Zita Vale

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4579080/zita-vale-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 591
 6,958
 40
 67

 papers
 h-index
 g-index

 720
 8,764
 3.4
 6.55

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
591	Robust Energy Resource Management incorporating Risk Analysis using Conditional Value-at-Risk. <i>IEEE Access</i> , 2022 , 1-1	3.5	O
590	Electric vehicles local flexibility strategies for congestion relief on distribution networks. <i>Energy Reports</i> , 2022 , 8, 62-69	4.6	0
589	Scheduling of battery energy storages in the joint energy and reserve markets based on the static frequency of power system. <i>Journal of Energy Storage</i> , 2022 , 49, 104115	7.8	1
588	Demand response and dispatchable generation as ancillary services to support the low voltage distribution network operation. <i>Energy Reports</i> , 2022 , 8, 7-15	4.6	2
5 ⁸ 7	Selection of features in reinforcement learning applied to energy consumption forecast in buildings according to different contexts. <i>Energy Reports</i> , 2022 , 8, 423-429	4.6	O
586	Application of distinct demand response program during the ramping and sustained response period. <i>Energy Reports</i> , 2022 , 8, 411-416	4.6	0
585	Using decision tree to select forecasting algorithms in distinct electricity consumption context of an office building. <i>Energy Reports</i> , 2022 , 8, 417-422	4.6	3
584	Clustering distributed Energy Storage units for the aggregation of optimized local solar energy. <i>Energy Reports</i> , 2022 , 8, 405-410	4.6	0
583	Contextual learning for energy forecasting in buildings. <i>International Journal of Electrical Power and Energy Systems</i> , 2022 , 136, 107707	5.1	O
582	Managing Smart City Power Network by Shifting Electricity Consumers Demand. <i>Lecture Notes in Networks and Systems</i> , 2022 , 81-91	0.5	0
581	IoT-Based Human Fall Detection Solution Using Morlet Wavelet. <i>Lecture Notes in Networks and Systems</i> , 2022 , 14-25	0.5	1
580	Intraday Energy Resource Scheduling for Load Aggregators Considering Local Market. <i>Advances in Intelligent Systems and Computing</i> , 2022 , 233-242	0.4	
579	Energy Predictions for System on a Chip Solutions. <i>Advances in Intelligent Systems and Computing</i> , 2022 , 243-250	0.4	1
578	A robust model for aggregated bidding of energy storages and wind resources in the joint energy and reserve markets. <i>Energy</i> , 2022 , 238, 121735	7.9	4
577	Single contract power optimization: A novel business model for smart buildings using intelligent energy management. <i>International Journal of Electrical Power and Energy Systems</i> , 2022 , 135, 107534	5.1	5
576	Intelligent Simulation and Emulation Platform for Energy Management in Buildings and Microgrids. <i>Intelligent Systems Reference Library</i> , 2022 , 167-181	0.8	
575	Goal Programming Approach for Energy Management of Smart Building. <i>IEEE Access</i> , 2022 , 10, 25341-2	253 4 8	1

(2021-2022)

574	A Review of Unpredictable Renewable Energy Sources Through Electric Vehicles on Islands. <i>Lecture Notes in Networks and Systems</i> , 2022 , 751-760	0.5		
573	IoT-Based Human Fall Detection System. <i>Electronics (Switzerland)</i> , 2022 , 11, 592	2.6	2	
57 ²	A Trustworthy Building Energy Management System to Enable Direct IoT Devices Participation in Demand Response Programs. <i>Electronics (Switzerland)</i> , 2022 , 11, 897	2.6	О	
571	Evaluation Metrics to Assess the Most Suitable Energy Community End-Users to Participate in Demand Response. <i>Energies</i> , 2022 , 15, 2380	3.1	1	
57°	Near real-time management of appliances, distributed generation and electric vehicles for demand response participation. <i>Integrated Computer-Aided Engineering</i> , 2022 , 1-20	5.2	0	
569	Hour-ahead energy resource scheduling optimization for smart power distribution networks considering local energy market. <i>Energy Reports</i> , 2022 , 8, 575-582	4.6	1	
568	Electric Mobility: An Overview of the Main Aspects Related to the Smart Grid. <i>Electronics</i> (Switzerland), 2022 , 11, 1311	2.6	3	
567	Demand response performance and uncertainty: A systematic literature review. <i>Energy Strategy Reviews</i> , 2022 , 41, 100857	9.8	3	
566	Impact of Forecasting Models Errors in a Peer-to-Peer Energy Sharing Market. <i>Energies</i> , 2022 , 15, 3543	3.1	0	
565	Dynamic remuneration of electricity consumers flexibility. <i>Energy Reports</i> , 2022 , 8, 623-627	4.6	0	
564	Optimal Contract Power and Battery Energy Storage System Capacity for Smart Buildings 2021 ,		2	
563	Energy Management Model for HVAC Control Supported by Reinforcement Learning. <i>Energies</i> , 2021 , 14, 8210	3.1	1	
562	A P2P Electricity Negotiation Agent Systems in Urban Smart Grids. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 97-106	0.4	1	
561	Coordination of Home Appliances for Demand Response: An Improved Optimization Model and Approach. <i>IEEE Access</i> , 2021 , 9, 146183-146194	3.5	2	
560	Short Time Electricity Consumption Forecast in an Industry Facility. <i>IEEE Transactions on Industry Applications</i> , 2021 , 1-1	4.3	2	
559	Load Forecasting in an Office Building with Different Data Structure and Learning Parameters. <i>Forecasting</i> , 2021 , 3, 242-254	2.3	6	
558	A methodology for energy key performance indicators analysis. Energy Informatics, 2021, 4,	2.8	3	
557	Ontologies to Enable Interoperability of Multi-Agent Electricity Markets Simulation and Decision Support. <i>Electronics (Switzerland)</i> , 2021 , 10, 1270	2.6	2	

556	Evolutionary Algorithms for Energy Scheduling under uncertainty considering Multiple Aggregators 2021 ,		3
555	Prosumer Community Portfolio Optimization via Aggregator: The Case of the Iberian Electricity Market and Portuguese Retail Market. <i>Energies</i> , 2021 , 14, 3747	3.1	3
554	Upgrading BRICKSThe Context-Aware Semantic Rule-Based System for Intelligent Building Energy and Security Management. <i>Energies</i> , 2021 , 14, 4541	3.1	2
553	Smart energy community: A systematic review with metanalysis. <i>Energy Strategy Reviews</i> , 2021 , 36, 100	67.8	8
552	Ensemble learning for electricity consumption forecasting in office buildings. <i>Neurocomputing</i> , 2021 , 423, 747-755	5.4	26
551	Energy Management in Smart Building by a Multi-Objective Optimization Model and Pascoletti-Serafini Scalarization Approach. <i>Processes</i> , 2021 , 9, 257	2.9	9
550	Optimizing Energy Consumption of Household Appliances Using PSO and GWO. <i>Lecture Notes in Computer Science</i> , 2021 , 137-150	0.9	О
549	Distributed Energy Resource Scheduling with Focus on Demand Response Complex Contracts. Journal of Modern Power Systems and Clean Energy, 2021 , 9, 1172-1182	4	5
548	Coordination strategies in distribution network considering multiple aggregators and high penetration of electric vehicles. <i>Procedia Computer Science</i> , 2021 , 186, 698-705	1.6	1
547	. IEEE Access, 2021 , 9, 105357-105368	3.5	2
546	PV Generation Forecasting Model for Energy Management in Buildings. <i>Lecture Notes in Computer Science</i> , 2021 , 176-182	0.9	1
545	Multiagent Simulation of Demand Flexibility Integration in Local Energy Markets. <i>E3S Web of Conferences</i> , 2021 , 239, 00010	0.5	
544	An Optimization Based Community Model of Consumers and Prosumers: A Real-Time Simulation and Emulation Approach. <i>E3S Web of Conferences</i> , 2021 , 239, 00024	0.5	О
543	Electricity markets and local electricity markets in Europe 2021 , 311-340		1
542	Data mining techniques for electricity customer characterization. <i>Procedia Computer Science</i> , 2021 , 186, 475-488	1.6	3
541	Production Line Optimization to Minimize Energy Cost and Participate in Demand Response Events. <i>Energies</i> , 2021 , 14, 462	3.1	4
540	. IEEE Access, 2021 , 9, 51519-51535	3.5	0
539	Optimisation for Coalitions Formation Considering the Fairness in Flexibility Market Participation. <i>E3S Web of Conferences</i> , 2021 , 239, 00016	0.5	

(2020-2021)

538	An Optimization Model for Energy Community Costs Minimization Considering a Local Electricity Market between Prosumers and Electric Vehicles. <i>Electronics (Switzerland)</i> , 2021 , 10, 129	2.6	9
537	Semantic Services Catalog for Multiagent Systems Society. <i>Lecture Notes in Computer Science</i> , 2021 , 22	29-2490	
536	Optimal Model for Local Energy Community Scheduling Considering Peer to Peer Electricity Transactions. <i>IEEE Access</i> , 2021 , 9, 12420-12430	3.5	16
535	MARTINEA Platform for Real-Time Energy Management in Smart Grids. <i>Energies</i> , 2021 , 14, 1820	3.1	2
534	Portfolio optimization of electricity markets participation using forecasting error in risk formulation. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 129, 106739	5.1	5
533	Web-based platform for the management of citizen energy communities and their members. <i>Energy Informatics</i> , 2021 , 4,	2.8	1
532	Climatization and luminosity optimization of buildings using genetic algorithm, random forest, and regression models. <i>Energy Informatics</i> , 2021 , 4,	2.8	1
531	A hybrid intelligent classifier for anomaly detection. <i>Neurocomputing</i> , 2021 , 452, 498-507	5.4	2
530	Joint Optimal Allocation of Electric Vehicle Charging Stations and Renewable Energy Sources Including CO2 Emissions. <i>Energy Informatics</i> , 2021 , 4,	2.8	3
529	Non-technical losses: A systematic contemporary article review. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 147, 111205	16.2	8
528	Bidding in local electricity markets with cascading wholesale market integration. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 131, 107045	5.1	5
527	Energy-constrained model for scheduling of battery storage systems in joint energy and ancillary service markets based on the energy throughput concept. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 133, 107213	5.1	2
526	Single-unit and multi-unit auction framework for peer-to-peer transactions. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 133, 107235	5.1	5
525	Demand Response Programs Management in an Energy Community with Diversity of Appliances. <i>E3S Web of Conferences</i> , 2021 , 239, 00023	0.5	
524	Semantic Interoperability for Multiagent Simulation and Decision Support in Power Systems. <i>Communications in Computer and Information Science</i> , 2021 , 215-226	0.3	
523	Intelligent Energy-Oriented Home 2021 , 269-289		
522	From the smart grid to the local electricity market 2021 , 63-76		0
521	Industrial Facility Electricity Consumption Forecast Using Artificial Neural Networks and Incremental Learning. <i>Energies</i> , 2020 , 13, 4774	3.1	10

520	Combining real-time and fixed tariffs in the demand response aggregation and remuneration. Energy Reports, 2020 , 6, 114-119	4.6	1
519	Do Supply Chain Management Practices Influence Firm Performance?. <i>International Journal of Information Systems and Supply Chain Management</i> , 2020 , 13, 1-22	0.6	4
518	Demand Response of Residential Houses Equipped with PV-Battery Systems: An Application Study Using Evolutionary Algorithms. <i>Energies</i> , 2020 , 13, 2466	3.1	14
517	Effects of elasticity parameter definition for real-time pricing remuneration considering different user types. <i>Energy Reports</i> , 2020 , 6, 127-132	4.6	2
516	Air conditioner consumption optimization in an office building considering user comfort. <i>Energy Reports</i> , 2020 , 6, 120-126	4.6	2
515	Agricultural irrigation scheduling for a crop management system considering water and energy use optimization. <i>Energy Reports</i> , 2020 , 6, 133-139	4.6	13
514	Rating the Participation in Demand Response Programs for a More Accurate Aggregated Schedule of Consumers after Enrolment Period. <i>Electronics (Switzerland)</i> , 2020 , 9, 349	2.6	9
513	Adjacent Markets Influence Over Electricity Tradinglberian Benchmark Study. <i>Energies</i> , 2020 , 13, 2808	3.1	1
512	Use of Sensors and Analyzers Data for Load Forecasting: A Two Stage Approach. <i>Sensors</i> , 2020 , 20,	3.8	4
511	Flexibility management model of home appliances to support DSO requests in smart grids. Sustainable Cities and Society, 2020, 55, 102048	10.1	37
510		10.1 3.8	37
	Sustainable Cities and Society, 2020, 55, 102048 Consumption Optimization in an Office Building Considering Flexible Loads and User Comfort.		
510	Sustainable Cities and Society, 2020, 55, 102048 Consumption Optimization in an Office Building Considering Flexible Loads and User Comfort. Sensors, 2020, 20, Multi-Agent Microgrid Management System for Single-Board Computers: A Case Study on	3.8	3
510	Consumption Optimization in an Office Building Considering Flexible Loads and User Comfort. Sensors, 2020, 20, Multi-Agent Microgrid Management System for Single-Board Computers: A Case Study on Peer-to-Peer Energy Trading. IEEE Access, 2020, 8, 64169-64183 A Mixed Binary Linear Programming Model for Optimal Energy Management of Smart Buildings.	3.8 3.5	3
510 509 508	Consumption Optimization in an Office Building Considering Flexible Loads and User Comfort. Sensors, 2020, 20, Multi-Agent Microgrid Management System for Single-Board Computers: A Case Study on Peer-to-Peer Energy Trading. IEEE Access, 2020, 8, 64169-64183 A Mixed Binary Linear Programming Model for Optimal Energy Management of Smart Buildings. Energies, 2020, 13, 1719 Clustering Direct Load Control Appliances in the Context of Demand Response Programs in Energy	3.8 3.5 3.1	3 32 8
510 509 508	Consumption Optimization in an Office Building Considering Flexible Loads and User Comfort. Sensors, 2020, 20, Multi-Agent Microgrid Management System for Single-Board Computers: A Case Study on Peer-to-Peer Energy Trading. IEEE Access, 2020, 8, 64169-64183 A Mixed Binary Linear Programming Model for Optimal Energy Management of Smart Buildings. Energies, 2020, 13, 1719 Clustering Direct Load Control Appliances in the Context of Demand Response Programs in Energy Communities. IFAC-PapersOnLine, 2020, 53, 12608-12613 Data Mining for Remuneration of Consumers Demand Response Participation. Communications in	3.8 3.5 3.1	3 32 8 2
510 509 508 507 506	Consumption Optimization in an Office Building Considering Flexible Loads and User Comfort. Sensors, 2020, 20, Multi-Agent Microgrid Management System for Single-Board Computers: A Case Study on Peer-to-Peer Energy Trading. IEEE Access, 2020, 8, 64169-64183 A Mixed Binary Linear Programming Model for Optimal Energy Management of Smart Buildings. Energies, 2020, 13, 1719 Clustering Direct Load Control Appliances in the Context of Demand Response Programs in Energy Communities. IFAC-PapersOnLine, 2020, 53, 12608-12613 Data Mining for Remuneration of Consumers Demand Response Participation. Communications in Computer and Information Science, 2020, 326-338	3.8 3.5 3.1	3 32 8 2

(2020-2020)

502	Study of Multi-Tariff Influence on the Distributed Generation Remuneration. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 14-19	0.4	О
501	Energy Consumption Forecasting Using Ensemble Learning Algorithms. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 5-13	0.4	3
500	A Consumer Trustworthiness Rate for Participation in Demand Response Programs. <i>IFAC-PapersOnLine</i> , 2020 , 53, 12596-12601	0.7	1
499	Using diverse sensors in load forecasting in an office building to support energy management. <i>Energy Reports</i> , 2020 , 6, 182-187	4.6	5
498	Determination of the typical load profile of industry tasks using fuzzy C-Means. <i>Energy Reports</i> , 2020 , 6, 155-160	4.6	
497	Rating consumers participation in demand response programs according to previous events. <i>Energy Reports</i> , 2020 , 6, 195-200	4.6	4
496	Online estimation and use of price elasticity of demand for shifting loads through real-time pricing. <i>Energy Reports</i> , 2020 , 6, 93-98	4.6	1
495	Key Performance Indicators to Support the Participation in Demand Response Programs: A Testing Framework for End Users. <i>IFAC-PapersOnLine</i> , 2020 , 53, 12602-12607	0.7	
494	Production scheduling considering dynamic electricity price in energy-efficient factories. <i>IFAC-PapersOnLine</i> , 2020 , 53, 12584-12589	0.7	
493	A Two Tier Architecture for Local Energy Market Simulation and Control. <i>Communications in Computer and Information Science</i> , 2020 , 302-313	0.3	1
492	Scheduling of a textile production line integrating PV generation using a genetic algorithm. <i>Energy Reports</i> , 2020 , 6, 148-154	4.6	5
491	Key performance indicators regarding user comfort for building energy consumption management. <i>Energy Reports</i> , 2020 , 6, 87-92	4.6	3
490	Large-scale optimization of households with photovoltaic-battery system and demand response. <i>IFAC-PapersOnLine</i> , 2020 , 53, 12572-12577	0.7	2
489	Microgrid management system based on a multi-agent approach: An office building pilot. <i>Measurement: Journal of the International Measurement Confederation</i> , 2020 , 154, 107427	4.6	16
488	Sequential Tasks Shifting for Participation in Demand Response Programs. <i>Energies</i> , 2020 , 13, 4879	3.1	2
487	Application Ontology for Multi-Agent and Web-Services©o-Simulation in Power and Energy Systems. <i>IEEE Access</i> , 2020 , 8, 81129-81141	3.5	4
486	Multi-Objective Electric Vehicles Scheduling Using Elitist Non-Dominated Sorting Genetic Algorithm. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 7978	2.6	4
485	Recommendation of Workplaces in a Coworking Building: A Cyber-Physical Approach Supported by a Context-Aware Multi-Agent System. <i>Sensors</i> , 2020 , 20,	3.8	8

484	Learning Bidding Strategies in Local Electricity Markets using Ant Colony optimization 2020,		4
483	Learning Bidding Strategies in Local Electricity Markets using a Nature-Inspired Algorithm 2020,		1
482	Electricity Consumption Forecast in an Industry Facility to Support Production Planning Update in Short Time 2020 ,		1
481	Constrained Generation Bids in Local Electricity Markets: A Semantic Approach. <i>Energies</i> , 2020 , 13, 3990	3.1	2
480	BRICKS: Building reasoning for intelligent control knowledge-based system. <i>Sustainable Cities and Society</i> , 2020 , 52, 101832	10.1	11
479	Lighting Consumption Optimization in a SCADA Model of Office Building Considering User Comfort Level. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 20-28	0.4	
478	Ramping of Demand Response Event with Deploying Distinct Programs by an Aggregator. <i>Energies</i> , 2020 , 13, 1389	3.1	6
477	Hybrid-adaptive differential evolution with decay function (HyDE-DF) applied to the 100-digit challenge competition on single objective numerical optimization 2019 ,		12
476	Electricity consumption forecasting in office buildings: an artificial intelligence approach 2019,		2
475	Business models for flexibility of electric vehicles 2019 ,		3
474	Agent-based architecture for demand side management using real-time resources[priorities and a deterministic optimization algorithm. <i>Journal of Cleaner Production</i> , 2019 , 241, 118154	10.3	22
473	Demand Response Implementation in an Optimization Based SCADA Model Under Real-Time Pricing Schemes. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 21-29	0.4	3
472	Strategic participation in competitive electricity markets: Internal versus sectorial data analysis. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 108, 432-444	5.1	4
471	Hybrid approach based on particle swarm optimization for electricity markets participation. <i>Energy Informatics</i> , 2019 , 2,	2.8	4
470	Decision Support for Small Players Negotiations Under a Transactive Energy Framework. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 4015-4023	7	23
469	Liberalization and customer behavior in the Portuguese residential retail electricity market. <i>Utilities Policy</i> , 2019 , 59, 100919	3.3	14
468	Demand Response Optimization Using Particle Swarm Algorithm Considering Optimum Battery Energy Storage Schedule in a Residential House. <i>Energies</i> , 2019 , 12, 1645	3.1	27
467	A Short Review on Smart Building Energy Resource Optimization 2019,		4

(2019-2019)

466	IoH: A Platform for the Intelligence of Home with a Context Awareness and Ambient Intelligence Approach. <i>Future Internet</i> , 2019 , 11, 58	3.3	5
465	A Demand Response Approach to Scheduling Constrained Load Shifting. <i>Energies</i> , 2019 , 12, 1752	3.1	19
464	A Residential House Comparative Case Study Using Market Available Smart Plugs and EnAPlugs with Shared Knowledge. <i>Energies</i> , 2019 , 12, 1647	3.1	2
463	Electric Vehicles User Charging Behaviour Simulator for a Smart City. <i>Energies</i> , 2019 , 12, 1470	3.1	22
462	Decision Support Application for Energy Consumption Forecasting. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 699	2.6	7
461	Optimal Distribution Grid Operation Using DLMP-Based Pricing for Electric Vehicle Charging Infrastructure in a Smart City. <i>Energies</i> , 2019 , 12, 686	3.1	15
460	Identifying Most Probable Negotiation Scenario in Bilateral Contracts with Reinforcement Learning. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 556-571	0.4	
459	Electricity Price Forecast for Futures Contracts with Artificial Neural Network and Spearman Data Correlation. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 12-20	0.4	O
458	Optimal expansion planning considering storage investment and seasonal effect of demand and renewable generation. <i>Renewable Energy</i> , 2019 , 138, 937-954	8.1	20
457	2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results. <i>Swarm and Evolutionary Computation</i> , 2019 , 44, 420-427	9.8	12
456	Energy Analyzer Emulator for Microgrid Implementation and Demonstration and Respective Gateway. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 134-144	4.3	7
455	Context aware Q-Learning-based model for decision support in the negotiation of energy contracts. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 104, 489-501	5.1	11
454	Local Energy Markets: Paving the Path Toward Fully Transactive Energy Systems. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 4081-4088	7	119
453	2019,		9
452	Demand Response and Distributed Generation Remuneration Approach Considering Planning and Operation Stages. <i>Energies</i> , 2019 , 12, 2721	3.1	7
45 ¹	ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems. <i>Energies</i> , 2019 , 12, 272	2 3.1	13
450	Collaborative Reinforcement Learning of Energy Contracts Negotiation Strategies. <i>Communications in Computer and Information Science</i> , 2019 , 202-210	0.3	O
449	Towards transactive energy systems: An analysis on current trends. <i>Energy Strategy Reviews</i> , 2019 , 26, 100418	9.8	72

448	Energy Resources Management Enabled by Internet of Things Devices 2019,		1
447	Elasticity Parameter Definition and Analysis for Real-Time Pricing Remuneration Basing on Different Users Cases 2019 ,		1
446	AiD-EM: Adaptive Decision Support for Electricity Markets Negotiations 2019,		6
445	Contextual Simulated Annealing Q-Learning for Pre-negotiation of Agent-Based Bilateral Negotiations. <i>Lecture Notes in Computer Science</i> , 2019 , 519-531	0.9	O
444	Multi-agent Systems Society for Power and Energy Systems Simulation. <i>Lecture Notes in Computer Science</i> , 2019 , 126-137	0.9	
443	Energy Resource Scheduling in an Agriculture System Using a Decision Tree Approach 2019 ,		2
442	Distributed Constrained Optimization Towards Effective Agent-Based Microgrid Energy Resource Management. <i>Lecture Notes in Computer Science</i> , 2019 , 438-449	0.9	1
441	Demonstration of an Energy Consumption Forecasting System for Energy Management in Buildings. <i>Lecture Notes in Computer Science</i> , 2019 , 462-468	0.9	4
440	Fair Remuneration of Energy Consumption Flexibility Using Shapley Value. <i>Lecture Notes in Computer Science</i> , 2019 , 532-544	0.9	2
439	Semantic Web Services for Multi-Agent Systems Interoperability. <i>Lecture Notes in Computer Science</i> , 2019 , 606-616	0.9	5
438	Multi-Agent-Based CBR Recommender System for Intelligent Energy Management in Buildings. <i>IEEE Systems Journal</i> , 2019 , 13, 1084-1095	4.3	18
437	Multi-agent semantic interoperability in complex energy systems simulation and decision support 2019 ,		3
436	Multi-Period Observation Clustering for Tariff Definition in a Weekly Basis Remuneration of Demand Response. <i>Energies</i> , 2019 , 12, 1248	3.1	9
435	CO2 Concentration Forecasting in an Office Using Artificial Neural Network 2019,		1
434	Optimal Bidding in Local Energy Markets using Evolutionary Computation 2019,		3
433	Optimizing Lighting in an Office for Demand Response Participation Considering User Preferences 2019 ,		1
432	Distribution Network Expansion Planning Considering the Flexibility Value for Distribution System Operator 2019 ,		2
431	Demand Response in Energy Communities Considering the Share of Photovoltaic Generation from Public Buildings 2019 ,		3

(2018-2019)

430	Energy Scheduling Using Decision Trees and Emulation: Agriculture Irrigation with Run-of-the-River Hydroelectricity and a PV Case Study. <i>Energies</i> , 2019 , 12, 3987	3.1	3
429	A Review of the Main Machine Learning Methods for Predicting Residential Energy Consumption. 2019 ,		4
428	A Local Electricity Market Model for DSO Flexibility Trading 2019,		6
427	Lightweight Architecture for IoT Devices with Context-aware Autonomous Control 2019,		1
426	Stochastic interval-based optimal offering model for residential energy management systems by household owners. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 105, 201-219	5.1	48
425	UCB1 Based Reinforcement Learning Model for Adaptive Energy Management in Buildings. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 3-11	0.4	1
424	Congestion management in active distribution networks through demand response implementation. <i>Sustainable Energy, Grids and Networks</i> , 2019 , 17, 100185	3.6	17
423	Adaptive entropy-based learning with dynamic artificial neural network. <i>Neurocomputing</i> , 2019 , 338, 432-440	5.4	2
422	Long-Term Smart Grid Planning Under Uncertainty Considering Reliability Indexes 2018, 297-335		1
421	Multi-agent Electricity Markets and Smart Grids Simulation with Connection to Real Physical Resources. <i>Studies in Systems, Decision and Control</i> , 2018 , 305-327	0.8	1
420	R-Node: New Pipelined Approach for an Effective Reconfigurable Wireless Sensor Node. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2018 , 48, 892-905	7.3	28
419	Optimizing Opponents Selection in Bilateral Contracts Negotiation with Particle Swarm. <i>Communications in Computer and Information Science</i> , 2018 , 116-124	0.3	1
418	An Agent-Based IoT System for Intelligent Energy Monitoring in Buildings 2018,		2
417	Reschedule of Distributed Energy Resources by an Aggregator for Market Participation. <i>Energies</i> , 2018 , 11, 713	3.1	11
416	Strategic Particle Swarm Inertia Selection for Electricity Markets Participation Portfolio Optimization. <i>Applied Artificial Intelligence</i> , 2018 , 32, 745-767	2.3	6
415	Real-Time Simulation of a Curtailment Service Provider for Demand Response Participation 2018,		2
414	An Aggregation Model for Energy Resources Management and Market Negotiations. <i>Advances in Science, Technology and Engineering Systems</i> , 2018 , 3, 231-237	0.3	3
413	Reputation Computational Model to Support Electricity Market Players Energy Contracts Negotiation. <i>Communications in Computer and Information Science</i> , 2018 , 125-133	0.3	1

412	Demonstration of Tools Control Center for Multi-agent Energy Systems Simulation. <i>Lecture Notes in Computer Science</i> , 2018 , 353-356	0.9	
411	Customized normalization clustering meth-odology for consumers with heterogeneous characteristics. <i>Advances in Distributed Computing and Artificial Intelligence Journal</i> , 2018 , 7, 53-69	0.4	2
410	Economic Evaluation of Predictive Dispatch Model in MAS-Based Smart Home. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 81-91	0.4	1
409	Smart City: A GECAD-BISITE Energy Management Case Study. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 92-100	0.4	6
408	Smart Grids Data Management: A Case for Cassandra. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 87-95	0.4	1
407	Energy Analyzer Emulation for Energy Management Simulators. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 215-222	0.4	1
406	Statistics-Based Approach to Enable Consumer Profile Definition for Demand Response Programs. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 63-70	0.4	
405	Data Mining for Prosumers Aggregation considering the Self-Generation. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 96-103	0.4	1
404	Decision Support System for the Negotiation of Bilateral Contracts in Electricity Markets. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 305-306	0.4	
403	Real-Time Emulation and Simulation System of Asynchronous Motor Consumption. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 72-80	0.4	
402	Big Data in Efficient Smart Grids Management. Advances in Intelligent Systems and Computing, 2018, 29	97-2229	
401	Gravitational Search Algorithm Applied for Residential Demand Response Using Real-Time Pricing. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 101-111	0.4	
400	Real-Time Implementation of Demand Response Programs Based on Open ADR Technology. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 345-347	0.4	
399	Remuneration and Tariffs in the Context of Virtual Power Players. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 284-286	0.4	
398	Tools Control Center to Enable the Joint Simulation of Multi-agent Systems. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 307-308	0.4	
397	GIM Microgrids Intelligent Management System Based on a Multi-agent Approach and the Active Participation on Demand Response. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 279-280	0.4	
396	Photovoltaic Inverter Scheduler with the Support of Storage Unit to Minimize Electricity Bill. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 63-71	0.4	1
395	Ontologies for the Interoperability of Heterogeneous Multi-agent Systems in the Scope of Power and Energy Systems. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 300-301	0.4	4

(2018-2018)

394	Decision Support for Smart Grid Planning and Operation Considering Reliability and All Available Resources. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 272-274	0.4	
393	Decision Support for Agents Participation in Electricity Markets. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 302-304	0.4	
392	A context-based building security alarm through power and sensors analysis. <i>Energy Informatics</i> , 2018 , 1,	2.8	3
391	An Intelligent Smart Plug with Shared Knowledge Capabilities. <i>Sensors</i> , 2018 , 18,	3.8	20
390	Day-ahead forecasting approach for energy consumption of an office building using support vector machines 2018 ,		2
389	A Flexibility Home Energy Management System to Support Agreggator Requests in Smart Grids 2018 ,		3
388	Distributed Energy Resources Scheduling and Aggregation in the Context of Demand Response Programs. <i>Energies</i> , 2018 , 11, 1987	3.1	13
387	Discussing Different Clustering Methods for the Aggregation of Demand Response and Distributed Generation 2018 ,		3
386	Genetic Algorithms for Portfolio Optimization with Weighted Sum Approach 2018,		3
385	Fault-Tolerant Temperature Control Algorithm for IoT Networks in Smart Buildings. Energies, 2018,		
	11, 3430	3.1	23
384	11, 3430 Day ahead electricity consumption forecasting with MOGUL learning model 2018 ,	3.1	4
		3.1	
384	Day ahead electricity consumption forecasting with MOGUL learning model 2018 , Assessment of Distributed Generation Units Remuneration Using Different Clustering Methods for	2.8	4
384	Day ahead electricity consumption forecasting with MOGUL learning model 2018, Assessment of Distributed Generation Units Remuneration Using Different Clustering Methods for Aggregation 2018, Application of an optimization-based curtailment service provider in real-time simulation. <i>Energy</i>		4
384 383 382	Day ahead electricity consumption forecasting with MOGUL learning model 2018, Assessment of Distributed Generation Units Remuneration Using Different Clustering Methods for Aggregation 2018, Application of an optimization-based curtailment service provider in real-time simulation. Energy Informatics, 2018, 1, Office building participation in demand response programs supported by intelligent lighting	2.8	4 4 8
384 383 382 381	Day ahead electricity consumption forecasting with MOGUL learning model 2018, Assessment of Distributed Generation Units Remuneration Using Different Clustering Methods for Aggregation 2018, Application of an optimization-based curtailment service provider in real-time simulation. Energy Informatics, 2018, 1, Office building participation in demand response programs supported by intelligent lighting management. Energy Informatics, 2018, 1, Iberian electricity market ontology to enable smart grid market simulation. Energy Informatics,	2.8	4 8 11
384 383 382 381 380	Day ahead electricity consumption forecasting with MOGUL learning model 2018, Assessment of Distributed Generation Units Remuneration Using Different Clustering Methods for Aggregation 2018, Application of an optimization-based curtailment service provider in real-time simulation. Energy Informatics, 2018, 1, Office building participation in demand response programs supported by intelligent lighting management. Energy Informatics, 2018, 1, Iberian electricity market ontology to enable smart grid market simulation. Energy Informatics, 2018, 1, A platform for testing the performance of metaheuristics solving the energy resource management	2.8 2.8 2.8	4 8 11 3

376	Case-based reasoning using expert systems to determine electricity reduction in residential buildings 2018 ,		2
375	A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application Under Uncertainty 2018,		9
374	Multi-Objective Portfolio Optimization of Electricity Markets Participation 2018,		1
373	SCADA Office Building Implementation in the Context of an Aggregator 2018 ,		8
372	Methods for Aggregation and Remuneration of Distributed Energy Resources. <i>Applied Sciences</i> (Switzerland), 2018 , 8, 1283	.6	9
371	Differential Evolution Aplication in Portfolio optimization for Electricity Markets 2018,		1
370	Decision Support for Negotiations among Microgrids Using a Multiagent Architecture. <i>Energies</i> , 2018 , 11, 2526	.1	3
369	optimization-Based Home Energy Management System Under Different Electricity Pricing Schemes 2018 ,		1
368	Electric Water Heater Modelling for Direct Load Control Demand Response 2018,		1
367	Optimization of Multiple Electricity Markets Participation Using Evolutionary PSO 2018,		1
366	Multi-Agent Decision Support Tool to Enable Interoperability among Heterogeneous Energy Systems. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 328	.6	15
365	Optimal Approach for Reliability Assessment in Radial Distribution Networks. <i>IEEE Systems Journal</i> , 2017 , 11, 1846-1856	3	20
364	Demand response implementation in smart households. <i>Energy and Buildings</i> , 2017 , 143, 129-148		90
363	Ontology-based model for trusted critical site supervision in FUSE-IT 2017 ,		2
362	Dynamic electricity pricing for electric vehicles using stochastic programming. <i>Energy</i> , 2017 , 122, 111-12 7	.9	29
361	Multi-objective robust optimization to solve energy scheduling in buildings under uncertainty 2017,		5
360	A Robust Optimization for Day-ahead Microgrid Dispatch Considering Uncertainties. <i>IFAC-PapersOnLine</i> , 2017 , 50, 3350-3355	·7	10
359	Multi-objective Particle Swarm Optimization to Solve Energy Scheduling with Vehicle-to-Grid in Office Buildings Considering Uncertainties. <i>IFAC-PapersOnLine</i> , 2017 , 50, 3356-3361).7	2

(2017-2017)

358	Scalable computational framework using intelligent optimization: Microgrids dispatch and electricity market joint simulation. <i>IFAC-PapersOnLine</i> , 2017 , 50, 3362-3367	0.7	
357	Implementation of a Real-Time Microgrid Simulation Platform Based on Centralized and Distributed Management. <i>Energies</i> , 2017 , 10, 806	3.1	32
356	Nord Pool Ontology to Enhance Electricity Markets Simulation in MASCEM. <i>Lecture Notes in Computer Science</i> , 2017 , 283-294	0.9	2
355	Case based reasoning with expert system and swarm intelligence to determine energy reduction in buildings energy management. <i>Energy and Buildings</i> , 2017 , 155, 269-281	7	32
354	Differential evolution strategies for large-scale energy resource management in smart grids 2017,		17
353	Organization-based Multi-Agent structure of the Smart Home Electricity System 2017 ,		19
352	. IEEE Transactions on Industry Applications, 2017 , 53, 5905-5914	4.3	48
351	A stochastic model for energy resources management considering demand response in smart grids. <i>Electric Power Systems Research</i> , 2017 , 143, 599-610	3.5	69
350	Reserve costs allocation model for energy and reserve market simulation 2017,		12
349	EPEX ontology: Enhancing agent-based electricity market simulation 2017 ,		3
348	Evolutionary framework for multi-dimensional signaling method applied to energy dispatch problems in smart grids 2017 ,		1
347	Lighting consumption optimization using fish school search algorithm 2017,		6
346	Energy flexibility assessment of a multi agent-based smart home energy system 2017,		11
345	TOOCC: Enabling heterogeneous systems interoperability in the study of energy systems 2017,		2
344	Clustering optimization of distributed energy resources in support of an aggregator 2017,		3
343	Bilateral contract prices estimation using a Q-leaming based approach 2017 ,		2
342	Hybrid particle swarm optimization of electricity market participation portfolio 2017,		4
341	An Ad-Hoc Initial Solution Heuristic for Metaheuristic Optimization of Energy Market Participation Portfolios. <i>Energies</i> , 2017 , 10, 883	3.1	4

340	Dynamic Pricing for Demand Response Considering Market Price Uncertainty. <i>Energies</i> , 2017 , 10, 1245	3.1	14
339	Energy and Reserve under Distributed Energy Resources Management Day-Ahead, Hour-Ahead and Real-Time. <i>Energies</i> , 2017 , 10, 1778	3.1	8
338	Model for the integration of distributed energy resources in energy markets by an aggregator 2017 ,		6
337	Data-Mining-based filtering to support Solar Forecasting Methodologies. <i>Advances in Distributed Computing and Artificial Intelligence Journal</i> , 2017 , 6, 85-102	0.4	3
336	Decision Support System for the Negotiation of Bilateral Contracts in Electricity Markets. <i>Advances in Intelligent Systems and Computing</i> , 2017 , 159-166	0.4	1
335	EnAPlug [An Environmental Awareness Plug to Test Energy Management Solutions for Households. <i>Lecture Notes in Computer Science</i> , 2017 , 253-259	0.9	3
334	Initial Solution Heuristic for Portfolio Optimization of Electricity Markets Participation. <i>Communications in Computer and Information Science</i> , 2017 , 130-142	0.3	
333	Computational Platform for Household Simulation and Emulation to Test and Validate Energy Management Methodologies. <i>Lecture Notes in Computer Science</i> , 2017 , 321-324	0.9	
332	Support Vector Machines for decision support in electricity markets? strategic bidding. <i>Neurocomputing</i> , 2016 , 172, 438-445	5.4	37
331	Evaluation of different initial solution algorithms to be used in the heuristics optimization to solve the energy resource scheduling in smart grids. <i>Applied Soft Computing Journal</i> , 2016 , 48, 491-506	7.5	11
330	Real-time simulation of renewable energy transactions in microgrid context using real hardware resources 2016 ,		5
329	Weighted sum approach using parallel Particle Swarm Optimization to solve multi-objective energy scheduling 2016 ,		3
328	Optimal location of normally open switches in order to minimize power losses in distribution networks 2016 ,		1
327	Scenario generation for electric vehicles' uncertain behavior in a smart city environment. <i>Energy</i> , 2016 , 111, 664-675	7.9	25
326	Microgrid demonstration gateway for players communication and load monitoring and management 2016 ,		5
325	Customized Normalization Method to Enhance the Clustering Process of Consumption Profiles. <i>Advances in Intelligent Systems and Computing</i> , 2016 , 67-76	0.4	3
324	Dynamic Energy Management Method with Demand Response Interaction Applied in an Office Building. <i>Advances in Intelligent Systems and Computing</i> , 2016 , 69-82	0.4	3
323	MASCEM: Optimizing the performance of a multi-agent system. <i>Energy</i> , 2016 , 111, 513-524	7.9	41

322	Adaptive Portfolio Optimization for Multiple Electricity Markets Participation. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2016 , 27, 1720-33	10.3	43
321	Metalearning to support competitive electricity market players Btrategic bidding. <i>Electric Power Systems Research</i> , 2016 , 135, 27-34	3.5	3
320	Multi-dimensional signaling method for population-based metaheuristics: Solving the large-scale scheduling problem in smart grids. <i>Swarm and Evolutionary Computation</i> , 2016 , 29, 13-32	9.8	30
319	A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads. <i>Applied Energy</i> , 2016 , 162, 1074-1088	10.7	42
318	Dynamic Fuzzy Clustering Method for Decision Support in Electricity Markets Negotiation. <i>Advances in Distributed Computing and Artificial Intelligence Journal</i> , 2016 , 5, 23-35	0.4	14
317	Enabling Communications in Heterogeneous Multi-Agent Systems: Electricity Markets Ontology. <i>Advances in Distributed Computing and Artificial Intelligence Journal</i> , 2016 , 5, 15-42	0.4	15
316	Electricity Markets Ontology to Support MASCEM® Simulations. <i>Communications in Computer and Information Science</i> , 2016 , 393-404	0.3	5
315	Optimization of Electricity Markets Participation with Simulated Annealing. <i>Advances in Intelligent Systems and Computing</i> , 2016 , 27-39	0.4	3
314	Demonstration of ALBidS: Adaptive Learning Strategic Bidding System. <i>Lecture Notes in Computer Science</i> , 2016 , 281-285	0.9	
313	Network Operator Agent: Endowing MASCEM Simulator with Technical Validation. <i>Communications in Computer and Information Science</i> , 2016 , 381-392	0.3	
312	Neural Networks Modeling of Dearomatization of Distillate Cuts with Furfural to Produce Lubricants. <i>Computer Aided Chemical Engineering</i> , 2016 , 38, 247-252	0.6	1
311	Energy Optimization for Distributed Energy Resources Scheduling with Enhancements in Voltage Stability Margin. <i>Mathematical Problems in Engineering</i> , 2016 , 2016, 1-20	1.1	2
310	Enhanced Multi-Objective Energy Optimization by a Signaling Method. <i>Energies</i> , 2016 , 9, 807	3.1	8
309	An Interoperable Approach for Energy Systems Simulation: Electricity Market Participation Ontologies. <i>Energies</i> , 2016 , 9, 878	3.1	11
308	2016,		6
307	Intelligent energy forecasting based on the correlation between solar radiation and consumption patterns 2016 ,		2
306	Energy consumption forecasting based on Hybrid Neural Fuzzy Inference System 2016,		10
305	GA optimization technique for portfolio optimization of electricity market participation 2016,		5

304	Optimization of electricity markets participation with QPSO 2016 ,		2
303	Portfolio Optimization for Electricity Market Participation with NPSO-LRS 2016,		1
302	Application of a Home Energy Management System for Incentive-Based Demand Response Program Implementation 2016 ,		11
301	House management system with real and virtual resources: Energy efficiency in residential microgrid 2016 ,		6
300	2016,		6
299	2016,		3
298	Dynamic loads and micro-generation method for a House Management System 2016,		2
297	. IEEE Transactions on Industrial Informatics, 2016 , 12, 952-961	11.9	58
296	Benders' decomposition applied to Energy Resource Management in smart distribution networks 2016 ,		1
295	Simulated annealing to handle energy and ancillary services joint management considering electric vehicles. <i>Electric Power Systems Research</i> , 2016 , 136, 383-397	3.5	27
294	Allocation of fixed costs considering Distributed Generation and distinct approaches of Demand Response remuneration in distribution networks 2016 ,		2
293	Generation of realistic scenarios for multi-agent simulation of electricity markets. <i>Energy</i> , 2016 , 116, 128-139	7.9	22
292	Toward retail competition in the Portuguese electricity market 2016,		4
291	Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market. <i>Energy</i> , 2015 , 82, 786-799	7.9	73
290	Six thinking hats: A novel metalearner for intelligent decision support in electricity markets. <i>Decision Support Systems</i> , 2015 , 79, 1-11	5.6	10
289	Negotiation context analysis in electricity markets. <i>Energy</i> , 2015 , 85, 78-93	7.9	10
288	A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context. <i>Energy</i> , 2015 , 85, 236-250	7.9	45
287	Energy resource management under the influence of the weekend transition considering an intensive use of electric vehicles 2015 ,		2

(2015-2015)

286	A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers. <i>Applied Energy</i> , 2015 , 151, 102-118	10.7	87
285	Cost allocation model for distribution networks considering high penetration of distributed energy resources. <i>Electric Power Systems Research</i> , 2015 , 124, 120-132	3.5	24
284	Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource. <i>Energy Conversion and Management</i> , 2015 , 97, 78-93	10.6	50
283	Demonstration of Realistic Multi-agent Scenario Generator for Electricity Markets Simulation. Lecture Notes in Computer Science, 2015 , 316-319	0.9	2
282	Study and analysis of wind curtailment situations and developing an appropriated methodology for its management 2015 ,		1
281	Probabilistic estimation of the state of Electric Vehicles for smart grid applications in big data context 2015 ,		5
280	Agent-Based Smart Grid Market Simulation with Connection to Real Infrastructures. <i>Communications in Computer and Information Science</i> , 2015 , 283-295	0.3	
279	The influence of the consumer modelling approach in demand response programs implementation 2015 ,		3
278	Scheduling and aggregation of distributed generators and consumers participating in demand response programs 2015 ,		1
277	MicroGrid DER control including EVs in a residential area 2015 ,		
-//	Microdita DEN Concrot including EV3 in a residential area 2013,		5
276	Hour-ahead energy resource management in university campus microgrid 2015 ,		11
276	Hour-ahead energy resource management in university campus microgrid 2015 , Smart Grid and Electricity Market joint Simulation using complementary Multi-Agent platforms		11
276 275	Hour-ahead energy resource management in university campus microgrid 2015, Smart Grid and Electricity Market joint Simulation using complementary Multi-Agent platforms 2015, Multi-agent based metalearner using genetic algorithm for decision support in electricity markets		11 2
276 275 274	Hour-ahead energy resource management in university campus microgrid 2015, Smart Grid and Electricity Market joint Simulation using complementary Multi-Agent platforms 2015, Multi-agent based metalearner using genetic algorithm for decision support in electricity markets 2015, Two-stage stochastic day-ahead optimal resource scheduling in a distribution network with		11 2 0
276 275 274 273	Hour-ahead energy resource management in university campus microgrid 2015, Smart Grid and Electricity Market joint Simulation using complementary Multi-Agent platforms 2015, Multi-agent based metalearner using genetic algorithm for decision support in electricity markets 2015, Two-stage stochastic day-ahead optimal resource scheduling in a distribution network with intensive use of distributed energy resources 2015, Relaxation of non-convex problem as an initial solution of meta-heuristics for energy resource		11 2 0
276 275 274 273 272	Hour-ahead energy resource management in university campus microgrid 2015, Smart Grid and Electricity Market joint Simulation using complementary Multi-Agent platforms 2015, Multi-agent based metalearner using genetic algorithm for decision support in electricity markets 2015, Two-stage stochastic day-ahead optimal resource scheduling in a distribution network with intensive use of distributed energy resources 2015, Relaxation of non-convex problem as an initial solution of meta-heuristics for energy resource management 2015,	5.2	11 2 O 1 5

268	Demand Response Programs Design and Use Considering Intensive Penetration of Distributed Generation. <i>Energies</i> , 2015 , 8, 6230-6246	3.1	22
267	Decision Support for Energy Contracts Negotiation with Game Theory and Adaptive Learning. <i>Energies</i> , 2015 , 8, 9817-9842	3.1	22
266	Multi-agent simulation of competitive electricity markets: Autonomous systems cooperation for European market modeling. <i>Energy Conversion and Management</i> , 2015 , 99, 387-399	10.6	47
265	Resource scheduling in residential microgrids considering energy selling to external players 2015,		10
264	Contextual and environmental awareness laboratory for energy consumption management 2015,		9
263	Solar Intensity Characterization Using Data-Mining to Support Solar Forecasting. <i>Advances in Intelligent Systems and Computing</i> , 2015 , 193-201	0.4	3
262	Portfolio Optimization for Electricity Market Participation with Particle Swarm 2015,		1
261	MASCEM: EPEX SPOT Day-Ahead market integration and simulation 2015 ,		3
260	VPP Energy Resources Management Considering Emissions: The Case of Northern Portugal 2020 to 2050 2015 ,		4
259	Quantum Particle Swarm Optimization Applied to Distinct Remuneration Approaches in Demand Response Programs 2015 ,		2
258	Definition of the demand response events duration using differential search algorithm for aggregated consumption shifting and generation scheduling 2015 ,		2
257	Demand Response in Electric Vehicles Management Optimal Use of End-User Contracts 2015 ,		2
256	Day-ahead distributed energy resource scheduling using differential search algorithm 2015,		1
255	Multi-criteria optimisation approach to increase the delivered power in radial distribution networks. <i>IET Generation, Transmission and Distribution</i> , 2015 , 9, 2565-2574	2.5	2
254	Simulation and control of consumption and generation of hardware resources in microgrid real-time digital simulator 2015 ,		9
253	Pan-European Electricity Market Simulation Considering the European Power Network Capacities 2015 ,		2
252	Remuneration of distributed generation and demand response resources considering scheduling and aggregation 2015 ,		3
251	Data Mining Approach for Decision Support in Real Data Based Smart Grid Scenario 2015 ,		3

250	Electrical Energy Consumption Forecast Using External Facility Data 2015,		11
249	Constrained consumption shifting management in the distributed energy resources scheduling considering demand response. <i>Energy Conversion and Management</i> , 2015 , 93, 309-320	10.6	32
248	A data-mining-based methodology to support MV electricity customers@haracterization. <i>Energy and Buildings</i> , 2015 , 91, 16-25	7	52
247	Use of Web Based Meters to Improve Energy Efficiency and Power Quality in Buildings. <i>IFIP Advances in Information and Communication Technology</i> , 2015 , 337-344	0.5	2
246	Dynamic Fuzzy Estimation of Contracts Historic Information Using an Automatic Clustering Methodology. <i>Communications in Computer and Information Science</i> , 2015 , 270-282	0.3	8
245	Fuzzy-Probabilistic Estimation of the Electric Vehicles Energy Consumption. <i>Lecture Notes in Computer Science</i> , 2015 , 26-36	0.9	
244	Flexible Operation of Grid-Interactive Converters under Unbalanced Grid Conditions 2015,		2
243	Evaluation of the electric vehicle impact in the power demand curve in a smart grid environment. Energy Conversion and Management, 2014 , 82, 268-282	10.6	88
242	Remuneration structure definition for distributed generation units and demand response participants aggregation 2014 ,		4
241	Domestic consumption simulation and management using a continuous consumption management and optimization algorithm 2014 ,		8
240	Analysis of consumption data to detect commercial losses using performance evaluation methods in a smart grid 2014 ,		2
239	Definition of distribution network tariffs considering distribution generation and demand response 2014 ,		3
238	Modified Particle Swarm Optimization applied to integrated demand response and DG resources scheduling 2014 ,		2
237	Dynamic load management in a smart home to participate in demand response events. <i>Energy and Buildings</i> , 2014 , 82, 592-606	7	85
236	Demand response design and use based on network locational marginal prices. <i>International Journal of Electrical Power and Energy Systems</i> , 2014 , 61, 180-191	5.1	17
235	Real-time Energy Resource Scheduling Considering a Real Portuguese Scenario. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 2267-2272		1
234	Dynamic Approach and Testbed for Small and Medium Players Simulation in Smart Grid Environments. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 31-36		2
233	Multiagent System Architecture for Short-term Operation of Integrated Microgrids. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 6355-6360		6

232	A Communication and Resources Management Scheme to Support the Smart Grid Integration of Multiplayers Access to Resources Information. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 11244-11249		1
231	Short-term wind speed forecasting using Support Vector Machines 2014 ,		12
230	Realistic Multi-agent Simulation of Competitive Electricity Markets 2014,		1
229	Adaptive learning in agents behaviour: A framework for electricity markets simulation. <i>Integrated Computer-Aided Engineering</i> , 2014 , 21, 399-415	5.2	55
228	Distributed intelligent management of microgrids using a multi-agent simulation platform 2014,		7
227	Multi-agent Simulation of Bilateral Contracting in Competitive Electricity Markets 2014,		O
226	Distributed energy resources scheduling considering real-time resources forecast 2014,		3
225	Quantum-based particle swarm optimization application to studies of aggregated consumption shifting and generation scheduling in smart grids 2014 ,		1
224	A new heuristic providing an effective initial solution for a simulated annealing approach to energy resource scheduling in smart grids 2014 ,		2
223	A learning algorithm and system approach to address exceptional events in domestic consumption management 2014 ,		2
222	Load profiling tool to support smart grid operation scenarios 2014,		1
221	Smart meters as a tool for energy efficiency 2014 ,		3
220	Towards a unified European electricity market: The contribution of data-mining to support realistic simulation studies 2014 ,		2
219	Data mining approach to support the generation of Realistic Scenarios for multi-agent simulation of electricity markets 2014 ,		12
218	Distributed, Agent-Based Intelligent System for Demand Response Program Simulation in Smart Grids. <i>IEEE Intelligent Systems</i> , 2014 , 29, 56-65	4.2	45
217	A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles. <i>Energy</i> , 2014 , 67, 81-96	7.9	40
216	Distributed generation and demand response dispatch for a virtual power player energy and reserve provision. <i>Renewable Energy</i> , 2014 , 66, 686-695	8.1	64
215	Strategic Bidding for Electricity Markets Negotiation Using Support Vector Machines. <i>Advances in Intelligent Systems and Computing</i> , 2014 , 9-17	0.4	4

(2013-2014)

214	Reinforcement Learning Based on the Bayesian Theorem for Electricity Markets Decision Support. <i>Advances in Intelligent Systems and Computing</i> , 2014 , 141-148	0.4	1
213	Data Extraction Tool to Analyse, Transform and Store Real Data from Electricity Markets. <i>Advances in Intelligent Systems and Computing</i> , 2014 , 387-395	0.4	4
212	Elspot: Nord Pool Spot Integration in MASCEM Electricity Market Simulator. <i>Communications in Computer and Information Science</i> , 2014 , 262-272	0.3	2
211	Particle Swarm Optimization of Electricity Market Negotiating Players Portfolio. <i>Communications in Computer and Information Science</i> , 2014 , 273-284	0.3	7
210	Analysis of Power Quality Disturbances in Industry in the Centre Region of Portugal. <i>IFIP Advances in Information and Communication Technology</i> , 2014 , 435-442	0.5	3
209	Automatic Electricity Markets Data Extraction for Realistic Multi-agent Simulations. <i>Lecture Notes in Computer Science</i> , 2014 , 371-374	0.9	1
208	A voltage control strategy for Switched Reluctance Generator 2013 ,		3
207	Application-Specific Modified Particle Swarm Optimization for energy resource scheduling considering vehicle-to-grid. <i>Applied Soft Computing Journal</i> , 2013 , 13, 4264-4280	7.5	69
206	A grid connection scheme of a Switched Reluctance Generator for active power injection 2013,		2
205	2013,		8
204	Reactive power management strategies in future smart grids 2013,		4
203	Dispatch of distributed energy resources to provide energy and reserve in smart grids using a particle swarm optimization approach 2013 ,		5
202	Intelligent micro grid management using a multi-agent approach 2013,		4
201	Demand Response Management in Power Systems Using Particle Swarm Optimization. <i>IEEE Intelligent Systems</i> , 2013 , 28, 43-51	4.2	59
200	Using baseline methods to identify non-technical losses in the context of smart grids 2013,		4
199	Multilayer perceptron neural networks training through charged system search and its Application for non-technical losses detection 2013 ,		19
198	SCADA house intelligent management for energy efficiency analysis in domestic consumers 2013,		4
197	Consumers performance evaluation of the participation in demand response programs using baseline methods 2013 ,		5

196	Short-term load forecasting based on load profiling 2013 ,		13
195	Defining electricity tariffs using the knowledge about the consumers profiles in ELECON project 2013 ,		1
194	Adapting meeting tools to agent decision 2013,		1
193	Scenarios generation for multi-agent simulation of electricity markets based on intelligent data analysis 2013 ,		2
192	A data mining framework for electric load profiling 2013 ,		4
191	Intelligent remuneration and tariffs for virtual power players 2013,		5
190	Day-Ahead Resource Scheduling Including Demand Response for Electric Vehicles. <i>IEEE Transactions on Smart Grid</i> , 2013 , 4, 596-605	10.7	125
189	Distribution system operation supported by contextual energy resource management based on intelligent SCADA. <i>Renewable Energy</i> , 2013 , 52, 143-153	8.1	42
188	MASCEM restructuring: Ontologies for scenarios generation in power systems simulators 2013,		1
187	Strategic bidding in electricity markets: An agent-based simulator with game theory for scenario analysis. <i>Integrated Computer-Aided Engineering</i> , 2013 , 20, 335-346	5.2	31
186	Mixed integer non-linear programming and Artificial Neural Network based approach to ancillary services dispatch in competitive electricity markets. <i>Applied Energy</i> , 2013 , 108, 261-270	10.7	14
185	Modified Particle Swarm Optimization Applied to Integrated Demand Response and DG Resources Scheduling. <i>IEEE Transactions on Smart Grid</i> , 2013 , 4, 606-616	10.7	119
184	Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market. <i>Applied Energy</i> , 2013 , 101, 667-677	10.7	21
183	Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling 2013,		17
182	Demand response programs definition using demand price elasticity to define consumers aggregation for an improved remuneration structure 2013 ,		9
181	Real-time simulation of energy management in a domestic consumer 2013 ,		5
180	Multi-Agent based Smart Grid management and simulation: Situation awareness and learning in a test bed with simulated and real installations and players 2013 ,		5
179	Load control timescales simulation in a Multi-Agent Smart Grid Platform 2013 ,		3

178	Determining the adjustment baseline parameters to define an accurate customer baseline load 2013 ,		5
177	Increase of the delivered power probability in distribution networks using Pareto DC programming 2013 ,		2
176	Stochastic short-term incentive-based demand response scheduling of load-serving entities 2013,		1
175	Stochastic framework for strategic decision-making of load-serving entities for day-ahead market 2013 ,		6
174	Adaptive Learning in Games: Defining Profiles of Competitor Players. <i>Advances in Intelligent Systems and Computing</i> , 2013 , 351-359	0.4	1
173	Upper Ontology for Multi-Agent Energy Systems[Applications. <i>Advances in Intelligent Systems and Computing</i> , 2013 , 617-624	0.4	3
172	Demonstration of the Multi-Agent Simulator of Competitive Electricity Markets. <i>Lecture Notes in Computer Science</i> , 2013 , 316-319	0.9	
171	Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization. <i>Energy</i> , 2012 , 42, 466-476	7.9	77
170	Intelligent Energy Resource Management Considering Vehicle-to-Grid: A Simulated Annealing Approach. <i>IEEE Transactions on Smart Grid</i> , 2012 , 3, 535-542	10.7	151
169	Dynamic artificial neural network for electricity market prices forecast 2012,		27
169 168	Dynamic artificial neural network for electricity market prices forecast 2012, Virtual power players demand response programs management based on locational marginal prices 2012,		1
	Virtual power players demand response programs management based on locational marginal prices		
168	Virtual power players demand response programs management based on locational marginal prices 2012 ,		1
168	Virtual power players demand response programs management based on locational marginal prices 2012, ANN-based LMP forecasting in a distribution network with large penetration of DG 2012,		1
168 167 166	Virtual power players demand response programs management based on locational marginal prices 2012, ANN-based LMP forecasting in a distribution network with large penetration of DG 2012, Data mining techniques contributions to support electrical vehicle demand response 2012, Intelligent energy resource management considering vehicle-to-grid: A Simulated Annealing		1 2
168 167 166	Virtual power players demand response programs management based on locational marginal prices 2012, ANN-based LMP forecasting in a distribution network with large penetration of DG 2012, Data mining techniques contributions to support electrical vehicle demand response 2012, Intelligent energy resource management considering vehicle-to-grid: A Simulated Annealing approach 2012,	10.7	1 1 2 5 2
168 167 166 165	Virtual power players demand response programs management based on locational marginal prices 2012, ANN-based LMP forecasting in a distribution network with large penetration of DG 2012, Data mining techniques contributions to support electrical vehicle demand response 2012, Intelligent energy resource management considering vehicle-to-grid: A Simulated Annealing approach 2012, Multi-agent Simulation of Continental, Regional, and Micro Electricity Markets 2012, Coordination between mid-term maintenance outage decisions and short-term	10.7	1 1 2 5 2

160	Multilevel Negotiation in Smart Grids for VPP Management of Distributed Resources. <i>IEEE Intelligent Systems</i> , 2012 , 27, 8-16	4.2	49
159	Energy resource scheduling in a real distribution network managed by several virtual power players 2012 ,		9
158	Multi-criteria short-term maintenance outage scheduling in smart distribution systems 2012,		3
157	An integrated approach for distributed energy resource short-term scheduling in smart grids considering realistic power system simulation. <i>Energy Conversion and Management</i> , 2012 , 64, 273-288	10.6	94
156	Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems. <i>Energy</i> , 2012 , 45, 1007-1017	7.9	28
155	Remuneration and Tariffs in the Context of Virtual Power Players 2012,		3
154	MASGriP [A Multi-Agent Smart Grid Simulation Platform 2012,		43
153	Short-term scheduling considering five-minute and hour-ahead energy resource management 2012,		6
152	Study of distribution network demand response events in the Portuguese system 2012,		2
151	Intelligent supervisory control system for home devices using a cyber physical approach. <i>Integrated Computer-Aided Engineering</i> , 2012 , 19, 67-79	5.2	12
150	A study on dynamic state information (DSI) around users for safe urban life. <i>Computers and Mathematics With Applications</i> , 2012 , 63, 554-563	2.7	4
149	Electric Vehicle Scenario Simulator Tool for Smart Grid Operators. <i>Energies</i> , 2012 , 5, 1881-1899	3.1	77
148	Investment optimization in distribution network based on fuzzy outage parameters 2012,		2
147	Daily wind power profiles determination using clustering algorithms 2012 ,		3
146	Balancing market integration in MASCEM electricity market simulator 2012,		5
145	Typical load profiles in the smart grid context 🖪 clustering methods comparison 2012,		15
144	Intelligent decision making in electricity markets: Simulated annealing Q-Learning 2012,		1
143	Increase of the delivered energy probability in DES using a fuzzy probabilistic modeling 2012,		3

142	Intelligent electric vehicle heuristic for Energy Resource Management using Simulated Annealing 2012 ,		3
141	Adaptive Tool for Automatic Data Collection of Real Electricity Markets 2012,		4
140	Combined heat and power and consumption optimization in a SCADA-based system 2012,		1
139	Particle Swarm Optimization based approaches to vehicle-to-grid scheduling 2012,		8
138	A multi-agent based approach for intelligent smart grid management. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 109-114		3
137	Metalearning in ALBidS: A Strategic Bidding System for Electricity Markets. <i>Advances in Intelligent and Soft Computing</i> , 2012 , 247-256		3
136	Adaptive Learning in Multiagent Systems: A Forecasting Methodology Based on Error Analysis. <i>Advances in Intelligent and Soft Computing</i> , 2012 , 349-357		5
135	Secure Contents Design and Implement of Smart Home Management System in OISCS. <i>Lecture Notes in Computer Science</i> , 2012 , 216-223	0.9	
134	Energy and ancillary services joint market simulation 2011,		3
133	Cost dependent strategy for electricity markets bidding based on adaptive reinforcement learning 2011 ,		2
132	Using data mining techniques to support DR programs definition in smart grids 2011,		14
131	A data-mining based methodology for win forecasting 2011 ,		3
130	Genetic algorithm methodology applied to intelligent house control 2011,		21
129	LMP triggered real time demand response events 2011 ,		5
128	A Data-Mining-Based Methodology for Transmission Expansion Planning. <i>IEEE Intelligent Systems</i> , 2011 , 26, 28-37	4.2	12
127	Simulated Annealing metaheuristic to solve the optimal power flow 2011,		12
126	Particle swarm optimization applied to integrated demand response resources scheduling 2011,		9
125	MASCEM: Electricity Markets Simulation with Strategic Agents. <i>IEEE Intelligent Systems</i> , 2011 , 26, 9-17	4.2	110

124	Transmission costs allocation based on optimal re-dispatch 2011,		2
123	An optimal scheduling problem in distribution networks considering V2G 2011 ,		33
122	2011,		16
121	ANN Based Support for Distributed Energy Resources Scheduling in Smart Grids. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 3684-3689		
120	Intelligent Energy Resources Management in the Context of Smart Grids. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 12225-12230		
119	A new approach for multi-agent coalition formation and management in the scope of electricity markets. <i>Energy</i> , 2011 , 36, 5004-5015	7.9	66
118	Demand response in electrical energy supply: An optimal real time pricing approach. <i>Energy</i> , 2011 , 36, 5374-5384	7.9	219
117	Contextual intelligent load management with ANN adaptive learning module 2011,		13
116	Demand response programs definition supported by clustering and classification techniques 2011,		7
115	Distribution network short term scheduling in Smart Grid context 2011 ,		7
114	Intelligent behavior in a Cyber-Ambient training system for control center operators 2011,		4
113	Ant Colony Search algorithm for the optimal power flow problem 2011 ,		14
112	Logic programming and fuzzy Monte Carlo for distribution network reconfiguration 2011,		1
111	Contexts-Management Strategy in Considering the Security in Urban Computing Based on Urban Design 2011 ,		1
110	Multiagent system for adaptive strategy formulation in electricity markets 2011,		7
109	Complex market integration in MASCEM electricity market simulator 2011 ,		5
108	Strategic Bidding Methodology for Electricity Markets Using Adaptive Learning. <i>Lecture Notes in Computer Science</i> , 2011 , 490-500	0.9	9
107	Cyber-Physical Intelligence in the Context of Power Systems. <i>Lecture Notes in Computer Science</i> , 2011 , 19-29	0.9	7

106	Computational Intelligence Applications for Future Power Systems 2011 , 176-193	7
105	Bid Definition Method for Electricity Markets Based on an Adaptive Multiagent System. <i>Advances in Intelligent and Soft Computing</i> , 2011 , 309-316	9
104	Using an Ambient Intelligent Architecture for Developing an Intelligent Tutoring System for Training Operators of Power System Control Centres. <i>Advances in Intelligent and Soft Computing</i> , 2011 , 219-226	1
103	A Study on Context Services Model with Location Privacy. <i>Lecture Notes in Computer Science</i> , 2011 , 321-329	
102	Zonal prices analysis supported by a data mining based methodology 2010 ,	4
101	Ancillary services market clearing simulation: A comparison between deterministic and heuristic methods 2010 ,	9
100	Auction of Financial Transmission Rights in electricity market environment 2010,	2
99	2010,	13
98	Demsi 🖪 demand response simulator in the context of intensive use of distributed generation 2010 ,	32
97	Reactive power compensation by EPSO technique 2010 ,	5
96	Ancillary services dispatch using Linear Programming and Genetic Algorithm approaches 2010,	2
95	Intelligent multi-player smart grid management considering distributed energy resources and demand response 2010 ,	38
94	2010,	1
93	Comparison between Deterministic and Meta-heuristic Methods Applied to Ancillary Services Dispatch. <i>Lecture Notes in Computer Science</i> , 2010 , 731-741	2
92	Distributed energy resources management with cyber-physical SCADA in the context of future smart grids 2010 ,	27
91	Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renewable Energy, 2010 , 35, 151-156 8.1	379
90	2010,	2
89	Technical and economic resources management in smart grids using heuristic optimization methods 2010 ,	12

88	2010,		6
87	Optimal dispatch with reactive power compensation by Genetic Algorithm 2010 ,		5
86	Intelligent SCADA for Load control 2010 ,		8
85	Optimal methodology for distribution systems reconfiguration based on OPF and solved by decomposition technique. <i>European Transactions on Electrical Power</i> , 2010 , 20, 730-746		11
84	A probabilistic methodology for distributed generation location in isolated electrical service area. <i>Electric Power Systems Research</i> , 2010 , 80, 390-399	3.5	13
83	A long-term risk management tool for electricity markets using swarm intelligence. <i>Electric Power Systems Research</i> , 2010 , 80, 380-389	3.5	19
82	Energy Consumption Monitoring System for Large Complexes. <i>IFIP Advances in Information and Communication Technology</i> , 2010 , 419-426	0.5	3
81	Optimal Intelligent Supervisory Control System in Cyber-Physical Intelligence. <i>Communications in Computer and Information Science</i> , 2010 , 171-178	0.3	2
80	Combining Artificial Intelligence Techniques for the Training of Power System Control Centre Operators. <i>Communications in Computer and Information Science</i> , 2010 , 70-83	0.3	
79	Intelligent Training in Control Centres Based on an Ambient Intelligence Paradigm. <i>Lecture Notes in Computer Science</i> , 2010 , 143-153	0.9	1
78	Semantic Equations for Formal Models in the Model-Driven Architecture. <i>IFIP Advances in Information and Communication Technology</i> , 2010 , 251-260	0.5	1
77	The role of demand response in future power systems 2009 ,		11
76	Training Control Centers' Operators in Incident Diagnosis and Power Restoration Using Intelligent Tutoring Systems. <i>IEEE Transactions on Learning Technologies</i> , 2009 , 2, 135-147	4	18
75	Cyber-Ambient Intelligent Training of Operators in Power Systems Control Centres 2009,		3
74	Notice of Violation of IEEE Publication Principles: Optimal Cost-Benefit for the Location of Capacitors in Radial Distribution Systems. <i>IEEE Transactions on Power Delivery</i> , 2009 , 24, 787-796	4.3	23
73	Data mining applications in power systems Case-studies and future trends 2009,		3
72	MV producers and consumers agents characterization with DSM techniques 2009,		5
71	Ancillary service market simulation 2009,		8

(2008-2009)

70	2009,	2
69	2009,	7
68	Towards a future SCADA 2009 ,	25
67	Multi-agent based electricity market simulator with VPP: Conceptual and implementation issues 2009 ,	33
66	2009,	7
65	Notice of Violation of IEEE Publication Principles: A Benders Decomposition and Fuzzy Multicriteria Approach for Distribution Networks Remuneration Considering DG. <i>IEEE Transactions on Power</i> 7 Systems, 2009 , 24, 1091-1101	23
64	MASCEM - An Electricity Market Simulator providing Coalition Support for Virtual Power Players 2009 ,	13
63	Virtual power producers simulation [Negotiating renewable distributed generation in competitive electricity markets 2009 ,	1
62	Optimization techniques for power distribution planning with uncertainties: A comparative study 2009 ,	7
61	Multi-agent electricity market simulation with dynamic strategies & virtual power producers 2008,	9
60	Virtual Power Producers Market Strategies 2008 ,	15
59	Data mining techniques application in power distribution utilities 2008,	20
58	2008,	23
57	Distributed generation producersleserve management 2008,	10
56	2008,	1
55	Transmission price simulator in a liberalized electricity market 2008,	3
54	An efficient method for optimal location and sizing of fixed and switched shunt capacitors in large distribution systems 2008 ,	2

52	An Intelligent Tutoring approach to support students and technicians in electrical installation design 2008 ,		2
51	Dispachability improvement of wind generation by the Virtual Power Producers. <i>International Journal of Energy Technology and Policy</i> , 2008 , 6, 224	1	1
50	Towards a Practical Synthetic Jet Actuator for Industrial Scale Flow Control Applications. <i>IUTAM Symposium on Cellular, Molecular and Tissue Mechanics</i> , 2008 , 111-118	0.3	
49	Collaborative Studies on Flow Separation Control. <i>IUTAM Symposium on Cellular, Molecular and Tissue Mechanics</i> , 2008 , 157-166	0.3	
48	Long-term Price Range Forecast Applied to Risk Management Using Regression Models 2007,		4
47	VPPs information needs for effective operation in competitive electricity markets 2007,		4
46	A Decision-Support System Based on Particle Swarm Optimization for Multiperiod Hedging in Electricity Markets. <i>IEEE Transactions on Power Systems</i> , 2007 , 22, 995-1003	7	37
45	DITRANS - A Multi-agent System for Integrated Diagnosis of Power Transformers 2007,		4
44	Data Mining Contributions to Characterize MV Consumers and to Improve the Suppliers-Consumers Settlements. <i>IEEE Power Engineering Society General Meeting</i> , 2007 ,		17
43	A Congestion Management and Transmission Price Simulator for Competitive Electricity Markets. <i>IEEE Power Engineering Society General Meeting</i> , 2007 ,		6
42	DECISION SUPPORT SYSTEM WITH INCOMPLETE AND DOMAIN INCOHERENT INFORMATION MANAGEMENT. Control and Intelligent Systems, 2007 , 35,		1
41	Virtual Power Producers Integration into Mascem 2007 , 291-298		4
40	Decision Making in an Agent-based Marketplace 2006 ,		1
39	Forecasting Electricity Prices with Historical Statistical Information using Neural Networks and Clustering Techniques 2006 ,		12
38	2005,		4
37	An electric energy consumer characterization framework based on data mining techniques. <i>IEEE Transactions on Power Systems</i> , 2005 , 20, 596-602	7	277
36	A decision-support simulation tool for virtual power producers 2005,		23
35	Intelligent Agents for the Simulation of Competitive Electricity Markets. <i>International Journal of Modelling and Simulation</i> , 2004 , 24, 73-79	1.5	4

34	A proposal for direct-ordering gene expression data by self-organising maps. <i>Applied Soft Computing Journal</i> , 2004 , 5, 11-21	7·5	3
33	Provision And Costs of Ancillary Services in a Restructured Electricity Marquet. <i>Renewable Energy and Power Quality Journal</i> , 2004 , 1, 350-355		5
32	. IEEE Intelligent Systems, 2003 , 18, 54-60	4.2	163
31	An Electricity Day-Ahead Market Simulation Model. <i>Renewable Energy and Power Quality Journal</i> , 2003 , 1, 372-376		5
30	Reduce and Assign: A Constraint Logic Programming and Local Search Integration Framework to Solve Combinatorial Search Problems. <i>Lecture Notes in Computer Science</i> , 2003 , 847-852	0.9	0
29	An Agent-Based Simulator for Electricity Markets: Seller, Buyer, and Trader Players. <i>Lecture Notes in Computer Science</i> , 2003 , 290-301	0.9	1
28	A Comparative Analysis of Clustering Algorithms Applied to Load Profiling 2003 , 73-85		17
27	On the Verification of an Expert System: Practical Issues. <i>Lecture Notes in Computer Science</i> , 2002 , 414-4	1 2 49	3
26	Knowledge-Based Systems Techniques and Applications in Power System Control Centers 2002,		2
25	User modelling concerning control centre operators training 2001,		3
24	Inspectability and User Controlled Revision on Long Term User Models. <i>Lecture Notes in Computer Science</i> , 2001 , 254-256	0.9	
23	Training Scenarios Generation Tools for an ITS to Control Center Operators. <i>Lecture Notes in Computer Science</i> , 2000 , 652-652	0.9	2
22	Enabling Client-Server Explanation Facilities in a Real-Time Expert System. <i>Lecture Notes in Computer Science</i> , 1999 , 333-342	0.9	1
21	Validation and Verification of Knowledge-Based Systems for Power System Control Centres 1999 , 221-	235	1
20	Microstructure, Optical, and Dielectric Characterization of Porous Gel Silica Impregnated with PMMA. <i>Materials Characterization</i> , 1998 , 40, 1-5	3.9	10
19	On the complexity of precedence graphs for assembly and task planning. <i>Computers in Industry</i> , 1998 , 36, 101-111	11.6	8
18	Better KBS for real-time applications in power system control centers: the experience of SPARSE project. <i>Computers in Industry</i> , 1998 , 37, 97-111	11.6	11
17	Complexity of precedence graphs for assembly and task planning. <i>Lecture Notes in Computer Science</i> , 1998 , 149-158	0.9	1

16	Sparse: an intelligent alarm processor and operator assistant. <i>IEEE Intelligent Systems</i> , 1997 , 12, 86-93		10
15	Temporal Reasoning in AI Applications for Power System Control Centers. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 1995 , 28, 485-490		
14	. IEEE Transactions on Power Systems, 1993 , 8, 1307-1314	7	45
13	Analysis of the complexity of precedence graphs for assembly and task planning		2
12	Cooperative Training of Power Systems~ Restoration Techniques		5
11	Short-Term Price Forecast from Risk Management Point of View		6
10	Robotized system for in-pipe inspection		2
9	A new agent-based framework for the simulation of electricity markets		4
8	Evaluation of transmission congestion impact in market power		4
7	Competitive electricity markets: simulation to improve decision making		5
6	An intelligent tutor for power system control center operator training		1
5	Providing explanations in a real-time expert system for control center operator assistance		3
4	Process planning using a genetic algorithm approach		9
3	Intelligent alarm processing in control centers		2
2			3
1	Probabilistic Determination of Consumers Response and Consumption Management Strategies in Demand Response Programs		O