
Xu Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4576653/publications.pdf Version: 2024-02-01

XILLIAND

#	Article	IF	CITATIONS
1	Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in-Water Emulsion Separation. ACS Applied Materials & Interfaces, 2015, 7, 9534-9545.	4.0	276
2	Pushing CO ₂ -philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO ₂ separations. Energy and Environmental Science, 2017, 10, 1339-1344.	15.6	175
3	Building Nanoporous Metal–Organic Frameworks "Armor―on Fibers for High-Performance Composite Materials. ACS Applied Materials & Interfaces, 2017, 9, 5590-5599.	4.0	161
4	Interface manipulation of CO ₂ –philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 15064-15073.	5.2	150
5	Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation. Journal of Materials Chemistry A, 2019, 7, 10898-10904.	5.2	107
6	New Insights into Various Production Characteristics of Streptococcus thermophilus Strains. International Journal of Molecular Sciences, 2016, 17, 1701.	1.8	106
7	Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	99
8	Rational design of poly(ethylene oxide) based membranes for sustainable CO ₂ capture. Journal of Materials Chemistry A, 2020, 8, 24233-24252.	5.2	94
9	Building Additional Passageways in Polyamide Membranes with Hydrostable Metal Organic Frameworks To Recycle and Remove Organic Solutes from Various Solvents. ACS Applied Materials & Interfaces, 2017, 9, 38877-38886.	4.0	93
10	Aqueous One-Step Modulation for Synthesizing Monodispersed ZIF-8 Nanocrystals for Mixed-Matrix Membrane. ACS Applied Materials & Interfaces, 2021, 13, 11296-11305.	4.0	83
11	New advances in exopolysaccharides production of Streptococcus thermophilus. Archives of Microbiology, 2017, 199, 799-809.	1.0	78
12	Penetrating chains mimicking plant root branching to build mechanically robust, ultra-stable CO ₂ -philic membranes for superior carbon capture. Journal of Materials Chemistry A, 2019, 7, 16704-16711.	5.2	69
13	Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AICHE Journal, 2020, 66, e16543.	1.8	68
14	Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design. Separation and Purification Technology, 2022, 284, 120277.	3.9	64
15	Nanoporous framework "reservoir―maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture. Journal of Membrane Science, 2019, 570-571, 278-285.	4.1	55
16	Mesoporous dendritic fibrous nanosilica (DFNS) stimulating mix matrix membranes towards superior CO2 capture. Journal of Membrane Science, 2019, 586, 185-191.	4.1	42
17	A facile direct spray-coating of Pebax® 1657: Towards large-scale thin-film composite membranes for efficient CO2/N2 separation. Journal of Membrane Science, 2021, 638, 119708.	4.1	31
18	Effects of amino functionalized polyhedral oligomeric silsesquioxanes on cross-linked poly(ethylene) Tj ETQq0 0 C) rgBT /Ov 2.7	verlock 10 Tf 30

2017, 122, 280-288.

	Xu Jia	NG	
#	Article	IF	CITATIONS
19	Technological properties assessment and two component systems distribution of Streptococcus thermophilus strains isolated from fermented milk. Archives of Microbiology, 2018, 200, 567-580.	1.0	11