
Tewasin Kumpika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4576546/publications.pdf Version: 2024-02-01

TEWASIN KUMDIKA

#	Article	IF	CITATIONS
1	Effect of high roughness on a long aging time of superhydrophilic TiO2 nanoparticle thin films. Current Applied Physics, 2011, 11, 1237-1242.	2.4	41
2	Photocatalytic property of colloidal TiO2 nanoparticles prepared by sparking process. Current Applied Physics, 2008, 8, 563-568.	2.4	34
3	Optical and electrical properties of ZnO nanoparticle thin films deposited on quartz by sparking process. Thin Solid Films, 2008, 516, 5640-5644.	1.8	30
4	Porous CuWO4/WO3 composite films with improved electrochromic properties prepared by sparking method. Materials Letters, 2019, 257, 126747.	2.6	26
5	Atomic force microscopy imaging of ZnO nanodots deposited on quartz by sparking off different tip shapes. Surface and Interface Analysis, 2007, 39, 58-63.	1.8	21
6	α-Fe2O3 modified TiO2 nanoparticulate films prepared by sparking off Fe electroplated Ti tips. Applied Surface Science, 2019, 477, 116-120.	6.1	16
7	Highly stretchable and sensitive strain sensors using nano-graphene coated natural rubber. Plastics, Rubber and Composites, 2017, 46, 301-305.	2.0	14
8	A facile methodology to make the glass surface superhydrophobic. Materials Letters, 2020, 264, 127347.	2.6	13
9	Fabrication and composition control of porous ZnO-TiO2 binary oxide thin films via a sparking method. Optik, 2017, 133, 114-121.	2.9	12
10	Electrochromic properties of tungsten oxide films prepared by sparking method using external electric field. Thin Solid Films, 2019, 682, 135-141.	1.8	12
11	Photocatalytic Enhancement of a Novel Composite CuAl2O4/TiO2/CuO Films Prepared by Sparking Process. Optik, 2020, 224, 165502.	2.9	11
12	Influence of Co concentration on properties of NiO film by sparking under uniform magnetic field. Scientific Reports, 2020, 10, 15690.	3.3	11
13	External-Electric-Field-Enhanced Uniformity and Deposition Rate of a TiO2 Film Prepared by the Sparking Process. Ukrainian Journal of Physics, 2018, 63, 531.	0.2	10
14	Antireflective, photocatalytic, and superhydrophilic coating prepared by facile sparking process for photovoltaic panels. Scientific Reports, 2022, 12, 1675.	3.3	8
15	Photocatalytic efficiency under visible light of a novel Cu–Fe oxide composite films prepared by one-step sparking process. Scientific Reports, 2022, 12, 4239.	3.3	8
16	Fabrication, Design and Application of Stretchable Strain Sensors for Tremor Detection in Parkinson Patient. Applied Composite Materials, 2020, 27, 955-968.	2.5	7
17	Effect of magnetic field on improvement of photocatalytic performance of V2O5/TiO2 nanoheterostructure films prepared by sparking method. Scientific Reports, 2022, 12, 2298.	3.3	7
18	Stretchable and compressible strain sensors for gait monitoring constructed using carbon nanotube/graphene composite. Materials Research Express, 2020, 7, 035006.	1.6	6

TEWASIN KUMPIKA

#	Article	IF	CITATIONS
19	Isomer effect on chemical reactivity and superhydrophobicity of chlorosilane modified SiO2 nanoparticles prepared by one-step reaction. Materials Letters, 2019, 248, 227-230.	2.6	5
20	Investigation of NiO film by sparking method under a magnetic field and NiO/ZnO heterojunction. Materials Research Express, 2020, 7, 056403.	1.6	5
21	Studies on the Characteristics of Nanostructures Produced by Sparking Discharge Process in the Ambient Atmosphere for Air Filtration Application. Crystals, 2021, 11, 140.	2.2	5
22	Improving the properties of Fe ₂ O ₃ by a sparking method under a uniform magnetic field for a high-performance humidity sensor. RSC Advances, 2022, 12, 1527-1533.	3.6	5
23	Superhydrophilic/superhydrophobic surfaces fabricated by sparkâ€coating. Surface and Interface Analysis, 2018, 50, 827-834.	1.8	4
24	Influence of the magnetic field on bandgap and chemical composition of zinc thin films prepared by sparking discharge process. Scientific Reports, 2020, 10, 1388.	3.3	4
25	Superhydrophobicity/Superhydrophilicity Transformation of Transparent PS-PMMA-SiO2 Nanocomposite Films. Ukrainian Journal of Physics, 2018, 63, 226.	0.2	4
26	Antibacterial activity absence UV irradiation of Ag, TiO2 and ZnO NPs prepared by sparking method. Materials Today: Proceedings, 2019, 17, 1569-1574.	1.8	3
27	External electric and magnetic fields enhanced photocatalytic efficiency of TiO2 nanoparticulate films prepared by sparking process. Materials Letters, 2021, , 130147.	2.6	3
28	Morphology and Phase Transformation of Copper/Aluminium Oxide Films. Ukrainian Journal of Physics, 2018, 63, 425.	0.2	3
29	Simple preparation of nanoporous ITO film with novel sparking method. Materials Letters, 2022, 311, 131591.	2.6	3
30	PHOTOCATALYTIC ACTIVITY UNDER VISIBLE LIGHT REGION OF Ca-MODIFIED TiO ₂ NP FILMS PREPARED BY SPARKING OFF Ca-ELECTROPLATED TI TIPS. Surface Review and Letters, 2018, 25, 1840002.	1.1	2
31	Transparency and water resistance of a superhydrophobic acrylic surface prepared using THF/IPA etching-assisted SiO2 NPs. Materials Letters, 2021, 304, 130618.	2.6	2
32	Hot air treatment: Alternative annealing of TiO2 nanoparticulate films without substrate deformation. AIP Conference Proceedings, 2020, , .	0.4	2
33	Magnetic Phase Transition without Heat Treatment of the as-Deposited Iron Oxide Nanoparticulate Films Prepared by Sparking Process under External Magnetic Fields. Integrated Ferroelectrics, 2021, 214, 115-122.	0.7	1
34	PHOTOINDUCED CURRENT GENERATION AND PHOTOCATALYTIC ACTIVITY OF TiO ₂ –Fe ₂ O ₃ NANOPARTICLES COATED MWCNTS FILMS PREPARED BY SPARKING PROCESS. Surface Review and Letters, 2021, 28, 2150076.	1.1	1
35	Development of Carbon Nanotube - Reinforced Silk and Cannabis Fibers by an Electrophoretic Deposition Method. Materials Science Forum, 2011, 695, 377-380.	0.3	0