

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4578827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation of Urban Fine Particulate Matter. Chemical Reviews, 2015, 115, 3803-3855.	23.0	988
2	Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environment International, 2014, 73, 413-422.	4.8	463
3	Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research, 2015, 140, 242-254.	3.7	385
4	Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmospheric Environment, 2014, 95, 598-609.	1.9	375
5	One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmospheric Chemistry and Physics, 2016, 16, 10333-10350.	1.9	258
6	Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model. Atmospheric Environment, 2012, 62, 228-242.	1.9	192
7	Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China. Science of the Total Environment, 2019, 662, 297-306.	3.9	167
8	Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices. Environment International, 2015, 84, 17-25.	4.8	160
9	Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environment International, 2018, 115, 343-357.	4.8	158
10	Premature Mortality Attributable to Particulate Matter in China: Source Contributions and Responses to Reductions. Environmental Science & Technology, 2017, 51, 9950-9959.	4.6	152
11	Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. Environmental Research, 2015, 137, 316-322.	3.7	151
12	Source contributions and regional transport of primary particulate matter in China. Environmental Pollution, 2015, 207, 31-42.	3.7	142
13	Source contributions to the regional distribution of secondary particulate matter in California. Atmospheric Environment, 2006, 40, 736-752.	1.9	138
14	Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmospheric Chemistry and Physics, 2017, 17, 77-92.	1.9	137
15	Local and inter-regional contributions to PM2.5 nitrate and sulfate in China. Atmospheric Environment, 2014, 94, 582-592.	1.9	136
16	Source apportionment of PM2.5 in North India using source-oriented air quality models. Environmental Pollution, 2017, 231, 426-436.	3.7	120
17	The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India. Environment International, 2018, 121, 250-259.	4.8	111
18	Significant Contributions of Isoprene to Summertime Secondary Organic Aerosol in Eastern United States. Environmental Science & amp; Technology, 2015, 49, 7834-7842.	4.6	102

#	Article	IF	CITATIONS
19	Year-long simulation of gaseous and particulate air pollutants in India. Atmospheric Environment, 2018, 180, 244-255.	1.9	89
20	Impacts of shipping emissions on PM _{2.5} pollution in China. Atmospheric Chemistry and Physics, 2018, 18, 15811-15824.	1.9	87
21	Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model. Science of the Total Environment, 2017, 601-602, 1476-1487.	3.9	86
22	Dominant Mechanisms that Shape the Airborne Particle Size and Composition Distribution in Central California. Aerosol Science and Technology, 2006, 40, 827-844.	1.5	83
23	Source–Receptor Relationship Revealed by the Halted Traffic and Aggravated Haze in Beijing during the COVID-19 Lockdown. Environmental Science & Technology, 2020, 54, 15660-15670.	4.6	83
24	Ozone pollution over China and India: seasonality and sources. Atmospheric Chemistry and Physics, 2020, 20, 4399-4414.	1.9	79
25	Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model. Science of the Total Environment, 2018, 612, 462-471.	3.9	78
26	Attribution of Tropospheric Ozone to NO _{<i>x</i>} and VOC Emissions: Considering Ozone Formation in the Transition Regime. Environmental Science & Technology, 2019, 53, 1404-1412.	4.6	77
27	Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi'an, China. Atmospheric Environment, 2014, 97, 182-194.	1.9	76
28	Identifying PM _{2.5} and PM _{0.1} Sources for Epidemiological Studies in California. Environmental Science & Technology, 2014, 48, 4980-4990.	4.6	72
29	Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China. Science of the Total Environment, 2015, 511, 28-36.	3.9	71
30	Modeling regional secondary organic aerosol using the Master Chemical Mechanism. Atmospheric Environment, 2015, 102, 52-61.	1.9	70
31	Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs. Science of the Total Environment, 2014, 490, 171-181.	3.9	67
32	Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China. Atmospheric Chemistry and Physics, 2017, 17, 13103-13118.	1.9	64
33	Evaluation of observation-fused regional air quality model results for population air pollution exposure estimation. Science of the Total Environment, 2014, 485-486, 563-574.	3.9	61
34	Source apportionment of summertime ozone in China using a source-oriented chemical transport model. Atmospheric Environment, 2019, 211, 79-90.	1.9	60
35	Secondary organic aerosol formation and source apportionment in Southeast Texas. Atmospheric Environment, 2011, 45, 3217-3227.	1.9	59
36	Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model. Atmospheric Chemistry and Physics, 2019, 19, 2327-2341.	1.9	59

#	Article	IF	CITATIONS
37	Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. Science of the Total Environment, 2014, 473-474, 275-285.	3.9	58
38	Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China. Science of the Total Environment, 2017, 595, 505-514.	3.9	58
39	Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories. Environmental Pollution, 2018, 237, 756-766.	3.7	57
40	Predicting Primary PM _{2.5} and PM _{0.1} Trace Composition for Epidemiological Studies in California. Environmental Science & amp; Technology, 2014, 48, 4971-4979.	4.6	56
41	Modeling particulate matter in the San Joaquin Valley with a source-oriented externally mixed three-dimensional photochemical grid model. Atmospheric Environment, 2004, 38, 3689-3711.	1.9	55
42	Source apportionment of secondary organic aerosol during a severe photochemical smog episode. Atmospheric Environment, 2007, 41, 576-591.	1.9	55
43	Modeling air quality during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) using the UCD/CIT source-oriented air quality model – Part I. Base case model results. Atmospheric Environment, 2008, 42, 8954-8966.	1.9	53
44	Evaluation of on-road vehicle CO and NOx National Emission Inventories using an urban-scale source-oriented air quality model. Atmospheric Environment, 2014, 85, 99-108.	1.9	53
45	Contributions of local and regional sources of NOx to ozone concentrations in Southeast Texas. Atmospheric Environment, 2011, 45, 2877-2887.	1.9	52
46	Long-term particulate matter modeling for health effect studies in California – Part 1: Model performance on temporal and spatial variations. Atmospheric Chemistry and Physics, 2015, 15, 3445-3461.	1.9	52
47	Source contributions of volatile organic compounds to ozone formation in southeast Texas. Journal of Geophysical Research, 2010, 115, .	3.3	51
48	Source contributions and potential reductions to health effects of particulate matter in India. Atmospheric Chemistry and Physics, 2018, 18, 15219-15229.	1.9	51
49	Verification of a source-oriented externally mixed air quality model during a severe photochemical smog episode. Atmospheric Environment, 2007, 41, 1521-1538.	1.9	50
50	Impacts of Stabilized Criegee Intermediates, surface uptake processes and higher aromatic secondary organic aerosol yields on predicted PM2.5 concentrations in the Mexico City Metropolitan Zone. Atmospheric Environment, 2014, 94, 438-447.	1.9	50
51	Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai. Chemosphere, 2019, 221, 452-463.	4.2	50
52	Past and future trends of vehicle emissions in Tianjin, China, from 2000 to 2030. Atmospheric Environment, 2019, 209, 182-191.	1.9	49
53	On the Relevancy of Observed Ozone Increase during COVID-19 Lockdown to Summertime Ozone and PM _{2.5} Control Policies in China. Environmental Science and Technology Letters, 2021, 8, 289-294.	3.9	49
54	Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China. Atmospheric Chemistry and Physics, 2020, 20, 13455-13466.	1.9	49

#	Article	IF	CITATIONS
55	A comparison of the UCD/CIT air quality model and the CMB source–receptor model for primary airborne particulate matter. Atmospheric Environment, 2005, 39, 2281-2297.	1.9	48
56	Quantifying the impacts of inter-city transport on air quality in the Yangtze River Delta urban agglomeration, China: Implications for regional cooperative controls of PM2.5 and O3. Science of the Total Environment, 2021, 779, 146619.	3.9	48
57	Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China. Atmospheric Chemistry and Physics, 2019, 19, 5791-5803.	1.9	47
58	Sources of humic-like substances (HULIS) in PM2.5 in Beijing: Receptor modeling approach. Science of the Total Environment, 2019, 671, 765-775.	3.9	47
59	Source apportionment of wintertime secondary organic aerosol during the California regional PM10/PM2.5 air quality study. Atmospheric Environment, 2010, 44, 1331-1340.	1.9	46
60	Sources and health risks of ambient polycyclic aromatic hydrocarbons in China. Science of the Total Environment, 2020, 698, 134229.	3.9	45
61	Preterm birth and air pollution: Critical windows of exposure for women with asthma. Journal of Allergy and Clinical Immunology, 2016, 138, 432-440.e5.	1.5	44
62	Particulate air quality model predictions using prognostic vs. diagnostic meteorology in central California. Atmospheric Environment, 2010, 44, 215-226.	1.9	43
63	Assessment of summertime O3 formation and the O3-NOX-VOC sensitivity in Zhengzhou, China using an observation-based model. Science of the Total Environment, 2022, 813, 152449.	3.9	43
64	Estimating ground level PM2.5 concentrations and associated health risk in India using satellite based AOD and WRF predicted meteorological parameters. Chemosphere, 2020, 255, 126969.	4.2	42
65	Regional contributions to airborne particulate matter in central California during a severe pollution episode. Atmospheric Environment, 2009, 43, 1218-1228.	1.9	40
66	Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part I. Base case model results. Science of the Total Environment, 2015, 532, 831-839.	3.9	40
67	Source Apportionment of Visibility Impairment Using a Three-Dimensional Source-Oriented Air Quality Model. Environmental Science & Technology, 2004, 38, 1089-1101.	4.6	39
68	Modeling air quality during the California Regional PM10/PM2.5 Air Quality Study (CPRAQS) using the UCD/CIT Source Oriented Air Quality Model – Part II. Regional source apportionment of primary airborne particulate matter. Atmospheric Environment, 2008, 42, 8967-8978.	1.9	39
69	Wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan, China during 2015–2016: Possible effects from regional emission reduction and local tourist activities. Environmental Pollution, 2018, 233, 267-277.	3.7	39
70	Fine Particulate Matter and Ozone Pollution in the 18 Cities of the Sichuan Basin in Southwestern China: Model Performance and Characteristics. Aerosol and Air Quality Research, 2019, 19, 2308-2319.	0.9	39
71	Control strategies for the reduction of airborne particulate nitrate in California's San Joaquin Valley. Atmospheric Environment, 2005, 39, 5325-5341.	1.9	38
72	Aerosol Ammonium in the Urban Boundary Layer in Beijing: Insights from Nitrogen Isotope Ratios and Simulations in Summer 2015. Environmental Science and Technology Letters, 2019, 6, 389-395.	3.9	38

QI YING

#	Article	IF	CITATIONS
73	Simulation of summer ozone and its sensitivity to emission changes in China. Atmospheric Pollution Research, 2019, 10, 1543-1552.	1.8	38
74	Role of stabilized Criegee Intermediates in the formation ofÂatmospheric sulfate in eastern United States. Atmospheric Environment, 2013, 79, 442-447.	1.9	37
75	Evaluation of MEGAN predicted biogenic isoprene emissions at urban locations in Southeast Texas. Atmospheric Environment, 2015, 110, 54-64.	1.9	37
76	Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors. Science of the Total Environment, 2018, 624, 355-365.	3.9	37
77	Source apportionment of airborne particulate matter in Southeast Texas using a source-oriented 3D air quality model. Atmospheric Environment, 2010, 44, 3547-3557.	1.9	36
78	Source apportionment of formaldehyde during TexAQS 2006 using a sourceâ€oriented chemical transport model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1525-1535.	1.2	36
79	Regional source apportionment of summertime ozone and its precursors in the megacities of Beijing and Shanghai using a source-oriented chemical transport model. Atmospheric Environment, 2020, 224, 117337.	1.9	36
80	Secondary organic aerosol from polycyclic aromatic hydrocarbons in Southeast Texas. Atmospheric Environment, 2012, 55, 279-287.	1.9	35
81	Long-term field Evaluation of Low-cost Particulate Matter Sensors in Nanjing. Aerosol and Air Quality Research, 2020, 20, 242-253.	0.9	35
82	Estimating population exposure to ambient polycyclic aromatic hydrocarbon in the United States – Part II: Source apportionment and cancer risk assessment. Environment International, 2016, 97, 163-170.	4.8	34
83	Uncertain Henry's law constants compromise equilibrium partitioning calculations of atmospheric oxidation products. Atmospheric Chemistry and Physics, 2017, 17, 7529-7540.	1.9	33
84	Modelling secondary organic aerosols in China. National Science Review, 2017, 4, 806-809.	4.6	33
85	Importance of Wintertime Anthropogenic Glyoxal and Methylglyoxal Emissions in Beijing and Implications for Secondary Organic Aerosol Formation in Megacities. Environmental Science & Technology, 2020, 54, 11809-11817.	4.6	32
86	Traffic assignment considering air quality. Transportation Research, Part D: Transport and Environment, 2010, 15, 497-502.	3.2	31
87	Simulating and forecasting the cumulative confirmed cases of SARS-CoV-2 in China by Boltzmann function-based regression analyses. Journal of Infection, 2020, 80, 578-606.	1.7	30
88	Modelling air quality during the EXPLORE-YRD campaign – Part II. Regional source apportionment of ozone and PM2.5. Atmospheric Environment, 2021, 247, 118063.	1.9	30
89	Improved MEGAN predictions of biogenic isoprene in the contiguous United States. Atmospheric Environment, 2017, 148, 337-351.	1.9	29
90	Spatial and temporal variations in criteria air pollutants in three typical terrain regions in Shaanxi, China, during 2015. Air Quality, Atmosphere and Health, 2018, 11, 95-109.	1.5	29

#	Article	IF	CITATIONS
91	Significant impact of heterogeneous reactions of reactive chlorine species on summertime atmospheric ozone and free-radical formation in north China. Science of the Total Environment, 2019, 693, 133580.	3.9	29
92	Modeling the impact of heterogeneous reactions of chlorine on summertime nitrate formation in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 6737-6747.	1.9	29
93	Health risk associated with potential source regions of PM2.5 in Indian cities. Air Quality, Atmosphere and Health, 2019, 12, 327-340.	1.5	29
94	Implementation and initial application of the near-explicit Master Chemical Mechanism in the 3D Community Multiscale Air Quality (CMAQ) model. Atmospheric Environment, 2011, 45, 3244-3256.	1.9	27
95	Molecular view modeling of atmospheric organic particulate matter: Incorporating molecular structure and co-condensation of water. Atmospheric Environment, 2015, 122, 400-408.	1.9	27
96	Modeling air quality during the California Regional PM10/PM2.5 Air Quality Study (CPRAQS) using the UCD/CIT source-oriented air quality model – Part III. Regional source apportionment of secondary and total airborne particulate matter. Atmospheric Environment, 2009, 43, 419-430.	1.9	26
97	Long-term particulate matter modeling for health effect studies in California – Part 2: Concentrations and sources of ultrafine organic aerosols. Atmospheric Chemistry and Physics, 2017, 17, 5379-5391.	1.9	26
98	Forecasting the cumulative number of COVID-19 deaths in China: a Boltzmann function-based modeling study. Infection Control and Hospital Epidemiology, 2020, 41, 841-843.	1.0	25
99	Acute and recent air pollution exposure and cardiovascular events at labour and delivery. Heart, 2015, 101, 1491-1498.	1.2	24
100	AERMOD for near-road pollutant dispersion: Evaluation of model performance with different emission source representations and low wind options. Transportation Research, Part D: Transport and Environment, 2017, 57, 392-402.	3.2	24
101	Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model. Environmental Science & Technology, 2020, 54, 13409-13418.	4.6	24
102	Effects of aerosol UV extinction on the formation of ozone and secondary particulate matter. Atmospheric Environment, 2003, 37, 5047-5068.	1.9	23
103	Insights into source origins and formation mechanisms of nitrate during winter haze episodes in the Yangtze River Delta. Science of the Total Environment, 2020, 741, 140187.	3.9	23
104	Estimating population exposure to ambient polycyclic aromatic hydrocarbon in the United States – Part I: Model development and evaluation. Environment International, 2017, 99, 263-274.	4.8	22
105	Source apportionment and regional transport of anthropogenic secondary organic aerosol during winter pollution periods in the Yangtze River Delta, China. Science of the Total Environment, 2020, 710, 135620.	3.9	22
106	Proximity to major roadways and prospectively-measured time-to-pregnancy and infertility. Science of the Total Environment, 2017, 576, 172-177.	3.9	21
107	Source contributions to poor atmospheric visibility in China. Resources, Conservation and Recycling, 2019, 143, 167-177.	5.3	21
108	Estimation of VOC emission factors from flux measurements using a receptor model and footprint analysis. Atmospheric Environment, 2014, 82, 24-35,	1.9	20

#	Article	IF	CITATIONS
109	Investigation of relationships between meteorological conditions and high PM10 pollution in a megacity in the western Yangtze River Delta, China. Air Quality, Atmosphere and Health, 2017, 10, 713-724.	1.5	20
110	Source apportionment of organic pollutants in fine and coarse atmospheric particles in Doha, Qatar. Journal of the Air and Waste Management Association, 2019, 69, 1277-1292.	0.9	20
111	Evaluation of particulate matter deposition in the human respiratory tract during winter in Nanjing using size and chemically resolved ambient measurements. Air Quality, Atmosphere and Health, 2019, 12, 529-538.	1.5	19
112	Projected air quality and health benefits from future policy interventions in India. Resources, Conservation and Recycling, 2019, 142, 232-244.	5.3	18
113	Spatial-temporal variations and source contributions to forest ozone exposure in China. Science of the Total Environment, 2019, 674, 189-199.	3.9	17
114	Characterization and source apportionment of marine aerosols over the East China Sea. Science of the Total Environment, 2019, 651, 2679-2688.	3.9	17
115	Wet deposition of sulfur and nitrogen at Mt. Emei in the West China Rain Zone, southwestern China: Status, inter-annual changes, and sources. Science of the Total Environment, 2020, 713, 136676.	3.9	17
116	A multiple linear regression model with multiplicative log-normal error term for atmospheric concentration data. Science of the Total Environment, 2021, 767, 144282.	3.9	17
117	Physical and chemical processes of wintertime secondary nitrate aerosol formation. Frontiers of Environmental Science and Engineering in China, 2011, 5, 348-361.	0.8	16
118	Simulating near-road reactive dispersion of gaseous air pollutants using a three-dimensional Eulerian model. Science of the Total Environment, 2013, 454-455, 348-357.	3.9	16
119	Using Chemical Transport Model Predictions To Improve Exposure Assessment of PM _{2.5} Constituents. Environmental Science and Technology Letters, 2019, 6, 456-461.	3.9	16
120	Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China. Atmospheric Chemistry and Physics, 2020, 20, 7291-7306.	1.9	16
121	Ozone pollution in the west China rain zone and its adjacent regions, Southwestern China: Concentrations, ecological risk, and Sources. Chemosphere, 2020, 256, 127008.	4.2	16
122	Separately resolving NOx and VOC contributions to ozone formation. Atmospheric Environment, 2022, 285, 119224.	1.9	16
123	Comparison of the SAPRC07 and SAPRC99 photochemical mechanisms during a high ozone episode in Texas: Differences in concentrations, OH budget and relative response factors. Atmospheric Environment, 2012, 54, 25-35.	1.9	15
124	On the effectiveness of short-term intensive emission controls on ozone and particulate matter in a heavily polluted megacity in central China. Atmospheric Environment, 2021, 246, 118111.	1.9	15
125	Atmospheric deposition of sulfur and nitrogen in the West China rain zone: Fluxes, concentrations, ecological risks, and source apportionment. Atmospheric Research, 2021, 256, 105569.	1.8	14
126	Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region. Environmental Pollution, 2021, 287, 117624.	3.7	13

#	Article	IF	CITATIONS
127	Simulating PM concentration during a winter episode in a subtropical valley: Sensitivity simulations and evaluation methods. Atmospheric Environment, 2009, 43, 5971-5977.	1.9	12
128	Source apportionment of visual impairment during the California regional PM10/PM2.5 air quality study. Atmospheric Environment, 2009, 43, 6136-6144.	1.9	12
129	Responses of fine particulate matter and ozone to local emission reductions in the Sichuan Basin, southwestern China. Environmental Pollution, 2021, 277, 116793.	3.7	12
130	Air pollution and cardiovascular events at labor and delivery: a case-crossover analysis. Annals of Epidemiology, 2017, 27, 377-383.	0.9	11
131	Modeling Atmospheric Age Distribution of Elemental Carbon Using a Regional Age-Resolved Particle Representation Framework. Environmental Science & Technology, 2019, 53, 270-278.	4.6	11
132	Revealing the origin of fine particulate matter in the Sichuan Basin from a source-oriented modeling perspective. Atmospheric Environment, 2021, 244, 117896.	1.9	11
133	Molecular characteristics, source contributions, and exposure risks of polycyclic aromatic hydrocarbons in the core city of Central Plains Economic Region, China: Insights from the variation of haze levels. Science of the Total Environment, 2021, 757, 143885.	3.9	11
134	Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part II. Emission sector and source region contributions. Science of the Total Environment, 2015, 532, 840-848.	3.9	10
135	Premature Mortality Associated with Exposure to Outdoor Black Carbon and Its Source Contributions in China. Resources, Conservation and Recycling, 2021, 170, 105620.	5.3	10
136	Assessing the Uncertainties in Ozone and SOA Predictions due to Different Branching Ratios of the Cresol Pathway in the Toluene-OH Oxidation Mechanism. ACS Earth and Space Chemistry, 2021, 5, 1958-1970.	1.2	9
137	The Associations of Dietary Copper With Cognitive Outcomes. American Journal of Epidemiology, 2022, 191, 1202-1211.	1.6	9
138	Atmospheric Age Distribution of Primary and Secondary Inorganic Aerosols in a Polluted Atmosphere. Environmental Science & Technology, 2021, 55, 5668-5676.	4.6	7
139	Estimation of Aromatic Secondary Organic Aerosol Using a Molecular Tracer—A Chemical Transport Model Assessment. Environmental Science & Technology, 2021, 55, 12882-12892.	4.6	6
140	Assessing Regional Model Predictions of Wintertime SOA from Aromatic Compounds and Monoterpenes with Precursor-specific Tracers. Aerosol and Air Quality Research, 2021, 21, 210233.	0.9	6
141	Modeling Secondary Organic Aerosol Tracers and Tracer-to-SOA Ratios for Monoterpenes and Sesquiterpenes Using a Chemical Transport Model. Environmental Science & Technology, 2022, 56, 804-813.	4.6	6
142	Modeling polycyclic aromatic hydrocarbons in India: Seasonal variations, sources and associated health risks. Environmental Research, 2022, 212, 113466.	3.7	6
143	Assessment of mobile source contributions in El Paso by PMF receptor modeling coupled with wind direction analysis. Science of the Total Environment, 2020, 720, 137527.	3.9	5
144	Evaluation of a highly condensed SAPRC chemical mechanism and two emission inventories for ozone source apportionment and emission control strategy assessments in China. Science of the Total Environment, 2022, 813, 151922.	3.9	5

#	Article	IF	CITATIONS
145	TAMNROM-3D. Transportation Research Record, 2010, 2158, 61-68.	1.0	4
146	Contribution of biogenic sources to secondary organic aerosol in the summertime in Shaanxi, China. Chemosphere, 2020, 254, 126815.	4.2	4
147	Ageâ€Resolved Source and Region Contributions to Fine Particulate Matter During an Extreme Haze Episode in China. Geophysical Research Letters, 2021, 48, .	1.5	4
148	Assessment of Sectoral NO _{<i>x</i> Sub> Emission Reductions During COVIDâ€19 Lockdown Using Combined Satellite and Surface Observations and Sourceâ€Oriented Model Simulations. Geophysical Research Letters, 2022, 49, .}	1.5	4
149	Characteristics of movers and predictors of residential mobility in the Atherosclerosis Risk in Communities (ARIC) cohort. Health and Place, 2022, 74, 102771.	1.5	4
150	Spatial and Temporal Variations in the Atmospheric Age Distribution of Primary and Secondary Inorganic Aerosols in China. Engineering, 2023, 28, 117-129.	3.2	2
151	An explainable integrated optimization methodology for source apportionment of ambient particulate matter components. Journal of Environmental Management, 2022, 310, 114789.	3.8	1
152	Temporal variation in the acute effects of air pollution on blood pressure measured at admission to labor/delivery. Air Quality, Atmosphere and Health, 2015, 8, 13-28.	1.5	0