Christophe Aj Girard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4578832/publications.pdf

Version: 2024-02-01

32 papers

4,670 citations

28 h-index 35 g-index

36 all docs 36 docs citations

36 times ranked 5935 citing authors

#	Article	IF	CITATIONS
1	Secretion of IL1 by Dedifferentiated Melanoma Cells Inhibits JAK1-STAT3–Driven Actomyosin Contractility of Lymph Node Fibroblastic Reticular Cells. Cancer Research, 2022, 82, 1774-1788.	0.9	12
2	Inhibition of Patched Drug Efflux Increases Vemurafenib Effectiveness against Resistant BrafV600E Melanoma. Cancers, 2020, 12, 1500.	3.7	9
3	A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma. Cancer Research, 2020, 80, 1927-1941.	0.9	46
4	Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Oncogene, 2019, 38, 5873-5889.	5.9	71
5	Epitope Spreading of Autoantibody Response to PLA2R Associates with Poor Prognosis in Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 1517-1533.	6.1	161
6	PLA2R1 kills cancer cells by inducing mitochondrial stress. Free Radical Biology and Medicine, 2013, 65, 969-977.	2.9	33
7	Group X Secreted Phospholipase A2 Limits the Development of Atherosclerosis in LDL Receptor–Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 466-473.	2.4	60
8	PLA2R1 Mediates Tumor Suppression by Activating JAK2. Cancer Research, 2013, 73, 6334-6345.	0.9	60
9	Control of Pancreatic \hat{l}^2 Cell Regeneration by Glucose Metabolism. Cell Metabolism, 2011, 13, 440-449.	16.2	266
10	Overexpression of Fto leads to increased food intake and results in obesity. Nature Genetics, 2010, 42, 1086-1092.	21.4	612
11	Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic and knockout mice. Biochimie, 2010, 92, 561-582.	2.6	141
12	Adjacent mutations in the gating loop of Kir 6.2 produce neonatal diabetes and hyperinsulinism. EMBO Molecular Medicine, 2009, $1,166$ -177.	6.9	36
13	Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic \hat{l}^2 cells recapitulates neonatal diabetes. Journal of Clinical Investigation, 2009, 119, 80-90.	8.2	95
14	Mosaic Paternal Uniparental Isodisomy and an ABCC8 Gene Mutation in a Patient With Permanent Neonatal Diabetes and Hemihypertrophy. Diabetes, 2008, 57, 255-258.	0.6	15
15	Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome. Human Molecular Genetics, 2007, 16, 2011-2019.	2.9	51
16	Permanent Neonatal Diabetes Caused by Dominant, Recessive, or Compound Heterozygous SUR1 Mutations with Opposite Functional Effects. American Journal of Human Genetics, 2007, 81, 375-382.	6.2	194
17	The Obesity-Associated <i>FTO </i> Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Science, 2007, 318, 1469-1472.	12.6	1,305
18	Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11. Nature Clinical Practice Neurology, 2007, 3, 640-645.	2.5	102

#	Article	IF	CITATIONS
19	Functional analysis of two Kir6.2 ($\langle i\rangle$ KCNJ11 $\langle i\rangle$) mutations, K170T and E322K, causing neonatal diabetes. Diabetes, Obesity and Metabolism, 2007, 9, 46-55.	4.4	21
20	Functional analysis of six Kir6.2 (KCNJ11) mutations causing neonatal diabetes. Pflugers Archiv European Journal of Physiology, 2006, 453, 323-332.	2.8	53
21	Functional Effects of Mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), Causing Neonatal Diabetes, and Response to Sulfonylurea Therapy. Diabetes, 2006, 55, 1731-1737.	0.6	41
22	A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Human Molecular Genetics, 2006, 15, 1793-1800.	2.9	196
23	ATP Sensitivity of the ATP-Sensitive K+Channel in Intact and Permeabilized Pancreatic \hat{l}^2 -Cells. Diabetes, 2006, 55, 2446-2454.	0.6	68
24	Mutations at the Same Residue (R50) of Kir6.2 (KCNJ11) That Cause Neonatal Diabetes Produce Different Functional Effects. Diabetes, 2006, 55, 1705-1712.	0.6	64
25	Kir6.2 mutations causing neonatal diabetes provide new insights into Kir6.2–SUR1 interactions. EMBO Journal, 2005, 24, 2318-2330.	7.8	63
26	A gating mutation at the internal mouth of the Kir6.2 pore is associated with DEND syndrome. EMBO Reports, 2005, 6, 470-475.	4.5	99
27	Pancreatic two P domain K+channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. Journal of Physiology, 2005, 562, 235-244.	2.9	66
28	Relapsing diabetes can result from moderately activating mutations in KCNJ11. Human Molecular Genetics, 2005, 14, 925-934.	2.9	184
29	Functional effects of KCNJ11 mutations causing neonatal diabetes: enhanced activation by MgATP. Human Molecular Genetics, 2005, 14, 2717-2726.	2.9	74
30	Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO Journal, 2003, 22, 5403-5411.	7.8	171
31	p11, an annexin II subunit, an auxiliary protein associated with the background K+ channel, TASK-1. EMBO Journal, 2002, 21, 4439-4448.	7.8	133
32	Genomic and Functional Characteristics of Novel Human Pancreatic 2P Domain K+ Channels. Biochemical and Biophysical Research Communications, 2001, 282, 249-256.	2.1	157