Manda Sathish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4576189/publications.pdf

Version: 2024-02-01

430442 580395 27 844 18 25 citations h-index g-index papers 33 33 33 874 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DNA-binding affinity and anticancer activity of \hat{l}^2 -carboline \hat{a} chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorganic Chemistry, 2015, 59, 130-139.	2.0	83
2	Design and synthesis of dithiocarbamate linked \hat{l}^2 -carboline derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorganic and Medicinal Chemistry, 2015, 23, 5511-5526.	1.4	79
3	Design and synthesis of C3-tethered 1,2,3-triazolo- \hat{l}^2 -carboline derivatives: Anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorganic Chemistry, 2016, 64, 42-50.	2.0	77
4	Design and Synthesis of C3â€Pyrazole/Chalconeâ€Linked Betaâ€Carboline Hybrids: Antitopoisomeraseâ€I, DNAâ€Interactive, and Apoptosisâ€Inducing Anticancer Agents. ChemMedChem, 2014, 9, 2084-2098.	1.6	72
5	Synthesis of podophyllotoxin linked \hat{l}^2 -carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. European Journal of Medicinal Chemistry, 2018, 144, 557-571.	2.6	55
6	PhI(OAc) < sub > 2 < /sub > -mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I. Organic and Biomolecular Chemistry, 2015, 13, 8652-8662.	1.5	45
7	Silver catalyzed domino aza-annulation/Diels–Alder cyclization of 2-ene-yne anilines: a facile one-pot access to carbazole, dihydrocarbazole and tetrahydrocarbazole frameworks. Chemical Communications, 2016, 52, 4581-4584.	2.2	43
8	An efficient one-pot decarboxylative aromatization of tetrahydro-β-carbolines by using N-chlorosuccinimide: total synthesis of norharmane, harmane and eudistomins. RSC Advances, 2015, 5, 90121-90126.	1.7	39
9	Palladiumâ€Catalyzed Aryl CH Activation and Tandem <i>ortho</i> àêHydroxylation/Alkoxylation of 2â€Aryl Benzimidazoles: Cytotoxicity and DNAâ€Binding Studies. Asian Journal of Organic Chemistry, 2014, 3, 68-76.	1.3	37
10	Synthesis and in vitro cytotoxicity evaluation of \hat{l}^2 -carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition. Bioorganic and Medicinal Chemistry, 2019, 27, 3285-3298.	1.4	34
11	Synthesis of Combretastatinâ€A4 Carboxamidest that Mimic Sulfonyl Piperazines by a Molecular Hybridization Approach: <i>inâ€vitro</i> Cytotoxicity Evaluation and Inhibition of Tubulin Polymerization. ChemMedChem, 2019, 14, 2052-2060.	1.6	32
12	A one-pot  click' reaction from spiro-epoxides catalyzed by Cu(<scp>i</scp>)-pyrrolidinyl-oxazole-carboxamide. New Journal of Chemistry, 2015, 39, 3973-3981.	1.4	31
13	An efficient one-pot approach for the regio- and diastereoselective synthesis of trans-dihydrofuran derivatives: cytotoxicity and DNA-binding studies. Organic and Biomolecular Chemistry, 2017, 15, 6837-6853.	1.5	25
14	Asymmetric Michael addition of ketones to nitroolefins: pyrrolidinyl-oxazole-carboxamides as new efficient organocatalysts. Organic and Biomolecular Chemistry, 2014, 12, 8008-8018.	1.5	24
15	Synthesis of DNA interactive C3-trans-cinnamide linked \hat{l}^2 -carboline conjugates as potential cytotoxic and DNA topoisomerase I inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 4916-4929.	1.4	24
16	Iron-Mediated One-Pot Synthesis of 3,5-Diarylpyridines from \hat{l}^2 -Nitrostyrenes. Journal of Organic Chemistry, 2016, 81, 2159-2165.	1.7	23
17	Synthesis and biological evaluation of benzimidazole–oxindole conjugates as microtubule-targeting agents. Bioorganic Chemistry, 2015, 63, 72-84.	2.0	20
18	Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: Synthesis, DNA-binding affinity and cytotoxic activity. Bioorganic Chemistry, 2015, 59, 23-30.	2.0	18

#	Article	IF	CITATIONS
19	Phenyliodonium Diacetate Mediated One-Pot Synthesis of Benzimidazoles and Quinazolinones from Benzylamines. ChemistrySelect, 2016, 1, 2895-2899.	0.7	16
20	TCCA-mediated oxidative rearrangement of tetrahydro- \hat{l}^2 -carbolines: facile access to spirooxindoles and the total synthesis of $(\hat{A}\pm)$ -coerulescine and $(\hat{A}\pm)$ -horsfiline. RSC Advances, 2021, 11, 16537-16546.	1.7	16
21	Phenacyl azides as efficient intermediates: one-pot synthesis of pyrrolidines and imidazoles. Organic and Biomolecular Chemistry, 2017, 15, 2730-2733.	1.5	15
22	AlCl3â€"Nal assisted cleavage of polymer-bound esters with concomitant amine coupling and azido-reductive cyclization: synthesis of pyrrolobenzodiazepine derivatives. Tetrahedron Letters, 2013, 54, 4435-4441.	0.7	12
23	Diphenylphosphoryl Azide (DPPA)â€Mediated Oneâ€Pot Synthesis of Oxazolo[4,5â€ <i>c</i>][1,8]naphthyridinâ€4(5â€% <i>H</i>)â€ones, Oxazolo[4,5â€ <i>c</i>]quinolineâ€4(5â€% <i>H</i>)â€ones, and Tosyloxazolâ€5â€yl Pyridines. Asian Journal of Organic Chemistry, 2017. 6, 898-906.	1.3	9
24	Bifunctional thiosquaramide catalyzed asymmetric reduction of dihydro- \hat{l}^2 -carbolines and enantioselective synthesis of (\hat{a}^{-})-coerulescine and (\hat{a}^{-})-horsfiline by oxidative rearrangement. RSC Advances, 2020, 10, 38672-38677.	1.7	9
25	Future of Drug Discovery., 2017,, 609-629.		3
26	Brown Seaweedâ€Derived Alginic Acid: An Efficient and Reusable Catalyst for Pictetâ€Spengler Reaction to Access Tetrahydroâ€ <i>\frac{1}{2}</i> \frac{1}{2}\$\$ Carboline and Tetrahydroisoquinoline Frameworks. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
27	Genomic characterization of Puccinia triticina using molecular marker technology. Brazilian Journal of Biology, 2022, 84, e249472.	0.4	0