List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575989/publications.pdf Version: 2024-02-01

Ι ΙΝΟΙΑΝΟ ΡΑΝ

#	Article	IF	CITATIONS
1	Synaptic Learning With Augmented Spikes. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1134-1146.	11.3	10
2	Neighborhood-based particle swarm optimization with discrete crossover for nonlinear equation systems. Swarm and Evolutionary Computation, 2022, 69, 101019.	8.1	13
3	DNA Kirigami Driven by Polymeraseâ€Triggered Strand Displacement. Small, 2022, 18, e2201478.	10.0	8
4	On the Tuning of the Computation Capability of Spiking Neural Membrane Systems with Communication on Request. International Journal of Neural Systems, 2022, 32, .	5.2	14
5	Tuning curved DNA origami structures through mechanical design and chemical adducts. Nanotechnology, 2022, 33, 405603.	2.6	3
6	Adaptive simulated binary crossover for rotated multi-objective optimization. Swarm and Evolutionary Computation, 2021, 60, 100759.	8.1	42
7	Numerical Spiking Neural P Systems. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 2443-2457.	11.3	42
8	Spiking neural P systems with target indications. Theoretical Computer Science, 2021, 862, 250-261.	0.9	18
9	Manifold Learning-Inspired Mating Restriction for Evolutionary Multiobjective Optimization With Complicated Pareto Sets. IEEE Transactions on Cybernetics, 2021, 51, 3325-3337.	9.5	25
10	A strategy for programming the regulation of <i>in vitro</i> transcription with application in molecular circuits. Nanoscale, 2021, 13, 5429-5434.	5.6	5
11	Manifold Learning Inspired Mating Restriction for Evolutionary Constrained Multiobjective Optimization. Lecture Notes in Computer Science, 2021, , 296-307.	1.3	1
12	Rule synchronization for tissue P systems. Information and Computation, 2021, 281, 104685.	0.7	15
13	Tuning Frontiers of Efficiency in Tissue P Systems with Evolutional Communication Rules. Complexity, 2021, 2021, 1-14.	1.6	5
14	Large-scale Multiobjective Optimization via Problem Decomposition and Reformulation. , 2021, , .		4
15	An on-line anomaly identifying method for calibration devices in an automatic verification system for electricity smart meters. Measurement: Journal of the International Measurement Confederation, 2021, 180, 109606.	5.0	6
16	Pioneer selection for evolutionary multiobjective optimization with discontinuous feasible region. Swarm and Evolutionary Computation, 2021, 65, 100932.	8.1	6
17	Evolution-Communication Spiking Neural P Systems. International Journal of Neural Systems, 2021, 31, 2050064.	5.2	17
18	A Subregion Division-Based Evolutionary Algorithm With Effective Mating Selection for Many-Objective Optimization. IEEE Transactions on Cybernetics, 2020, 50, 3477-3490.	9.5	30

#	Article	IF	CITATIONS
19	P systems with symport/antiport rules: When do the surroundings matter?. Theoretical Computer Science, 2020, 805, 206-217.	0.9	6
20	Time-freeness and clock-freeness and related concepts in P systems. Theoretical Computer Science, 2020, 805, 127-143.	0.9	3
21	Cell-like P systems with polarizations and minimal rules. Theoretical Computer Science, 2020, 816, 1-18.	0.9	22
22	Algebraic Properties of Parikh Matrices of Binary Picture Arrays. Journal of Mathematics, 2020, 2020, 1-7.	1.0	1
23	A formal framework for spiking neural P systems. Journal of Membrane Computing, 2020, 2, 355-368.	1.8	26
24	Fuzzy DNA Strand Displacement: A Strategy to Decrease the Complexity of DNA Network Design. Angewandte Chemie, 2020, 132, 15089-15095.	2.0	0
25	Fuzzy DNA Strand Displacement: A Strategy to Decrease the Complexity of DNA Network Design. Angewandte Chemie - International Edition, 2020, 59, 14979-14985.	13.8	17
26	Guest editorial on S.I.: Bio-inspired computing: theories and application. Evolutionary Intelligence, 2020, 13, 1-2.	3.6	3
27	Local Synchronization on Asynchronous Tissue P Systems With Symport/Antiport Rules. IEEE Transactions on Nanobioscience, 2020, 19, 315-320.	3.3	12
28	Switching the activity of Taq polymerase using clamp-like triplex aptamer structure. Nucleic Acids Research, 2020, 48, 8591-8600.	14.5	9
29	The computation power of spiking neural P systems with polarizations adopting sequential mode induced by minimum spike number. Neurocomputing, 2020, 401, 392-404.	5.9	14
30	Nicking-Assisted Reactant Recycle To Implement Entropy-Driven DNA Circuit. Journal of the American Chemical Society, 2019, 141, 17189-17197.	13.7	82
31	Aptamer-based regulation of transcription circuits. Chemical Communications, 2019, 55, 7378-7381.	4.1	21
32	Foreword: Starting JMC. Journal of Membrane Computing, 2019, 1, 1-2.	1.8	23
33	Spiking Neural P Systems With Learning Functions. IEEE Transactions on Nanobioscience, 2019, 18, 176-190.	3.3	85
34	P Systems with Rule Production and Removal. Fundamenta Informaticae, 2019, 171, 313-329.	0.4	7
35	A study on a special DNA nanotube assembled from two single-stranded tiles. Nanotechnology, 2019, 30, 115602.	2.6	11
36	Multiple phase transitions in networks of directed networks. Physical Review E, 2019, 99, 012312.	2.1	19

#	Article	IF	CITATIONS
37	Computation power of asynchronous spiking neural P systems with polarizations. Theoretical Computer Science, 2019, 777, 474-489.	0.9	17
38	A Classification-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 2019, 23, 74-88.	10.0	250
39	Switching ripple suppressor design of the grid-connected inverters: A perspective of many-objective optimization with constraints handling. Swarm and Evolutionary Computation, 2019, 44, 293-303.	8.1	14
40	Guest Editorial: Advances in Bioâ€inspired Heuristics for Computing. CAAI Transactions on Intelligence Technology, 2019, 4, 127-128.	8.1	2
41	Language generating alphabetic flat splicing P systems. Theoretical Computer Science, 2018, 724, 28-34.	0.9	4
42	The computational power of enzymatic numerical P systems working in the sequential mode. Theoretical Computer Science, 2018, 724, 3-12.	0.9	4
43	Universal enzymatic numerical P systems with small number of enzymatic variables. Science China Information Sciences, 2018, 61, 1.	4.3	12
44	Spiking Neural P Systems With Polarizations. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 3349-3360.	11.3	66
45	Two-dimensional picture arrays and Parikh q—matrices. Journal of Physics: Conference Series, 2018, 1132, 012006.	0.4	1
46	The computation power of tissue P systems with flip-flop channel states. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2018, 10, 213-220.	1.1	1
47	Network-Based Differential Analysis to Identify Molecular Features of Tumorigenesis for Esophageal Squamous Carcinoma. Molecules, 2018, 23, 88.	3.8	14
48	Simplified and Yet Turing Universal Spiking Neural P Systems with Communication on Request. International Journal of Neural Systems, 2018, 28, 1850013.	5.2	88
49	The Computational Complexity of Tissue P Systems with Evolutional Symport/Antiport Rules. Complexity, 2018, 2018, 1-21.	1.6	21
50	Entropy-driven DNA logic circuits regulated by DNAzyme. Nucleic Acids Research, 2018, 46, 8532-8541.	14.5	87
51	Parallel contextual array P systems. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2018, 10, 203-212.	1.1	4
52	Spiking Neural P Systems: Theoretical Results and Applications. Lecture Notes in Computer Science, 2018, , 256-268.	1.3	14
53	On Languages Generated by Context-Free Matrix Insertion-Deletion Systems with Exo-Operations. Lecture Notes in Computer Science, 2018, , 279-290.	1.3	1
54	An Overview of 2D Picture Array Generating Models Based on Membrane Computing. Emergence, Complexity and Computation, 2018, , 333-356.	0.3	7

#	Article	IF	CITATIONS
55	On Distributed Solution to SAT by Membrane Computing. International Journal of Computers, Communications and Control, 2018, 13, 303-320.	1.8	6
56	Identifying Essential Proteins in Dynamic PPI Network with Improved FOA. International Journal of Computers, Communications and Control, 2018, 13, 365-382.	1.8	1
57	Features Identification for Phenotypic Classification Based on Genes and Gene Pairs. Current Bioinformatics, 2018, 13, 468-478.	1.5	2
58	Tissue P Systems with Rule Production/Removal. Lecture Notes in Computer Science, 2018, , 230-244.	1.3	1
59	Tissue-like P systems with evolutional symport/antiport rules. Information Sciences, 2017, 378, 177-193.	6.9	93
60	A time-free uniform solution to subset sum problem by tissue P systems with cell division. Mathematical Structures in Computer Science, 2017, 27, 17-32.	0.6	30
61	Numerical P systems with production thresholds. Theoretical Computer Science, 2017, 673, 30-41.	0.9	19
62	A region division based diversity maintaining approach for many-objective optimization. Integrated Computer-Aided Engineering, 2017, 24, 279-296.	4.6	61
63	Spiking Neural <i>P</i> Systems with Communication on Request. International Journal of Neural Systems, 2017, 27, 1750042.	5.2	151
64	An algorithm based on positive and negative links for community detection in signed networks. Scientific Reports, 2017, 7, 10874.	3.3	18
65	A radial space division based evolutionary algorithm for many-objective optimization. Applied Soft Computing Journal, 2017, 61, 603-621.	7.2	89
66	Nicking enzyme-controlled toehold regulation for DNA logic circuits. Nanoscale, 2017, 9, 18223-18228.	5.6	37
67	An efficient time-free solution to QSAT problem using P systems with proteins on membranes. Information and Computation, 2017, 256, 287-299.	0.7	16
68	Cell-Like Spiking Neural P Systems With Request Rules. IEEE Transactions on Nanobioscience, 2017, 16, 513-522.	3.3	34
69	Controllability of giant connected components in a directed network. Physical Review E, 2017, 95, 042318.	2.1	24
70	A Fast Overlapping Community Detection Algorithm Based on Weak Cliques for Large-Scale Networks. IEEE Transactions on Computational Social Systems, 2017, 4, 218-230.	4.4	49
71	Metaheuristic Optimization: Algorithmic Design and Applications. Journal of Optimization, 2017, 2017, 1-2.	6.0	4
72	Rewriting P Systems with Flat-Splicing Rules. Lecture Notes in Computer Science, 2017, , 340-351.	1.3	2

#	Article	IF	CITATIONS
73	Derivation Languages of Splicing P Systems. Communications in Computer and Information Science, 2017, , 487-501.	0.5	5
74	Structural Key Genes: Differentiating Lung Squamous Cell Carcinomas from Adenocarcinomas. Current Bioinformatics, 2017, 12, 43-51.	1.5	2
75	Predicting Essential Proteins Based on Gene Expression Data, Subcellular Localization and PPI Data. Communications in Computer and Information Science, 2017, , 92-105.	0.5	3
76	On String Languages Generated by Sequential Numerical P Systems. Fundamenta Informaticae, 2016, 145, 485-509.	0.4	10
77	Predicating Candidate Cancer-Associated Genes in the Human Signaling Network Using Centrality. Current Bioinformatics, 2016, 11, 87-92.	1.5	5
78	On the Universality of Colored One-Catalyst P Systems. Fundamenta Informaticae, 2016, 144, 205-212.	0.4	3
79	Membrane fission: A computational complexity perspective. Complexity, 2016, 21, 321-334.	1.6	23
80	Tissue P Systems With Channel States Working in the Flat Maximally Parallel Way. IEEE Transactions on Nanobioscience, 2016, 15, 645-656.	3.3	24
81	Detecting coordinated regulations of pathways by higher logic analysis. , 2016, , .		0
82	An improved reference point sampling method on Pareto optimal front. , 2016, , .		11
83	Aptamer-Binding Directed DNA Origami Pattern for Logic Gates. ACS Applied Materials & Interfaces, 2016, 8, 34054-34060.	8.0	58
84	Cell-Like P Systems With Channel States and Symport/Antiport Rules. IEEE Transactions on Nanobioscience, 2016, 15, 555-566.	3.3	30
85	An efficient time-free solution to SAT problem by P systems with proteins on membranes. Journal of Computer and System Sciences, 2016, 82, 1090-1099.	1.2	22
86	Flat maximal parallelism in P systems with promoters. Theoretical Computer Science, 2016, 623, 83-91.	0.9	46
87	On Languages Generated by Cell-Like Spiking Neural P Systems. IEEE Transactions on Nanobioscience, 2016, 15, 455-467.	3.3	24
88	Controllability of the better chosen partial networks. Physica A: Statistical Mechanics and Its Applications, 2016, 456, 120-127.	2.6	4
89	The computational power of tissue-like P systems with promoters. Theoretical Computer Science, 2016, 641, 43-52.	0.9	28
90	Numerical P systems with migrating variables. Theoretical Computer Science, 2016, 641, 85-108.	0.9	19

#	Article	IF	CITATIONS
91	On the universality of purely catalytic P systems. Natural Computing, 2016, 15, 575-578.	3.0	4
92	Tissue P Systems with Protein on Cells. Fundamenta Informaticae, 2016, 144, 77-107.	0.4	19
93	On string languages generated by sequential spiking neural P systems based on the number of spikes. Natural Computing, 2016, 15, 87-96.	3.0	12
94	Spiking neural P systems with anti-spikes working in sequential mode induced by maximum spike number. Neurocomputing, 2016, 171, 1674-1683.	5.9	13
95	Prediction and validation of association between microRNAs and diseases by multipath methods. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2735-2739.	2.4	43
96	Cell-like spiking neural P systems. Theoretical Computer Science, 2016, 623, 180-189.	0.9	83
97	Spiking neural P systems with request rules. Neurocomputing, 2016, 193, 193-200.	5.9	109
98	Spiking neural P systems with homogeneous neurons and synapses. Neurocomputing, 2016, 171, 1548-1555.	5.9	21
99	Picture Array Generation Using Flat Splicing Operation. Journal of Computational and Theoretical Nanoscience, 2016, 13, 3568-3577.	0.4	4
100	Array P Systems with Parallel Rewriting and Tables of Context-Free Rules. Journal of Computational and Theoretical Nanoscience, 2016, 13, 3636-3642.	0.4	2
101	Numerical P Systems with Thresholds. International Journal of Computers, Communications and Control, 2016, 11, 292.	1.8	21
102	Matrix Flat Splicing Systems. Communications in Computer and Information Science, 2016, , 54-63.	0.5	1
103	Analogical China Map Constructed by Single-Stranded DNA Tiles Assembly. Journal of Computational and Theoretical Nanoscience, 2016, 13, 3865-3870.	0.4	0
104	<i>A Special Issue on</i> Bio-Inspired Computing: Theories and Applications—Selected Papers from BICTA 2015. Journal of Computational and Theoretical Nanoscience, 2016, 13, 3523-3524.	0.4	0
105	A normal form of spiking neural P systems with structural plasticity. International Journal of Swarm Intelligence, 2015, 1, 344.	0.3	6
106	Computational efficiency and universality of timed P systems with membrane creation. Soft Computing, 2015, 19, 3043-3053.	3.6	13
107	<i>A Special Issue on</i> Bio-Inspired Computing: Theories and Applications. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1101-1102.	0.4	0
108	A P_Lingua Based Simulator for P Systems with Symport/Antiport Rules. Fundamenta Informaticae, 2015, 139, 211-227.	0.4	13

#	Article	IF	CITATIONS
109	On the Universality and Non-Universality of Spiking Neural P Systems With Rules on Synapses. IEEE Transactions on Nanobioscience, 2015, 14, 960-966.	3.3	64
110	Computational efficiency and universality of timed P systems with active membranes. Theoretical Computer Science, 2015, 567, 74-86.	0.9	16
111	Time-free solution to SAT problem by P systems with active membranes and standard cell division rules. Natural Computing, 2015, 14, 673-681.	3.0	22
112	Spiking Neural P Systems With Rules on Synapses Working in Maximum Spiking Strategy. IEEE Transactions on Nanobioscience, 2015, 14, 465-477.	3.3	91
113	Efficient solutions to hard computational problems by P systems with symport/antiport rules and membrane division. BioSystems, 2015, 130, 51-58.	2.0	23
114	On the Universality of Axon P Systems. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 2816-2829.	11.3	140
115	Extending Simulation of Asynchronous Spiking Neural P Systems in P–Lingua. Fundamenta Informaticae, 2015, 136, 253-267.	0.4	14
116	Identifying Driver Nodes in the Human Signaling Network Using Structural Controllability Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 467-472.	3.0	41
117	Spiking Neural P Systems With Rules on Synapses Working in Maximum Spikes Consumption Strategy. IEEE Transactions on Nanobioscience, 2015, 14, 38-44.	3.3	78
118	A Picture Array Generating Model Based on Flat Splicing Operation. Communications in Computer and Information Science, 2015, , 378-386.	0.5	1
119	Identification of Logic Relationships between Genes and Subtypes of Non-Small Cell Lung Cancer. PLoS ONE, 2014, 9, e94644.	2.5	9
120	A Novel Bio-Sensor Based on DNA Strand Displacement. PLoS ONE, 2014, 9, e108856.	2.5	56
121	Spiking Neural P Systems with Thresholds. Neural Computation, 2014, 26, 1340-1361.	2.2	113
122	On Some Classes of Sequential Spiking Neural P Systems. Neural Computation, 2014, 26, 974-997.	2.2	57
123	Weighted Spiking Neural P Systems with Rules on Synapses. Fundamenta Informaticae, 2014, 134, 201-218.	0.4	16
124	Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology, 2014, 25, 075602.	2.6	49
125	Spiking Neural P Systems with a Generalized Use of Rules. Neural Computation, 2014, 26, 2925-2943.	2.2	40
126	Computational power of tissue P systems for generating control languages. Information Sciences, 2014, 278, 285-297.	6.9	70

#	Article	IF	CITATIONS
127	Evolutionary membrane computing: A comprehensive survey and new results. Information Sciences, 2014, 279, 528-551.	6.9	126
128	On languages generated by spiking neural P systems with weights. Information Sciences, 2014, 278, 423-433.	6.9	75
129	Small universal simple spiking neural P systems with weights. Science China Information Sciences, 2014, 57, 1-11.	4.3	30
130	Time-free solution to SAT problem using P systems with active membranes. Theoretical Computer Science, 2014, 529, 61-68.	0.9	47
131	Logic Nanoparticle Beacon Triggered by the Binding-Induced Effect of Multiple Inputs. ACS Applied Materials & Interfaces, 2014, 6, 14486-14492.	8.0	33
132	On String Languages Generated by Sequential Spiking Neural P Systems Based on Maximum Spike Number. Lecture Notes in Computer Science, 2014, , 203-215.	1.3	0
133	Detection of driver metabolites in the human liver metabolic network using structural controllability analysis. BMC Systems Biology, 2014, 8, 51.	3.0	44
134	Spiking neural P systems with rules on synapses. Theoretical Computer Science, 2014, 529, 82-95.	0.9	121
135	Array P systems with permitting features. Journal of Computational Science, 2014, 5, 243-250.	2.9	5
136	A Note on the Generative Power of Axon P Systems. International Journal of Computers, Communications and Control, 2014, 4, 92.	1.8	7
137	Spiking Neural P Systems with Anti-Spikes. International Journal of Computers, Communications and Control, 2014, 4, 273.	1.8	172
138	Small Universal Tissue P Systems with Symport/Antiport Rules. International Journal of Computers, Communications and Control, 2014, 7, 173.	1.8	4
139	Computational Efficiency and Universality of Timed P Systems with Membrane Creation. Communications in Computer and Information Science, 2014, , 389-394.	0.5	0
140	Asynchronous spiking neural P systems with local synchronization. Information Sciences, 2013, 219, 197-207.	6.9	163
141	Normal Forms for Some Classes of Sequential Spiking Neural P Systems. IEEE Transactions on Nanobioscience, 2013, 12, 255-264.	3.3	57
142	Universality of sequential spiking neural P systems based on minimum spike number. Theoretical Computer Science, 2013, 499, 88-97.	0.9	21
143	Homogeneous spiking neural P systems working in sequential mode induced by maximum spike number. International Journal of Computer Mathematics, 2013, 90, 831-844.	1.8	12
144	A Variant of P Machine: Splicing P Machine. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1376-1384.	0.4	3

#	Article	IF	CITATIONS
145	Permitting Features in P Systems Generating Picture Arrays. Advances in Intelligent Systems and Computing, 2013, , 27-38.	0.6	1
146	Normal Forms of Spiking Neural P Systems With Anti-Spikes. IEEE Transactions on Nanobioscience, 2012, 11, 352-359.	3.3	69
147	Performing Four Basic Arithmetic Operations With Spiking Neural P Systems. IEEE Transactions on Nanobioscience, 2012, 11, 366-374.	3.3	57
148	Spiking Neural P Systems with Astrocytes. Neural Computation, 2012, 24, 805-825.	2.2	115
149	Sequential spiking neural P systems with exhaustive use of rules. BioSystems, 2012, 108, 52-62.	2.0	35
150	Spiking Neural P Systems with Weighted Synapses. Neural Processing Letters, 2012, 35, 13-27.	3.2	68
151	Asynchronous Extended Spiking Neural P Systems with Astrocytes. Lecture Notes in Computer Science, 2012, , 243-256.	1.3	8
152	A Uniform Solution to Common Algorithmic Problem by Tissue P Systems with Cell Division. , 2011, , .		0
153	Spiking Neural P Systems for Arithmetic Operations. , 2011, , .		3
154	Small Universal Spiking Neural P Systems Working in Exhaustive Mode. IEEE Transactions on Nanobioscience, 2011, 10, 99-105.	3.3	45
155	An Unenumerative DNA Computing Model for Vertex Coloring Problem. IEEE Transactions on Nanobioscience, 2011, 10, 94-98.	3.3	18
156	A Tissue P Systems Based Uniform Solution to Tripartite Matching Problem. Fundamenta Informaticae, 2011, 109, 179-188.	0.4	15
157	Limited Asynchronous Spiking Neural P Systems. Fundamenta Informaticae, 2011, 110, 271-293.	0.4	5
158	Tissue P systems with cell separation: attacking the partition problem. Science China Information Sciences, 2011, 54, 293-304.	4.3	33
159	Spiking neural P systems with neuron division and budding. Science China Information Sciences, 2011, 54, 1596-1607.	4.3	149
160	Time-Free Spiking Neural P Systems. Neural Computation, 2011, 23, 1320-1342.	2.2	69
161	COMPUTATION OF RAMSEY NUMBERS BY P SYSTEMS WITH ACTIVE MEMBRANES. International Journal of Foundations of Computer Science, 2011, 22, 29-38.	1.1	21
162	Small Universal Spiking Neural P Systems with Exhaustive Use of Rules. Journal of Computational and Theoretical Nanoscience, 2010, 7, 890-899.	0.4	15

#	Article	IF	CITATIONS
163	Computational complexity of tissue-like P systems. Journal of Complexity, 2010, 26, 296-315.	1.3	121
164	Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theoretical Computer Science, 2010, 411, 2345-2358.	0.9	111
165	A <mml:math <br="" altimg="si7.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi>P</mml:mi></mml:math> system model with pure context-free rules for picture array generation. Mathematical and Computer Modelling, 2010, 52, 1901-1909.	2.0	12
166	A weakly universal spiking neural P system. Mathematical and Computer Modelling, 2010, 52, 1940-1946.	2.0	5
167	Spiking neural P systems: An improved normal form. Theoretical Computer Science, 2010, 411, 906-918.	0.9	68
168	Spiking Neural P Systems with Weights. Neural Computation, 2010, 22, 2615-2646.	2.2	132
169	Small universal asynchronous spiking neural P systems. , 2010, , .		5
170	A Note on Small Universal Spiking Neural P Systems. Lecture Notes in Computer Science, 2010, , 436-447.	1.3	16
171	Spiking Neural P Systems with Neuron Division. Lecture Notes in Computer Science, 2010, , 361-376.	1.3	12
172	Matrix Representation of Spiking Neural P Systems. Lecture Notes in Computer Science, 2010, , 377-391.	1.3	24
173	A Survey of Membrane Computing as a New Branch of Natural Computing. Jisuanji Xuebao/Chinese Journal of Computers, 2010, 33, 208-214.	0.3	53
174	Solving NP-Complete Problems by Spiking Neural P Systems with Budding Rules. Lecture Notes in Computer Science, 2010, , 335-353.	1.3	6
175	Homogeneous Spiking Neural P Systems. Fundamenta Informaticae, 2009, 97, 275-294.	0.4	54
176	On languages generated by asynchronous spiking neural P systems. Theoretical Computer Science, 2009, 410, 2478-2488.	0.9	37
177	Some three-color Ramsey numbers, <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si25.gif" display="inline"</mml:math>		

#	Article	IF	CITATIONS
181	A DNA sticker algorithm for bit-substitution in a block cipher. Journal of Parallel and Distributed Computing, 2008, 68, 1201-1206.	4.1	11
182	On string languages generated by spiking neural P systems with exhaustive use of rules. Natural Computing, 2008, 7, 535-549.	3.0	51
183	Improved taboo search algorithm for designing DNA sequences. Progress in Natural Science: Materials International, 2008, 18, 623-627.	4.4	13
184	Small universal spiking neural P systems with exhaustive use of rules. , 2008, , .		4
185	A genetic algorithm for solving multi-constrained function optimization problems based on KS function. , 2007, , .		6
186	A global heuristically search algorithm for DNA encoding. Progress in Natural Science: Materials International, 2007, 17, 745-749.	4.4	4
187	A new approach based on PSO algorithm to find good computational encoding sequences. Progress in Natural Science: Materials International, 2007, 17, 712-716.	4.4	19
188	A simple simulated annealing algorithm for the maximum clique problem. Information Sciences, 2007, 177, 5064-5071.	6.9	47
189	P systems with minimal parallelism. Theoretical Computer Science, 2007, 378, 117-130.	0.9	90
190	A Special Issue on Bio-Inspired Computing: Theories and Applications. Journal of Computational and Theoretical Nanoscience, 2007, 4, 1-2.	0.4	15
191	Predicting Melting Temperature (Tm) of DNA Duplex Based on Neural Network. Lecture Notes in Computer Science, 2006, , 275-285.	1.3	Ο
192	Towards Reliable Simulation of Bounded Fan-in Boolean Circuits using Molecular Beacon. , 2006, , .		3
193	DNA algorithm of minimal spanning tree. , 2006, 6358, 1016.		1
194	Solving HPP and SAT by P Systems with Active Membranes and Separation Rules. Acta Informatica, 2006, 43, 131-145.	0.5	81
195	Further remark on P systems with active membranes and two polarizations. Journal of Parallel and Distributed Computing, 2006, 66, 867-872.	4.1	18
196	The Semi-roboticized DNA Computing Model of the 0-1 Integer Programming Problem. , 2006, , .		0
197	Programmable Pushdown Store Base on DNA Computing. Lecture Notes in Computer Science, 2006, , 286-293.	1.3	1
198	Solving multidimensional O–1 knapsack problem by P systems with input and active membranes. Journal of Parallel and Distributed Computing, 2005, 65, 1578-1584.	4.1	65

#	Article	IF	CITATIONS
199	Further remarks on P systems with active membranes, separation, merging, and release rules. Soft Computing, 2005, 9, 686-690.	3.6	19
200	On Cycles Containing a Given Arc in Regular Multipartite Tournaments. Acta Mathematica Sinica, English Series, 2004, 20, 379-384.	0.6	1
201	Trading polarizations for labels in P systems with active membranes. Acta Informatica, 2004, 41, 111-144.	0.5	52
202	Solid phase based DNA solution of the coloring problem*. Progress in Natural Science: Materials International, 2004, 14, 459-462.	4.4	7
203	c-Pancyclic Partial Ordering and (c–1)-Pan-Outpath Partial Ordering in Semicomplete Multipartite Digraphs. Acta Mathematica Sinica, English Series, 2003, 19, 829-832.	0.6	1
204	Solving Graph Problems by P Systems with Restricted Elementary Active Membranes. Lecture Notes in Computer Science, 2003, , 1-22.	1.3	7
205	A surface-based DNA algorithm for the minimal vertex coverproblem*. Progress in Natural Science: Materials International, 2003, 13, 78-80.	4.4	4
206	A surface-based DNA algorithm for the minimal vertex cover problem. Progress in Natural Science: Materials International, 2003, 13, 78.	4.4	5
207	Some Notes on 2-D Graphical Representation of DNA Sequence. Journal of Chemical Information and Computer Sciences, 2002, 42, 529-533.	2.8	45
208	DNA Solution of a Graph Coloring Problem. Journal of Chemical Information and Computer Sciences, 2002, 42, 524-528.	2.8	27
209	LOCALIZATION THEOREM ON HAMILTONIAN GRAPHS. Acta Mathematica Scientia, 2000, 20, 76-78.	1.0	0
210	A note on hypertournaments. Science Bulletin, 1999, 44, 1460-1463.	1.7	0