
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/457770/publications.pdf Version: 2024-02-01

POREDT I HADVEY

#	Article	IF	CITATIONS
1	Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1. Science, 2004, 304, 1158-1160.	6.0	3,060
2	Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiology of Disease, 2006, 23, 329-341.	2.1	683
3	GlyR Â3: An Essential Target for Spinal PGE2-Mediated Inflammatory Pain Sensitization. Science, 2004, 304, 884-887.	6.0	569
4	The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nature Cell Biology, 2007, 9, 1243-1252.	4.6	441
5	Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin. Neuron, 2009, 63, 628-642.	3.8	410
6	Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans. Cell, 2007, 128, 45-57.	13.5	397
7	Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nature Genetics, 2013, 45, 1067-1072.	9.4	391
8	PINK1 cleavage at position A103 by the mitochondrial protease PARL. Human Molecular Genetics, 2011, 20, 867-879.	1.4	385
9	Gephyrin: where do we stand, where do we go?. Trends in Neurosciences, 2008, 31, 257-264.	4.2	278
10	Highly effective SNP-based association mapping and management of recessive defects in livestock. Nature Genetics, 2008, 40, 449-454.	9.4	263
11	The GDP-GTP Exchange Factor Collybistin: An Essential Determinant of Neuronal Gephyrin Clustering. Journal of Neuroscience, 2004, 24, 5816-5826.	1.7	239
12	Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nature Genetics, 2006, 38, 801-806.	9.4	232
13	Zinc-mediated inhibition of GABAA receptors: discrete binding sites underlie subtype specificity. Nature Neuroscience, 2003, 6, 362-369.	7.1	226
14	Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Human Mutation, 2007, 28, 1055-1064.	1.1	213
15	<i>GRIN2B</i> mutations in west syndrome and intellectual disability with focal epilepsy. Annals of Neurology, 2014, 75, 147-154.	2.8	195
16	The genetics of hyperekplexia: more than startle!. Trends in Genetics, 2008, 24, 439-447.	2.9	187
17	Glycine Receptor Autoimmune Spectrum With Stiff-Man Syndrome Phenotype. JAMA Neurology, 2013, 70, 44.	4.5	180
18	TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Human Molecular Genetics, 2010, 19, 2817-2827.	1.4	176

#	Article	IF	CITATIONS
19	Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nature Reviews Drug Discovery, 2013, 12, 866-885.	21.5	175
20	TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy, 2014, 10, 2279-2296.	4.3	174
21	Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO Journal, 2007, 26, 3888-3899.	3.5	166
22	Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures. Nature Communications, 2015, 6, 8038.	5.8	160
23	A heterozygous effect for PINK1 mutations in Parkinson's disease?. Annals of Neurology, 2006, 60, 414-419.	2.8	149
24	Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. Journal of Neurochemistry, 2006, 98, 156-169.	2.1	146
25	Clinical and Immunologic Investigations in Patients With Stiff-Person Spectrum Disorder. JAMA Neurology, 2016, 73, 714.	4.5	135
26	Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability. Nature Genetics, 2010, 42, 486-488.	9.4	134
27	A balanced chromosomal translocation disrupting <i>ARHGEF9</i> is associated with epilepsy, anxiety, aggression, and mental retardation. Human Mutation, 2009, 30, 61-68.	1.1	131
28	Structure and Functions of Inhibitory and Excitatory Glycine Receptors. Annals of the New York Academy of Sciences, 1999, 868, 667-676.	1.8	125
29	Antibodies to Aquaporin 4, Myelin-Oligodendrocyte Glycoprotein, and the Glycine Receptor α1 Subunit in Patients With Isolated Optic Neuritis. JAMA Neurology, 2015, 72, 187.	4.5	119
30	Complex Role of Collybistin and Gephyrin in GABAA Receptor Clustering. Journal of Biological Chemistry, 2010, 285, 29623-29631.	1.6	115
31	RNA editing produces glycine receptor α3P185L, resulting in high agonist potency. Nature Neuroscience, 2005, 8, 736-744.	7.1	114
32	lsoform Heterogeneity of the Human Gephyrin Gene (GPHN), Binding Domains to the Glycine Receptor, and Mutation Analysis in Hyperekplexia. Journal of Biological Chemistry, 2003, 278, 24688-24696.	1.6	113
33	Pathophysiological Mechanisms of Dominant and Recessive GLRA1 Mutations in Hyperekplexia. Journal of Neuroscience, 2010, 30, 9612-9620.	1.7	112
34	Glycinergic transmission in the mammalian retina. Frontiers in Molecular Neuroscience, 2009, 2, 6.	1.4	93
35	Identification of an inhibitory Zn2+binding site on the human glycine receptor α1 subunit. Journal of Physiology, 1999, 520, 53-64.	1.3	89
36	Serotonin receptor 1A–modulated phosphorylation of glycine receptor α3 controls breathing in mice. Journal of Clinical Investigation, 2010, 120, 4118-4128.	3.9	89

#	Article	IF	CITATIONS
37	Molecular Basis of the Î ³ -Aminobutyric Acid A Receptor α3 Subunit Interaction with the Clustering Protein Gephyrin. Journal of Biological Chemistry, 2011, 286, 37702-37711.	1.6	89
38	Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism. Molecular Psychiatry, 2016, 21, 936-945.	4.1	85
39	Mutations in the GlyT2 Gene (SLC6A5) Are a Second Major Cause of Startle Disease. Journal of Biological Chemistry, 2012, 287, 28975-28985.	1.6	84
40	Subunit-specific modulation of glycine receptors by cannabinoids and N-arachidonyl-glycine. Biochemical Pharmacology, 2008, 76, 1014-1023.	2.0	82
41	Opioid receptors from a lower vertebrate (Catostomus commersoni): Sequence, pharmacology, coupling to a G-protein-gated inward-rectifying potassium channel (GIRK1), and evolution. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8214-8219.	3.3	79
42	Diversity of glycine receptors in the mouse retina: Localization of the α3 subunit. Journal of Comparative Neurology, 2003, 465, 524-539.	0.9	79
43	Diversity of glycine receptors in the mouse retina: Localization of the α4 subunit. Journal of Comparative Neurology, 2007, 500, 693-707.	0.9	74
44	Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration. Cell Reports, 2013, 4, 738-750.	2.9	74
45	Glycine receptors containing the α4 subunit in the embryonic sympathetic nervous system, spinal cord and male genital ridge. European Journal of Neuroscience, 2000, 12, 994-1001.	1.2	72
46	Spinal prostaglandin E receptors of the EP2 subtype and the glycine receptor α3 subunit, which mediate central inflammatory hyperalgesia, do not contribute to pain after peripheral nerve injury or formalin injection. Pain, 2006, 126, 46-53.	2.0	69
47	Glycine and glycine receptor signalling in non-neuronal cells. Frontiers in Molecular Neuroscience, 2009, 2, 9.	1.4	69
48	Diversity of glycine receptors in the mouse retina: Localization of the α2 subunit. Journal of Comparative Neurology, 2004, 477, 399-411.	0.9	68
49	Effects of subunit types of the recombinant GABAA receptor on the response to a neurosteroid. European Journal of Pharmacology, 1992, 225, 321-330.	2.7	62
50	Localization of rat glycine receptor ?1 and ?2 subunit transcripts in the developing auditory brainstem. Journal of Comparative Neurology, 2001, 438, 336-352.	0.9	62
51	A revised nomenclature for the human and rodent α-tubulin gene family. Genomics, 2007, 90, 285-289.	1.3	60
52	A canine BCAN microdeletion associated with episodic falling syndrome. Neurobiology of Disease, 2012, 45, 130-136.	2.1	60
53	A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore. Journal of Neurochemistry, 2007, 103, 580-589.	2.1	59
54	The Cell Adhesion Molecule Neurofascin Stabilizes Axo-axonic GABAergic Terminals at the Axon Initial Segment. Journal of Biological Chemistry, 2011, 286, 24385-24393.	1.6	59

#	Article	IF	CITATIONS
55	Alternative Splicing of a 51â€Nucleotide Exon that Encodes a Putative Protein Kinase C Phosphorylation Site Generates Two Forms of the Chicken γâ€Aminobutyric Acid _A Receptor β2 Subunit. Journal of Neurochemistry, 1994, 62, 10-16.	2.1	58
56	Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Nature Communications, 2018, 9, 957.	5.8	58
57	Sequence of a <i>Drosophila</i> Ligandâ€Gated Ionâ€Channel Polypeptide with an Unusual Aminoâ€Terminal Extracellular Domain. Journal of Neurochemistry, 1994, 62, 2480-2483.	2.1	56
58	SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at postâ€synaptic specializations of inhibitory synapses. Journal of Neurochemistry, 2011, 116, 1122-1137.	2.1	56
59	Random-primed cDNA synthesis facilitates the isolation of multiple 5'-cDNA ends by RACE. Nucleic Acids Research, 1991, 19, 4002-4002.	6.5	54
60	Molecular cloning reveals the existence of a fourth Î ³ subunit of the vertebrate brain GABAA receptor. FEBS Letters, 1993, 331, 211-216.	1.3	54
61	Novel missense mutations in the glycine receptor Î ² subunit gene (GLRB) in startle disease. Neurobiology of Disease, 2013, 52, 137-149.	2.1	54
62	GLRB is the third major gene of effect in hyperekplexia. Human Molecular Genetics, 2013, 22, 927-940.	1.4	50
63	Molecular determinants of glycine receptor αβ subunit sensitivities to Zn2+-mediated inhibition. Journal of Physiology, 2005, 566, 657-670.	1.3	49
64	Glycine Receptors in Cultured Chick Sympathetic Neurons are Excitatory and Trigger Neurotransmitter Release. Journal of Physiology, 1997, 504, 683-694.	1.3	47
65	The glycinergic system in human startle disease: a genetic screening approach. Frontiers in Molecular Neuroscience, 2010, 3, 8.	1.4	47
66	The chicken GABAA receptor α1 subunit: cDNA sequence and localization of the corresponding mRNA. Molecular Brain Research, 1991, 9, 333-339.	2.5	45
67	The Clinical and Serological Effect of a Glutenâ€Free Diet in Border Terriers with Epileptoid Cramping Syndrome. Journal of Veterinary Internal Medicine, 2015, 29, 1564-1568.	0.6	45
68	Differential Regulation of the Postsynaptic Clustering of Î ³ -Aminobutyric Acid Type A (GABAA) Receptors by Collybistin Isoforms. Journal of Biological Chemistry, 2011, 286, 22456-22468.	1.6	44
69	Startle disease in Irish wolfhounds associated with a microdeletion in the glycine transporter GlyT2 gene. Neurobiology of Disease, 2011, 43, 184-189.	2.1	43
70	A Novel Dominant Hyperekplexia Mutation Y705C Alters Trafficking and Biochemical Properties of the Presynaptic Glycine Transporter GlyT2. Journal of Biological Chemistry, 2012, 287, 28986-29002.	1.6	42
71	Defective glycinergic synaptic transmission in zebrafish motility mutants. Frontiers in Molecular Neuroscience, 2009, 2, 26.	1.4	41
72	Phenotypic characterisation of canine epileptoid cramping syndrome in the Border terrier. Journal of Small Animal Practice, 2014, 55, 102-107.	0.5	41

#	Article	IF	CITATIONS
73	Achieving optimal expression for single channel recording: a plasmid ratio approach to the expression of α1 glycine receptors in HEK293 cells. Journal of Neuroscience Methods, 2002, 113, 207-214.	1.3	40
74	Synphilin-1 and parkin show overlapping expression patterns in human brain and form aggresomes in response to proteasomal inhibition. Neurobiology of Disease, 2005, 20, 401-411.	2.1	40
75	Developmental up-regulation and agonist-dependent down-regulation of GABAA receptor subunit mRNAs in chick cortical neurons. Molecular Brain Research, 1994, 26, 9-17.	2.5	38
76	Structure and Pharmacological Properties of a Molluscan Glutamate-Gated Cation Channel and its Likely Role in Feeding Behavior. Journal of Neuroscience, 1996, 16, 2869-2880.	1.7	37
77	A critical role for glycine transporters in hyperexcitability disorders. Frontiers in Molecular Neuroscience, 2008, 1, 1.	1.4	37
78	A selective role for α3 subunit glycine receptors in inflammatory pain. Frontiers in Molecular Neuroscience, 2009, 2, 14.	1.4	37
79	Cloning of a cDNA that encodes an invertebrate glutamate receptor subunit. FEBS Letters, 1991, 292, 111-114.	1.3	36
80	<i>IQSEC2</i> mutation update and review of the female-specific phenotype spectrum including intellectual disability and epilepsy. Human Mutation, 2019, 40, 5-24.	1.1	36
81	Differential agonist sensitivity of glycine receptor α 2 subunit splice variants. British Journal of Pharmacology, 2004, 143, 19-26.	2.7	35
82	In SituHybridization and Reverse Transcription-Polymerase Chain Reaction Studies on the Expression of the GABAcReceptor II- and I2-subunit Genes in Avian and Rat Brain. European Journal of Neuroscience, 1997, 9, 2414-2422.	1.2	33
83	Glycine receptors control the generation of projection neurons in the developing cerebral cortex. Cell Death and Differentiation, 2014, 21, 1696-1708.	5.0	33
84	Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease). PLoS ONE, 2016, 11, e0157365.	1.1	33
85	Multifunctional Basic Motif in the Glycine Receptor Intracellular Domain Induces Subunit-specific Sorting. Journal of Biological Chemistry, 2010, 285, 3730-3739.	1.6	32
86	Distinct phenotypes in zebrafish models of human startle disease. Neurobiology of Disease, 2013, 60, 139-151.	2.1	32
87	Audiogenic reflex seizures in cats. Journal of Feline Medicine and Surgery, 2016, 18, 328-336.	0.6	32
88	Subtle functional defects in the Arf-specific guanine nucleotide exchange factor IQSEC2 cause non-syndromic X-linked intellectual disability. Small GTPases, 2010, 1, 98-103.	0.7	31
89	Mutations in the Kinesin-2 Motor KIF3B Cause an Autosomal-Dominant Ciliopathy. American Journal of Human Genetics, 2020, 106, 893-904.	2.6	29
90	Defective Escape Behavior in DEAH-Box RNA Helicase Mutants Improved by Restoring Glycine Receptor Expression. Journal of Neuroscience, 2013, 33, 14638-14644.	1.7	28

#	Article	IF	CITATIONS
91	Structure-Function Analysis of the GlyR α2 Subunit Autism Mutation p.R323L Reveals a Gain-of-Function. Frontiers in Molecular Neuroscience, 2017, 10, 158.	1.4	28
92	Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis. Translational Psychiatry, 2017, 7, e1110-e1110.	2.4	27
93	Cerebral Cortical Circuitry Formation Requires Functional Glycine Receptors. Cerebral Cortex, 2017, 27, bhw025.	1.6	26
94	Levetiracetam in the management of feline audiogenic reflex seizures: a randomised, controlled, open-label study. Journal of Feline Medicine and Surgery, 2017, 19, 200-206.	0.6	26
95	Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control. Frontiers in Molecular Neuroscience, 2018, 11, 68.	1.4	25
96	Conservation of γ-Aminobutyric Acid Type A Receptor α6 Subunit Gene Expression in Cerebellar Granule Cells. Journal of Neurochemistry, 2002, 66, 1810-1818.	2.1	24
97	An N-terminal histidine regulates Zn2+ inhibition on the murine GABAA receptor β3 subunit. British Journal of Pharmacology, 2002, 137, 29-38.	2.7	23
98	Distinct synaptic localization patterns of brefeldin Aâ€resistant guanine nucleotide exchange factors BRAG2 and BRAG3 in the mouse retina. Journal of Comparative Neurology, 2013, 521, 860-876.	0.9	23
99	Missense Mutation R338W in ARHGEF9 in a Family with X-linked Intellectual Disability with Variable Macrocephaly and Macro-Orchidism. Frontiers in Molecular Neuroscience, 2015, 8, 83.	1.4	23
100	Novel Missense Mutation A789V in IQSEC2 Underlies X-Linked Intellectual Disability in the MRX78 Family. Frontiers in Molecular Neuroscience, 2015, 8, 85.	1.4	23
101	Control of Inhibition by the Direct Action of Cannabinoids on GABA _A Receptors. Cerebral Cortex, 2015, 25, 2440-2455.	1.6	22
102	A novel invertebrate GABAAreceptor-like polypeptide Sequence and pattern of gene expression. FEBS Letters, 1993, 326, 112-116.	1.3	21
103	Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria. Nature Communications, 2022, 13, 1582.	5.8	20
104	A new mechanism for cannabidiol in regulating the oneâ€carbon cycle and methionine levels inDictyosteliumand in mammalian epilepsy models. British Journal of Pharmacology, 2020, 177, 912-928.	2.7	19
105	Analysis of GABAA receptor subunit genes in multiplex pedigrees with manic depression. Psychiatric Genetics, 1994, 4, 185-191.	0.6	18
106	Selective localization of collybistin at a subset of inhibitory synapses in brain circuits. Journal of Comparative Neurology, 2012, 520, 130-141.	0.9	18
107	Tonically Active α2 Subunit-Containing Glycine Receptors Regulate the Excitability of Striatal Medium Spiny Neurons. Frontiers in Molecular Neuroscience, 2017, 10, 442.	1.4	17
108	Unusual effects of benzodiazepines and cyclodiene insecticides on an expressed invertebrate GABAA receptor. FEBS Letters, 1992, 307, 351-354.	1.3	16

#	Article	IF	CITATIONS
109	Expression of the GABAAreceptor γ4-subunit gene: anatomical distribution of the corresponding mRNA in the domestic chick forebrain and the effect of imprinting training. European Journal of Neuroscience, 1998, 10, 3024-3028.	1.2	16
110	Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene. European Journal of Neuroscience, 2009, 30, 2284-2292.	1.2	16
111	Duplicated Gephyrin Genes Showing Distinct Tissue Distribution and Alternative Splicing Patterns Mediate Molybdenum Cofactor Biosynthesis, Glycine Receptor Clustering, and Escape Behavior in Zebrafish. Journal of Biological Chemistry, 2011, 286, 806-817.	1.6	16
112	Control of Ethanol Sensitivity of the Glycine Receptor <i>α</i> 3 Subunit by Transmembrane 2, the Intracellular Splice Cassette and C-Terminal Domain. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 80-90.	1.3	16
113	Structure/Function Studies of the $\hat{I}\pm4$ Subunit Reveal Evolutionary Loss of a GlyR Subtype Involved in Startle and Escape Responses. Frontiers in Molecular Neuroscience, 2018, 11, 23.	1.4	16
114	Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease. Journal of Neuroscience, 2017, 37, 7948-7961.	1.7	15
115	Alpha2-Containing Glycine Receptors Promote Neonatal Spontaneous Activity of Striatal Medium Spiny Neurons and Support Maturation of Glutamatergic Inputs. Frontiers in Molecular Neuroscience, 2018, 11, 380.	1.4	15
116	Sequence of the chicken GABAAreceptor \hat{l}^2 3-subunit cDNA. Nucleic Acids Research, 1990, 18, 5557-5557.	6.5	14
117	A Novel Movement Disorder in Related Male Labrador Retrievers Characterized by Extreme Generalized Muscular Stiffness. Journal of Veterinary Internal Medicine, 2011, 25, 1089-1096.	0.6	13
118	Dihydropyridine inhibition of the glycine receptor: Subunit selectivity and a molecular determinant of inhibition. Neuropharmacology, 2009, 56, 318-327.	2.0	12
119	Functional Consequences of the Postnatal Switch From Neonatal to Mutant Adult Glycine Receptor α1 Subunits in the Shaky Mouse Model of Startle Disease. Frontiers in Molecular Neuroscience, 2018, 11, 167.	1.4	11
120	Molluscan ligand-gated ion-channel receptors. , 1993, 63, 48-64.		11
121	Ethanol consumption and sedation are altered in mice lacking the glycine receptor α2 subunit. British Journal of Pharmacology, 2020, 177, 3941-3956.	2.7	11
122	Cloning of genomic and cDNA sequences encoding an invertebrate Î ³ -aminobutyric acidA receptor subunit. Biochemical Society Transactions, 1990, 18, 438-439.	1.6	10
123	In Situ Hybridization Localization of the GABAA Receptor β2S- and β2L-Subunit Transcripts Reveals Cell-Specific Splicing of Alternate Cassette Exons. Neuroscience, 1997, 77, 361-369.	1.1	10
124	Murine startle mutant <i>Nmf11</i> affects the structural stability of the glycine receptor and increases deactivation. Journal of Physiology, 2016, 594, 3589-3607.	1.3	10
125	Mutation p.R356Q in the Collybistin Phosphoinositide Binding Site Is Associated With Mild Intellectual Disability. Frontiers in Molecular Neuroscience, 2019, 12, 60.	1.4	10
126	Effects of GluN2A and GluN2B gain-of-function epilepsy mutations on synaptic currents mediated by diheteromeric and triheteromeric NMDA receptors. Neurobiology of Disease, 2020, 140, 104850.	2.1	10

#	Article	IF	CITATIONS
127	Mining the 99 Lives Cat Genome Sequencing Consortium database implicates genes and variants for the <i>Ticked</i> locus in domestic cats (<i>FelisÂcatus</i>). Animal Genetics, 2021, 52, 321-332.	0.6	9
128	Identification of congenital muscular dystonia 2 associated with an inherited GlyT2 defect in Belgian Blue cattle from the United Kingdom. Animal Genetics, 2012, 43, 267-270.	0.6	8
129	Acetazolamide-responsive paroxysmal dyskinesia in a 12-week-old female golden retriever dog. Veterinary Quarterly, 2016, 36, 45-49.	3.0	8
130	Molecular mechanisms of glycine transporter GlyT2 mutations in startle disease. Biological Chemistry, 2012, 393, 283-289.	1.2	7
131	Epicatechin gallate, a naturally occurring polyphenol, alters the course of infection with β-lactam-resistant Staphylococcus aureus in the zebrafish embryo. Frontiers in Microbiology, 2015, 6, 1043.	1.5	7
132	Clycine Receptor Complex Analysis Using Immunoprecipitationâ€Blue Native Gel Electrophoresisâ€Mass Spectrometry. Proteomics, 2020, 20, e1900403.	1.3	7
133	Loss, Gain and Altered Function of ClyR α2 Subunit Mutations in Neurodevelopmental Disorders. Frontiers in Molecular Neuroscience, 2022, 15, 886729.	1.4	7
134	Frontal lobe dysfunction in sporadic hyperekplexia. Journal of Neurology, 2004, 251, 91-98.	1.8	6
135	Effects of GABAA Receptor α3 Subunit Epilepsy Mutations on Inhibitory Synaptic Signaling. Frontiers in Molecular Neuroscience, 2020, 13, 602559.	1.4	6
136	Novel Functional Properties of Missense Mutations in the Glycine Receptor Î ² Subunit in Startle Disease. Frontiers in Molecular Neuroscience, 2021, 14, 745275.	1.4	6
137	The Production of a Stably Transformed Insect Cell Line Expressing An Invertebrate GABAA Receptor β-Subunit. Journal of Receptor and Signal Transduction Research, 1995, 15, 33-41.	1.3	5
138	Functional pharmacology of GABAA receptors containing the chicken brain γ4 subunit. European Journal of Pharmacology, 2001, 419, 1-7.	1.7	5
139	Channel gating in the absence of agonist by a homooligomeric molluscan GABA receptor expressed inXenopus oocytes from a cloned cDNA. Invertebrate Neuroscience, 1995, 1, 267-272.	1.8	4
140	Chicken GABAA receptor β4 subunits form robust homomeric GABA-gated channels in Xenopus oocytes. European Journal of Pharmacology, 1998, 354, 253-259.	1.7	4
141	Scottie cramp and canine epileptoid cramping syndrome in Border terriers. Veterinary Record, 2012, 170, 186-187.	0.2	4
142	Channels formed by M2 peptides of a putative glutamate receptor subunit of locust. , 1993, 63, 241-249.		4
143	Contribution of GlyR α3 Subunits to the Sensitivity and Effect of Ethanol in the Nucleus Accumbens. Frontiers in Molecular Neuroscience, 2021, 14, 756607.	1.4	4
144	Glycinergic transmission: physiological, developmental and pathological implications. Frontiers in Molecular Neuroscience, 2010, 3, .	1.4	3

ROBERT J HARVEY

#	Article	IF	CITATIONS
145	Application of the random forest algorithm to Streptococcus pyogenes response regulator allele variation: from machine learning to evolutionary models. Scientific Reports, 2021, 11, 12687.	1.6	3
146	Presence of ethanolâ€sensitive and ethanolâ€insensitive glycine receptors in the ventral tegmental area and prefrontal cortex in mice. British Journal of Pharmacology, 2021, 178, 4691-4707.	2.7	3
147	Glycine Transporters and Receptors as Targets for Analgesics. Biomolecules, 2021, 11, 1676.	1.8	3
148	Molecular Characterisation and Functional Expression of Molluscan Ion-Channel Receptors That Can Be Activated By Either γ-Aminobutyric Acid or L-Glutamate. Animal Biology, 1993, 44, 473-485.	0.4	2
149	Localization of rat glycine receptor α1 and α2 subunit transcripts in the developing auditory brainstem. Journal of Comparative Neurology, 2001, 438, 336-352.	0.9	2
150	GABA-, Glycine-, and Glutamate-Gated Channels and Their Possible Involvement in Neurological and Psychiatric Illness. , 1996, , 169-180.		2
151	Differential patterns of expression of two novel invertebrate (Lymnaea stagnalis) ionotropic glutamate receptor genes. , 1997, 20, 31-40.		1
152	Editorial: Molecular, Cellular and Model Organism Approaches for Understanding the Basis of Neurological Disease. Frontiers in Molecular Neuroscience, 2017, 10, 74.	1.4	1
153	Hijacking of GABAA Receptors by Mutant Glycine Receptors. Trends in Molecular Medicine, 2019, 25, 823-825.	3.5	1
154	Expression of the GABAA receptor gamma4-subunit gene: anatomical distribution of the corresponding mRNA in the domestic chick forebrain and the effect of imprinting training. European Journal of Neuroscience, 1998, 10, 3024-3028.	1.2	1
155	Lessons Learnt From Using the Machine Learning Random Forest Algorithm to Predict Virulence in Streptococcus pyogenes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 809560.	1.8	1
156	Startle Disease: New Molecular Insights into an Old Neurological Disorder. Neuroscientist, 2023, 29, 767-781.	2.6	1
157	The embryonal carcinoma cell line PCC7-S-AzaR1 (clone 1009) expresses a functional GABAA receptor comprising the ??5, ??3 and ??3 subunits. Behavioural Pharmacology, 1995, 6, 119.	0.8	0
158	Reliable and accurate sequencing of lambda, cosmid and P1 DNAs using modified dye terminator reaction parameters. Technical Tips Online, 1998, 3, 150-152.	0.2	0
159	Frontiers in Molecular Neuroscience – Résumé and Perspective. Frontiers in Molecular Neuroscience, 2011, 4, 58.	1.4	0
160	Audiogenic reflex seizures in cats. Veterinary Record, 2013, 173, 482-482.	0.2	0
161	Hyperekplexia: Stiffness, startle and syncope. Journal of Pediatric Neurology, 2015, 08, 011-014.	0.0	0
162	ISDN2014_0141: Disruption of cortical circuitry development in glycine receptor alpha 2 knockout mice. International Journal of Developmental Neuroscience, 2015, 47, 41-41.	0.7	0

#	Article	IF	CITATIONS
163	Structure, assembly and targeting of glycine receptors. , 2002, , 171-191.		0