Hiroshi Matsuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4578429/publications.pdf

Version: 2024-02-01

361413 223800 2,277 49 20 46 citations h-index g-index papers 49 49 49 2127 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Search for H-Dropout Lyman Break Galaxies at z â^¼ 12–16. Astrophysical Journal, 2022, 929, 1.	4.5	68
2	HIV-1 VIF and human APOBEC3G interaction directly observed through molecular specific labeling using a new dual promotor vector. Journal of Magnetic Resonance, 2022, 339, 107230.	2.1	1
3	Possible Systematic Rotation in the Mature Stellar Population of a $z=9.1$ Galaxy. Astrophysical Journal Letters, 2022, 933, L19.	8.3	7
4	Interactions of APOBEC3s with DNA and RNA. Current Opinion in Structural Biology, 2021, 67, 195-204.	5.7	12
5	Structural basis of substrate specificity in human cytidine deaminase family APOBEC3s. Journal of Biological Chemistry, 2021, 297, 100909.	3.4	14
6	Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma. Nature Communications, 2021, 12, 7318.	12.8	18
7	Big Three Dragons: A [N ii] 122 \hat{l} 4m Constraint and New Dust-continuum Detection of a z = 7.15 Bright Lyman-break Galaxy with ALMA. Astrophysical Journal, 2021, 923, 5.	4.5	18
8	Crystal Structure of a Soluble APOBEC3G Variant Suggests ssDNA to Bind in a Channel that Extends between the Two Domains. Journal of Molecular Biology, 2020, 432, 6042-6060.	4.2	12
9	Optical Performance of SIS Photon Detectors at Terahertz Frequencies. Journal of Low Temperature Physics, 2020, 200, 226-232.	1.4	0
10	Large Population of ALMA Galaxies at zÂ>Â6 with Very High [O iii]Â88 μm to [C ii]Â158 μm Flux Ratios: Evidence of Extremely High Ionization Parameter or PDR Deficit?. Astrophysical Journal, 2020, 896, 93.	4.5	109
11	An Extended Conformation for K48 Ubiquitin Chains Revealed by the hRpn2:Rpn13:K48-Diubiquitin Structure. Structure, 2020, 28, 495-506.e3.	3. 3	21
12	Mechanism for APOBEC3G catalytic exclusion of RNA and non-substrate DNA. Nucleic Acids Research, 2019, 47, 7676-7689.	14.5	7
13	Big Three Dragons: A <i>z</i> = 7.15 Lyman-break galaxy detected in [O <scp>iii</scp>] 88 μm, [C <scp>ii</scp>] 158 μm, and dust continuum with ALMA. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	162
14	Detection of the Far-infrared [O iii] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era. Astrophysical Journal, 2019, 874, 27.	4.5	144
15	Studies on Terahertz Photon Counting Detectors with Low-Leakage SIS Junctions. Journal of Low Temperature Physics, 2019, 194, 426-432.	1.4	3
16	Structural Analysis of the Active Site and DNA Binding of Human Cytidine Deaminase APOBEC3B. Journal of Chemical Theory and Computation, 2019, 15, 637-647.	5. 3	16
17	The distribution and physical properties of high-redshift [O <scp>iii</scp>] emitters in a cosmological hydrodynamics simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L84-L88.	3.3	35
18	The Dust-selected Molecular Clouds in the Northeast Region of the Small Magellanic Cloud*. Astrophysical Journal, 2018, 867, 117.	4. 5	1

#	Article	IF	Citations
19	A Cool Core Disturbed: Observational Evidence for the Coexistence of Subsonic Sloshing Gas and Stripped Shock-heated Gas around the Core of RX J1347.5–1145. Astrophysical Journal, 2018, 866, 48.	4.5	20
20	Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions. Scientific Reports, 2018, 8, 7511.	3.3	47
21	The onset of star formation 250 million years after the Big Bang. Nature, 2018, 557, 392-395.	27.8	261
22	Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. Nature Communications, 2018, 9, 2460.	12.8	58
23	Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nature Communications, 2017, 8, 15024.	12.8	130
24	Broadband Pillar-Type Antireflective Subwavelength Structures for Silicon and Alumina. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 295-301.	3.1	11
25	Terahertz and far-infrared windows opened at Dome A in Antarctica. Nature Astronomy, 2017, 1, .	10.1	78
26	THE 1.1 mm CONTINUUM SURVEY OF THE SMALL MAGELLANIC CLOUD: PHYSICAL PROPERTIES AND EVOLUTION OF THE DUST-SELECTED CLOUDS*. Astrophysical Journal, 2017, 835, 55.	4.5	9
27	Blind Millimeter Line Emitter Search using ALMA Data Toward Gravitational Lensing Clusters. Astrophysical Journal, 2017, 845, 108.	4.5	14
28	The Sunyaev–Zel'dovich effect at 5″: RX J1347.5â^'1145 imaged by ALMA. Publication of the Astronomical Society of Japan, 2016, 68, .	2.5	32
29	Advantages of Photon Counting Detectors for Terahertz Astronomy. Journal of Low Temperature Physics, 2016, 184, 718-723.	1.4	7
30	SIS Detectors for Terahertz Photon Counting System. Journal of Low Temperature Physics, 2016, 184, 244-249.	1.4	4
31	Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch. Science, 2016, 352, 1559-1562.	12.6	173
32	Structure of the Vif-binding domain of the antiviral enzyme APOBEC3G. Nature Structural and Molecular Biology, 2015, 22, 485-491.	8.2	84
33	Evaluation of Submillimeter/Terahertz Camera Performance With the Cryogenic Multi-Channel Read Out System. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 422-427.	3.1	3
34	Crystal Structure of the DNA Cytosine Deaminase APOBEC3F: The Catalytically Active and HIV-1 Vif-Binding Domain. Structure, 2013, 21, 1042-1050.	3.3	85
35	Impact of H216 on the DNA Binding and Catalytic Activities of the HIV Restriction Factor APOBEC3G. Journal of Virology, 2013, 87, 7008-7014.	3.4	49
36	DETECTION OF AN ULTRA-BRIGHT SUBMILLIMETER GALAXY BEHIND THE SMALL MAGELLANIC CLOUD. Astrophysical Journal Letters, 2013, 774, L30.	8.3	3

#	Article	IF	Citations
37	Electrochemical direct detection of DNA deamination catalyzed by APOBEC3G. Chemical Communications, 2012, 48, 12115.	4.1	6
38	A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology, 2012, 1, 260-276.	2.8	16
39	Free Energy Profile of APOBEC3G Protein Calculated by a Molecular Dynamics Simulation. Biology, 2012, 1, 245-259.	2.8	0
40	Requirements on Photon Counting Detectors for Terahertz Interferometry. Journal of Low Temperature Physics, 2012, 167, 840-845.	1.4	10
41	Crystal Structure of the APOBEC3G Catalytic Domain Reveals Potential Oligomerization Interfaces. Structure, 2010, 18, 28-38.	3.3	116
42	Terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film. Applied Physics Letters, 2009, 95, 193504.	3.3	7
43	The cryogenic multiplexer and shift register for submillimeter-wave digital camera. Cryogenics, 2009, 49, 672-675.	1.7	8
44	An Extended Structure of the APOBEC3G Catalytic Domain Suggests a Unique Holoenzyme Model. Journal of Molecular Biology, 2009, 389, 819-832.	4.2	101
45	Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature, 2008, 452, 116-119.	27.8	202
46	Structure of the DNA Deaminase Domain of the HIV-1 Restriction Factor APOBEC3G. Seibutsu Butsuri, 2008, 48, 333-334.	0.1	0
47	Development of a multi-Fourier-transform interferometer: imaging experiments in millimeter and submillimeter wave bands. Applied Optics, 2007, 46, 2881.	2.1	15
48	Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G. FEBS Letters, 2007, 581, 4761-4766.	2.8	48
49	A Sensitive HN(CA)CO Experiment for Deuterated Proteins. Journal of Magnetic Resonance Series B, 1996, 110, 112-115.	1.6	32