding by stress-related emotional responses. Nature Communications, 2019, 10, 3446.	12.8	48

#	Article	IF	CITATIONS
19	Loss of function of NCOR1 and NCOR2 impairs memory through a novel GABAergic hypothalamus–CA3 projection. Nature Neuroscience, 2019, 22, 205-217.	14.8	54
20	Notoginsenoside Fe suppresses diet induced obesity and activates paraventricular hypothalamic neurons. RSC Advances, 2019, 9, 1290-1298.	3.6	6
21	A lateral hypothalamus to basal forebrain neurocircuit promotes feeding by suppressing responses to anxiogenic environmental cues. Science Advances, 2019, 5, eaav1640.	10.3	35
22	Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis. Nature Communications, 2019, 10, 1718.	12.8	45
23	Betulinic acid alleviates endoplasmic reticulum stressâ€mediated nonalcoholic fatty liver disease through activation of farnesoid X receptors in mice. British Journal of Pharmacology, 2019, 176, 847-863.	5.4	42
24	Defensive Behaviors Driven by a Hypothalamic-Ventral Midbrain Circuit. ENeuro, 2019, 6, ENEURO.0156-19.2019.	1.9	19
25	Sensory perception drives food avoidance through excitatory basal forebrain circuits. ELife, 2019, 8, .	6.0	27
26	TAp63 contributes to sexual dimorphism in POMC neuron functions and energy homeostasis. Nature Communications, 2018, 9, 1544.	12.8	64
27	A neural basis for antagonistic control of feeding and compulsive behaviors. Nature Communications, 2018, 9, 52.	12.8	41
28	Prevalence, demographic and clinical features of comorbid depressive symptoms in drug naÃ ⁻ ve patients with schizophrenia presenting with first episode psychosis. Schizophrenia Research, 2018, 193, 182-187.	2.0	42
29	Arginine reverses growth hormone resistance through the inhibition of toll-like receptor 4-mediated inflammatory pathway. Metabolism: Clinical and Experimental, 2018, 79, 10-23.	3.4	5
30	Current Genetic Techniques in Neural Circuit Control of Feeding and Energy Metabolism. Advances in Experimental Medicine and Biology, 2018, 1090, 211-233.	1.6	2
31	Transient Overexpression of Vascular Endothelial Growth Factor A in Adipose Tissue Promotes Energy Expenditure via Activation of the Sympathetic Nervous System. Molecular and Cellular Biology, 2018, 38, .	2.3	31
32	Activation of Serotonin 2C Receptors in Dopamine Neurons Inhibits Binge-like Eating in Mice. Biological Psychiatry, 2017, 81, 737-747.	1.3	83
33	Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction. Metabolism: Clinical and Experimental, 2017, 70, 152-159.	3.4	11
34	Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry. Methods in Molecular Biology, 2017, 1566, 135-143.	0.9	4
35	Cycloastragenol improves hepatic steatosis by activating farnesoid X receptor signalling. Pharmacological Research, 2017, 121, 22-32.	7.1	41
36	Functional Neuronal Differentiation of Injury-Induced Muscle-Derived Stem Cell-Like Cells with Therapeutic Implications. Scientific Reports, 2017, 7, 1177.	3.3	13

#	Article	IF	CITATIONS
37	Long-term PGC1β overexpression leads to apoptosis, autophagy and muscle wasting. Scientific Reports, 2017, 7, 10237.	3.3	11
38	Morin, a novel liver X receptor α/β dual antagonist, has potent therapeutic efficacy for nonalcoholic fatty liver diseases. British Journal of Pharmacology, 2017, 174, 3032-3044.	5.4	30
39	Central leptin action on euglycemia restoration in type 1 diabetes: Restraining responses normally induced by fasting?. International Journal of Biochemistry and Cell Biology, 2017, 88, 198-203.	2.8	5
40	Hunger and Satiety Gauge Reward Sensitivity. Frontiers in Endocrinology, 2017, 8, 104.	3.5	59
41	2120. Journal of Clinical and Translational Science, 2017, 1, 1-2.	0.6	0
42	Red blood cell β-adrenergic receptors contribute to diet-induced energy expenditure by increasing O2 supply. JCI Insight, 2017, 2, .	5.0	4
43	VMAT2-Mediated Neurotransmission from Midbrain Leptin Receptor Neurons in Feeding Regulation. ENeuro, 2017, 4, ENEURO.0083-17.2017.	1.9	15
44	Silymarin Ameliorates Metabolic Dysfunction Associated with Diet-Induced Obesity via Activation of Farnesyl X Receptor. Frontiers in Pharmacology, 2016, 7, 345.	3.5	49
45	Role of Exchange Protein Directly Activated by Cyclic AMP Isoform 1 in Energy Homeostasis: Regulation of Leptin Expression and Secretion in White Adipose Tissue. Molecular and Cellular Biology, 2016, 36, 2440-2450.	2.3	20
46	Dietary component isorhamnetin is a PPARÎ ³ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency. Scientific Reports, 2016, 6, 19288.	3.3	59
47	An Indirect Action Contributes to C-Fos Induction in Paraventricular Hypothalamic Nucleus by Neuropeptide Y. Scientific Reports, 2016, 6, 19980.	3.3	10
48	Estrogen Receptor-α in the Medial Amygdala Prevents Stress-Induced Elevations in Blood Pressure in Females. Hypertension, 2016, 67, 1321-1330.	2.7	18
49	A cholinergic basal forebrain feeding circuit modulates appetite suppression. Nature, 2016, 538, 253-256.	27.8	104
50	A Small Potassium Current in AgRP/NPY Neurons Regulates Feeding Behavior and Energy Metabolism. Cell Reports, 2016, 17, 1807-1818.	6.4	23
51	PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice. Scientific Reports, 2016, 6, 23459.	3.3	32
52	Exercise-like effects by Estrogen-related receptor-gamma in muscle do not prevent insulin resistance in db/db mice. Scientific Reports, 2016, 6, 26442.	3.3	18
53	Visualizing estrogen receptor-α-expressing neurons using a new ERα-ZsGreen reporter mouse line. Metabolism: Clinical and Experimental, 2016, 65, 522-532.	3.4	25
54	Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice. Diabetologia, 2016, 59, 1276-1286.	6.3	51

#	Article	lF	CITATIONS
55	Euglycemia Restoration by Central Leptin in Type 1 Diabetes Requires STAT3 Signaling but Not Fast-Acting Neurotransmitter Release. Diabetes, 2016, 65, 1040-1049.	0.6	25
56	Apolipoprotein A-IV Inhibits AgRP/NPY Neurons and Activates Pro-Opiomelanocortin Neurons in the Arcuate Nucleus. Neuroendocrinology, 2016, 103, 476-488.	2.5	20
57	SRC-1 Regulates Blood Pressure and Aortic Stiffness in Female Mice. PLoS ONE, 2016, 11, e0168644.	2.5	13
58	Metaâ€chlorophenylpiperazine enhances leptin sensitivity in dietâ€induced obese mice. British Journal of Pharmacology, 2015, 172, 3510-3521.	5.4	12
59	GABAergic Projections from Lateral Hypothalamus to Paraventricular Hypothalamic Nucleus Promote Feeding. Journal of Neuroscience, 2015, 35, 3312-3318.	3.6	74
60	Hypothalamic Non-AgRP, Non-POMC GABAergic Neurons Are Required for Postweaning Feeding and NPY Hyperphagia. Journal of Neuroscience, 2015, 35, 10440-10450.	3.6	31
61	Estrogens Prevent Metabolic Dysfunctions Induced by Circadian Disruptions in Female Mice. Endocrinology, 2015, 156, 2114-2123.	2.8	31
62	CNC-bZIP Protein Nrf1-Dependent Regulation of Glucose-Stimulated Insulin Secretion. Antioxidants and Redox Signaling, 2015, 22, 819-831.	5.4	59
63	The ERα-PI3K Cascade in Proopiomelanocortin Progenitor Neurons Regulates Feeding and Glucose Balance in Female Mice. Endocrinology, 2015, 156, 4474-4491.	2.8	33
64	Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death and Differentiation, 2015, 22, 351-363.	11.2	53
65	Estrogen receptor–α in medial amygdala neurons regulates body weight. Journal of Clinical Investigation, 2015, 125, 2861-2876.	8.2	81
66	Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists. Biochemical and Biophysical Research Communications, 2014, 451, 184-189.	2.1	6
67	Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice. Journal of Clinical Investigation, 2014, 124, 4351-4362.	8.2	99
68	Glutamate Mediates the Function of Melanocortin Receptor 4 on Sim1 Neurons in Body Weight Regulation. Cell Metabolism, 2013, 18, 860-870.	16.2	87
69	Glutamate release mediates leptin action on energy expenditure. Molecular Metabolism, 2013, 2, 109-115.	6.5	30
70	Central GLP-2 Enhances Hepatic Insulin Sensitivity via Activating PI3K Signaling in POMC Neurons. Cell Metabolism, 2013, 18, 86-98.	16.2	74
71	Highlights From the Latest in Diabetes Research. Diabetes, 2013, 62, 2625-2626.	0.6	0
72	Central Leptin Regulation of Obesity and Fertility. Current Obesity Reports, 2012, 1, 236-244.	8.4	22

#	Article	IF	CITATIONS
73	GABAergic RIP-Cre Neurons in the Arcuate Nucleus Selectively Regulate Energy Expenditure. Cell, 2012, 151, 645-657.	28.9	193
74	Role of GABA Release From Leptin Receptor-Expressing Neurons in Body Weight Regulation. Endocrinology, 2012, 153, 2223-2233.	2.8	57
75	An Obligate Role of Oxytocin Neurons in Diet Induced Energy Expenditure. PLoS ONE, 2012, 7, e45167.	2.5	145
76	Action of Neurotransmitter: A Key to Unlock the AgRP Neuron Feeding Circuit. Frontiers in Neuroscience, 2012, 6, 200.	2.8	25
77	Synaptotagmin 4: A New Antiobesity Target?. Neuron, 2011, 69, 401-403.	8.1	7
78	Expanding neurotransmitters in the hypothalamic neurocircuitry for energy balance regulation. Protein and Cell, 2011, 2, 800-813.	11.0	17
79	Brain expression of Cre recombinase driven by pancreasâ€specific promoters. Genesis, 2010, 48, 628-634.	1.6	99
80	The Medial Amygdalar Nucleus: A Novel Glucose-Sensing Region That Modulates the Counterregulatory Response to Hypoglycemia. Diabetes, 2010, 59, 2646-2652.	0.6	60
81	Glucose Stimulation of Hypothalamic MCH Neurons Involves KATP Channels, Is Modulated by UCP2, and Regulates Peripheral Glucose Homeostasis. Cell Metabolism, 2010, 12, 545-552.	16.2	171
82	VGLUT2-Dependent Glutamate Release from Nociceptors Is Required to Sense Pain and Suppress Itch. Neuron, 2010, 68, 543-556.	8.1	226
83	Medullary Circuitry Regulating Rapid Eye Movement Sleep and Motor Atonia. Journal of Neuroscience, 2009, 29, 9361-9369.	3.6	96
84	Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nature Neuroscience, 2008, 11, 998-1000.	14.8	565
85	Synaptic Glutamate Release by Ventromedial Hypothalamic Neurons Is Part of the Neurocircuitry that Prevents Hypoglycemia. Cell Metabolism, 2007, 5, 383-393.	16.2	358
86	Localization and function of metabotropic glutamate receptor 8 in the enteric nervous system. American Journal of Physiology - Renal Physiology, 2003, 285, G992-G1003.	3.4	52
87	Localization and function of group III metabotropic glutamate receptors in rat pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1324-E1333.	3.5	55
88	Vesicular glutamate transporter 2 in the brain–gut axis. NeuroReport, 2001, 12, 3929-3934.	1.2	62
89	The blocking effect of BmP02, one novel short-chain scorpion peptide on transient outward K+ channel of adult rat ventricular myocyte. Regulatory Peptides, 2000, 90, 85-92.	1.9	18
90	Solution Structure of BmP02, a New Potassium Channel Blocker from the Venom of the Chinese ScorpionButhus martensiKarschâ€,â€j. Biochemistry, 2000, 39, 13669-13675.	2.5	18

#	Article	IF	CITATIONS
91	Basal Forebrain Cholinergic Signaling to Projection-Defined Cells within the Basolateral Amygdala Regulates Food Intake. SSRN Electronic Journal, 0, , .	0.4	0
92	Overexpression of Human NPY or AgRP in the Paraventricular Nucleus Increase Bodyweight in Young Rhesus Macaques. SSRN Electronic Journal, 0, , .	0.4	0
93	Overexpression of Human NPY or AgRP in the Paraventricular Nucleus Increases Feeding and Bodyweight in Young Rhesus Macaques. SSRN Electronic Journal, 0, , .	0.4	0
94	Anatomy and Function of Ventral Tegmental Area Glutamate Neurons. Frontiers in Neural Circuits, 0, 16, .	2.8	24