Gary N Cherr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4577108/publications.pdf

Version: 2024-02-01

66343 71685 6,005 97 42 76 citations h-index g-index papers 97 97 97 6545 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environmental Science & Environmental Scie	10.0	1,162
2	Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact, 2017, 7, 28-40.	4. 5	277
3	In vitro studies of the golden hamster sperm acrosome reaction: Completion on the zona pellucida and induction by homologous soluble zonae pellucidae. Developmental Biology, 1986, 114, 119-131.	2.0	160
4	Phenotypic Plasticity of HSP70 and HSP70 Gene Expression in the Pacific Oyster (Crassostrea gigas): Implications for Thermal Limits and Induction of Thermal Tolerance. Biological Bulletin, 2003, 205, 160-169.	1.8	160
5	The dual functions of GPI-anchored PH-20: hyaluronidase and intracellular signaling. Matrix Biology, 2001, 20, 515-525.	3.6	153
6	Common Strategies and Technologies for the Ecosafety Assessment and Design of Nanomaterials Entering the Marine Environment. ACS Nano, 2014, 8, 9694-9709.	14.6	149
7	Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations. Aquatic Toxicology, 2005, 71, 155-173.	4.0	144
8	Unexpectedly high mortality in Pacific herring embryos exposed to the 2007 <i>Cosco Busan</i> oil spill in San Francisco Bay. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E51-8.	7.1	136
9	A Common Mutation in the Defensin <i>DEFB126</i> Causes Impaired Sperm Function and Subfertility. Science Translational Medicine, 2011, 3, 92ra65.	12.4	127
10	Metal oxide nanomaterials in seawater: Linking physicochemical characteristics with biological response in sea urchin development. Journal of Hazardous Materials, 2011, 192, 1565-1571.	12.4	126
11	Ecological Nanotoxicology: Integrating Nanomaterial Hazard Considerations Across the Subcellular, Population, Community, and Ecosystems Levels. Accounts of Chemical Research, 2013, 46, 813-822.	15.6	125
12	Beta-Defensin 126 on the Cell Surface Protects Sperm from Immunorecognition and Binding of Anti-Sperm Antibodies 1. Biology of Reproduction, 2005, 73, 1243-1252.	2.7	111
13	Factors Controlling Sperm Entry into the Micropyles of Salmonid and Herring Eggs. (fish/sperm/egg/micropyle/fertilization). Development Growth and Differentiation, 1992, 34, 447-461.	1.5	108
14	Polybrominated diphenyl ether (PBDE)-induced alterations in vitamin A and thyroid hormone concentrations in the rat during lactation and early postnatal development. Toxicology and Applied Pharmacology, 2006, 215, 135-145.	2.8	101
15	The PH-20 Protein in Cynomolgus Macaque Spermatozoa: Identification of Two Different Forms Exhibiting Hyaluronidase Activity. Developmental Biology, 1996, 175, 142-153.	2.0	98
16	Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus. Human Reproduction, 2008, 23, 2523-2534.	0.9	95
17	Sperm Attractant in the Micropyle Region of Fish and Insect Eggs1. Biology of Reproduction, 2013, 88, 47.	2.7	95
18	Motility initiation in herring sperm is regulated by reverse sodium-calcium exchange. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2026-2031.	7.1	90

#	Article	IF	CITATIONS
19	A Tale of Two Spills: Novel Science and Policy Implications of an Emerging New Oil Spill Model. BioScience, 2012, 62, 461-469.	4.9	89
20	Beta-Defensin 126 on the Surface of Macaque Sperm Mediates Attachment of Sperm to Oviductal Epithelia1. Biology of Reproduction, 2008, 78, 400-412.	2.7	88
21	Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus). Developmental Biology, 2004, 276, 452-462.	2.0	83
22	Multifunctional glycoprotein DEFB126â€"a curious story of defensin-clad spermatozoa. Nature Reviews Urology, 2012, 9, 365-375.	3.8	80
23	ESP13.2, a Member of the Â-Defensin Family, Is a Macaque Sperm Surface-Coating Protein Involved in the Capacitation Process. Biology of Reproduction, 2003, 69, 1118-1128.	2.7	79
24	The in vivo estrogenic and in vitro antiâ€estrogenic activity of permethrin and bifenthrin. Environmental Toxicology and Chemistry, 2012, 31, 2848-2855.	4.3	74
25	Chemical and physical guidance of fish spermatozoa into the egg through the micropyleâ€,‡. Biology of Reproduction, 2017, 96, 780-799.	2.7	67
26	Copper Oxide and Zinc Oxide Nanomaterials Act as Inhibitors of Multidrug Resistance Transport in Sea Urchin Embryos: Their Role as Chemosensitizers. Environmental Science & E	10.0	66
27	Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a \hat{l}^2 -catenin dependent pathway. Toxicology, 2003, 186, 93-108.	4.2	64
28	Macaque sperm release ESP13.2 and PSP94 during capacitation: The absence of ESP13.2 is linked to sperm-zona recognition and binding. Molecular Reproduction and Development, 2004, 69, 325-337.	2.0	63
29	Gamete interaction in the white sturgeon Acipenser transmontanus: a morphological and physiological review. Environmental Biology of Fishes, 1985, 14, 11-22.	1.0	61
30	Structure of the cumulus matrix and zona pellucida in the golden hamster: A new view of sperm interaction with oocyte-associated extracellular matrices. Cell and Tissue Research, 1988, 251, 555-564.	2.9	59
31	Hyaluronic acid enhances induction of the acrosome reaction of human sperm through interaction with the PH-20 protein. Zygote, 1998, 6, 103-111.	1.1	59
32	Impacts of Petroleum-Derived Pollutants on Fish Development. Annual Review of Animal Biosciences, 2017, 5, 185-203.	7.4	59
33	Progesterone Accelerates the Completion of Sperm Capacitation and Activates CatSper Channel in Spermatozoa from the Rhesus Macaque1. Biology of Reproduction, 2015, 93, 130.	2.7	58
34	Comparison of Cytotoxicity and Inhibition of Membrane ABC Transporters Induced by MWCNTs with Different Length and Functional Groups. Environmental Science & Environmental Science & 2016, 50, 3985-3994.	10.0	56
35	Hyaluronic acid and the cumulus extracellular matrix induce increases in intracellular calcium in macaque sperm via the plasma membrane protein PH-20. Zygote, 1999, 7, 211-222.	1.1	55
36	The Carbohydrate Structure of DEFB126, the Major Component of the Cynomolgus Macaque Sperm Plasma Membrane Glycocalyx. Journal of Membrane Biology, 2005, 207, 119-129.	2.1	52

3

#	Article	IF	CITATIONS
37	Low extracellular zinc increases neuronal oxidant production through nadph oxidase and nitric oxide synthase activation. Free Radical Biology and Medicine, 2010, 48, 1577-1587.	2.9	51
38	Fine Structure of the Envelope and Micropyles in the Eggs of the White Sturgeon, Acipenser transmontanus Richardson. (micropyle/chorion/egg envelopes/sturgeon/egg jelly). Development Growth and Differentiation, 1982, 24, 341-352.	1.5	48
39	Tolerance to biodegraded crude oil in marine invertebrate embryos and larvae is associated with expression of a multixenobiotic resistance transporter. Aquatic Toxicology, 2002, 61, 127-140.	4.0	48
40	Potent Phototoxicity of Marine Bunker Oil to Translucent Herring Embryos after Prolonged Weathering. PLoS ONE, 2012, 7, e30116.	2.5	48
41	The effects of diffusible creosote-derived compounds on development in Pacific herring (Clupea) Tj ETQq1 1 0.78	4314 rgBT 430	 Qyerlock 1
42	A polar high molecular mass constituent of bleached kraft mill effluent is toxic to marine organisms. Environmental Science &	10.0	44
43	Real-Time Observations of Individual Macaque Sperm Undergoing Tight Binding and the Acrosome Reaction on the Zona Pellucida1. Biology of Reproduction, 2003, 68, 664-672.	2.7	43
44	The evolution of hamster sperm motility during capacitation and interaction with the ovum vestments in vitro. Gamete Research, 1986, 14, 333-346.	1.7	42
45	Using an integrated approach to link biomarker responses and physiological stress to growth impairment of cadmium-exposed larval topsmelt. Aquatic Toxicology, 2006, 80, 298-308.	4.0	42
46	Developmental effects of two different copper oxide nanomaterials in sea urchin (<i>Lytechinus) Tj ETQq0 0 0 rgE</i>	3T _. /Overloc	:k 10 Tf 50 3
47	Impact of UV Radiation on the Early Development of the Giant Kelp (Macrocystis pyrifera) GametophytesÂ\$¶. Photochemistry and Photobiology, 2000, 72, 308.	2.5	41
48	Two egg-derived molecules in sperm motility initiation and fertilization in the Pacific herring (Clupea) Tj ETQq0 0 0) rgBT /Ove	erlock 10 Tf
49	Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters. Nanotoxicology, 2016, 10, 597-606.	3.0	39
50	Î ² -Defensin 22 is a major component of the mouse sperm glycocalyx. Reproduction, 2008, 136, 753-765.	2.6	38
51	From â€Omics to Otoliths: Responses of an Estuarine Fish to Endocrine Disrupting Compounds across Biological Scales. PLoS ONE, 2013, 8, e74251.	2.5	36
52	Polycyclic aromatic hydrocarbons and dibutyl phthalate disrupt dorsal–ventral axis determination via the Wnt/β-catenin signaling pathway in zebrafish embryos. Aquatic Toxicology, 2012, 124-125, 188-196.	4.0	34
53	Toxic effects of selected bleached kraft mill effluent constituents on the sea urchin sperm cell. Environmental Toxicology and Chemistry, 1987, 6, 561-569.	4.3	33
54	Sperm motility initiation factor is a minor component of the Pacific herring egg chorion. Development Growth and Differentiation, 1996, 38, 193-202.	1.5	33

#	Article	IF	CITATIONS
55	Impacts of Suspended Sediments on Fertilization, Embryonic Development, and Early Larval Life Stages of the Pacific Herring, <i>Clupea pallasi </i> Biological Bulletin, 2009, 216, 175-187.	1.8	33
56	Photosynthetic efficiency predicts toxic effects of metal nanomaterials in phytoplankton. Aquatic Toxicology, 2017, 183, 85-93.	4.0	33
57	Hyaluronidase activity of macaque sperm assessed by an in vitro cumulus penetration assay. Molecular Reproduction and Development, 1997, 46, 392-400.	2.0	31
58	Scaling Up Endocrine Disruption Effects from Individuals to Populations: Outcomes Depend on How Many Males a Population Needs. Environmental Science & Environmental Science & 2017, 51, 1802-1810.	10.0	30
59	Organization of the Hamster Cumulus Extracellular Matrix: A Hyaluronate-Glycoprotein Gel which Modulates Sperm Access to the Oocyte. Extracellular matrix/Hyaluronate/Oocyte-cumulus complex/Extracellular matrix glycoproteins/Sperm enzymes. Development Growth and Differentiation, 1990. 32. 353-365.	1.5	28
60	Inhibition of cellular events during early algal gametophyte development: effects of select metals and an aqueous petroleum waste. Aquatic Toxicology, 1994, 28, 127-144.	4.0	28
61	Biochemical characterization of the PH-20 protein on the plasma membrane and inner acrosomal membrane of cynomolgus macaque spermatozoa. Molecular Reproduction and Development, 1997, 48, 356-366.	2.0	28
62	Soybean trypsin inhibitor as a probe for the acrosome reaction in motile cynomolgus macaque sperm. Zygote, 2000, 8, 127-137.	1,1	27
63	Implementing a Restoration Program for the Endangered White Abalone (<i>Haliotis sorenseni</i>) in California. Journal of Shellfish Research, 2016, 35, 611-618.	0.9	27
64	Increase in multidrug transport activity is associated with oocyte maturation in sea stars. Development Growth and Differentiation, 2006, 48, 559-573.	1.5	26
65	An approach to detecting estrogenic endocrine disruption via choriogenin expression in an estuarine model fish species. Ecotoxicology, 2012, 21, 1272-1280.	2.4	25
66	Identification of the Origin and Localization of Chorion (Egg Envelope) Proteins in an Ancient Fish, the White Sturgeon, Acipenser transmontanus1. Biology of Reproduction, 2014, 90, 132.	2.7	24
67	Rapid and complete dehalogenation of halonitromethanes in simulated gastrointestinal tract and its influence on toxicity. Chemosphere, 2018, 211, 1147-1155.	8.2	20
68	Rearrangement of the PH-20 protein on the surface of macaque spermatozoa following exposure to anti-PH-20 antibodies or binding to zona pellucida. Molecular Reproduction and Development, 1998, 50, 207-220.	2.0	19
69	Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix. Microscopy Research and Technique, 1992, 22, 11-22.	2.2	18
70	Redistribution of Transcription Factor AP- $2\hat{l}_{\pm}$ in Differentiating Cultured Human Epidermal Cells. Journal of Investigative Dermatology, 2001, 117, 864-870.	0.7	17
71	Maternal exposure to estradiol and endocrine disrupting compounds alters the sensitivity of sea urchin embryos and the expression of an orphan steroid receptor. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2006, 305A, 830-841.	1.3	17
72	Effects of three zinc-containing sunscreens on development of purple sea urchin (Strongylocentrotus purpuratus) embryos. Aquatic Toxicology, 2020, 218, 105355.	4.0	17

#	Article	IF	Citations
73	Importance of glycosylation and disulfide bonds in hyaluronidase activity of macaque sperm surface PH-20. Journal of Andrology, 2002, 23, 211-9.	2.0	17
74	Developmental abnormalities and DNA-protein crosslinks in sea urchin embryos exposed to three metals. Aquatic Toxicology, 1997, 39, 247-265.	4.0	14
7 5	Acrosome reaction in spermatozoa from hagfish (Agnatha) Eptatretus burgeri and Eptatretus stouti: Acrosomal exocytosis and identification of filamentous actin. Development Growth and Differentiation, 2002, 44, 337-344.	1.5	14
76	Unusual variation of blocking temperature in bi-magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2017, 441, 417-423.	2.3	14
77	Interactive effects of pesticide exposure and habitat structure on behavior and predation of a marine larval fish. Ecotoxicology, 2015, 24, 391-400.	2.4	13
78	Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles. Royal Society Open Science, 2017, 4, 170480.	2.4	13
79	Sperm motilityâ€initiating substance in newt eggâ€jelly induces differential initiation of sperm motility based on sperm intracellular calcium levels. Development Growth and Differentiation, 2011, 53, 9-17.	1.5	12
80	Induced thermotolerance and tissue Hsc70 in juvenile coho salmon, <i>Oncorhynchus kisutch</i> Acta Zoologica, 2008, 89, 331-338.	0.8	9
81	Release of DEFB126 from macaque sperm and completion of capacitation are triggered by conditions that simulate periovulatory oviductal fluid. Molecular Reproduction and Development, 2009, 76, 431-443.	2.0	9
82	Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake. Aquatic Toxicology, 2017, 189, 134-141.	4.0	9
83	Effects of soluble copper and copper oxide nanoparticle exposure on the immune system of mussels, <scp><i>Mytilus galloprovincialis</i></scp> . Environmental Toxicology, 2019, 34, 294-302.	4.0	9
84	Pilot study of the Olympia oyster Ostrea conchaphila in the San Francisco Bay estuary: description and distribution of diseases. Diseases of Aquatic Organisms, 2005, 65, 1-8.	1.0	9
85	Induction of the Acrosomal Reaction in Sperm from the White Sturgeon, Acipenser Transmontanus. , 1986, 207, 235-249.		8
86	Fabrication of a multifunctional magnetic-fluorescent material for medical applications. Dalton Transactions, 2020, 49, 4376-4389.	3.3	6
87	METHODS FOR ASSESSING FERTILIZATION AND EMBRYONIC/LARVAL DEVELOPMENT IN TOXICITY TESTS USING THE CALIFORNIA MUSSEL (MYTILUS CALIFORNIANUS). Environmental Toxicology and Chemistry, 1990, 9, 1137.	4.3	6
88	Toxicity of zinc and bleached kraft mill effluent to larval english sole (Parophrys vetulus) and topsmelt (Atherinops affinis). Archives of Environmental Contamination and Toxicology, 1990, 19, 680-685.	4.1	4
89	Two different unique cardiac isoforms of protein 4.1R in zebrafish, <i>Danio rerio, </i> and insights into their cardiac functions as related to their unique structures. Development Growth and Differentiation, 2010, 52, 591-602.	1.5	4
90	Review of and Recommendations for Monitoring Contaminants and their Effects in the San Francisco Bayâ^'Delta. San Francisco Estuary and Watershed Science, 2019, 17, .	0.4	3

#	Article	IF	CITATIONS
91	Lignosulfonic acid blocks in vitro fertilization of macaque oocytes when sperm are treated either before or after capacitation. Journal of Andrology, 2002, 23, 889-98.	2.0	3
92	Larval Pacific Herring (Clupea pallasi) Survival in Suspended Sediment. Estuaries and Coasts, 2012, 35, 1229-1236.	2.2	2
93	The fish egg's micropyle and sperm attraction. Molecular Reproduction and Development, 2014, 81, 1063-1063.	2.0	1
94	Methods for toxicology studies in echinoderm embryos and larvae. Methods in Cell Biology, 2019, 150, 411-426.	1.1	1
95	Shu-Pei Cheng: A life-long pursuit for Environmental Science and Pollution Control. Ecotoxicology, 2021, 30, 1284-1286.	2.4	1
96	Survival of Drowning Sperm: Do Spermatozoa from External Fertilizers Adapt to Differing Osmotic Environments Through the Use of Aquaporins?. Biology of Reproduction, 2013, 89, 36.	2.7	0
97	Preface. Ecotoxicology, 2021, 30, 1279-1280.	2.4	0