
José Manuel Astilleros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4576528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction of Calcium Carbonates with Lead in Aqueous Solutions. Environmental Science & Technology, 2003, 37, 3351-3360.	10.0	155
2	Influence of Gelatin Hydrogel Porosity on the Crystallization of CaCO ₃ . Crystal Growth and Design, 2014, 14, 1531-1542.	3.0	53
3	The carbonatation of gypsum: Pathways and pseudomorph formation. American Mineralogist, 2009, 94, 1223-1234.	1.9	49
4	In situ HAFM study of the thermal dehydration on gypsum (010) surfaces. American Mineralogist, 2006, 91, 619-627.	1.9	33
5	Crystallization of ikaite and its pseudomorphic transformation into calcite: Raman spectroscopy evidence. Geochimica Et Cosmochimica Acta, 2016, 175, 271-281.	3.9	33
6	Precipitation of CaCO3 Polymorphs from Aqueous Solutions: The Role of pH and Sulphate Groups. Minerals (Basel, Switzerland), 2019, 9, 178.	2.0	33
7	Effects of Mg and Hydrogel Solid Content on the Crystallization of Calcium Carbonate in Biomimetic Counter-diffusion Systems. Crystal Growth and Design, 2014, 14, 4790-4802.	3.0	30
8	Epitaxial growth of celestite on barite (001) face at a molecular scale. Surface Science, 2005, 581, 225-235.	1.9	29
9	In situ AFM study of the interaction between calcite {101Â⁻4} surfaces and supersaturated Mn2+–CO32â^' aqueous solutions. Journal of Crystal Growth, 2009, 311, 4730-4739.	1.5	24
10	Mineral replacement reactions in naturally occurring hydrated uranyl phosphates from the Tarabau deposit: Examples in the Cu–Ba uranyl phosphate system. Chemical Geology, 2012, 312-313, 18-26.	3.3	24
11	The Formation of Barite and Celestite through the Replacement of Gypsum. Minerals (Basel,) Tj ETQq1 1 0.78431	4 rgBT /Ov 2:0	verlock 10 24
12	The effect of on the growth of barite {001} and {210} surfaces: An AFM study. Surface Science, 2006, 600, 1369-1381.	1.9	21
13	Reaction pathways and textural aspects of the replacement of anhydrite by calcite at 25 °C. American Mineralogist, 2017, 102, 1270-1278.	1.9	16
14	Nanoscopic Characteristics of Anhydrite (100) Growth. Crystal Growth and Design, 2012, 12, 414-421.	3.0	15
15	A nanoscopic approach to the kinetics of anhydrite (100) surface growth in the range of temperatures between 60 and 120 ÂC. American Mineralogist, 2012, 97, 995-998.	1.9	11
16	Epitactic Overgrowths of Calcite (CaCO ₃) on Anhydrite (CaSO ₄) Cleavage Surfaces. Crystal Growth and Design, 2018, 18, 1666-1675.	3.0	10
17	Anglesite (PbSO4) epitactic overgrowths and substrate-induced twinning on anhydrite (CaSO4) cleavage surfaces. Journal of Crystal Growth, 2013, 380, 130-137.	1.5	9

18 The Growth of Gypsum in the Presence of Hexavalent Chromium: A Multiscale Study. Minerals (Basel,) Tj ETQq0 0 0.rgBT /Overlock 10 Tr

#	Article	IF	CITATIONS
19	Dissolution and sorption mechanisms at the aluminosilicate and carbonate mineral-AMD (Acid Mine) Tj ETQq 11 ().784314 r 3.0	gBT /Overloo
20	Raman spectroscopic characterization of a synthetic, non-stoichiometric Cu–Ba uranyl phosphate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 113, 196-202.	3.9	8
21	In Situ Nanoscale Observations of Metatorbernite Surfaces Interacted with Aqueous Solutions. Environmental Science & Technology, 2013, 47, 2636-2644.	10.0	8
22	Uptake of dissolved lead by anhydrite surfaces. Applied Geochemistry, 2014, 40, 89-96.	3.0	7
23	Epitactic growth of celestite on anhydrite: substrate induced twinning and morphological evolution of aggregates. CrystEngComm, 2020, 22, 5743-5759.	2.6	7