
Debopam Chakrabarti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure-activity and structure-property relationship studies of spirocyclic chromanes with antimalarial activity. Bioorganic and Medicinal Chemistry, 2022, 57, 116629.	3.0	2
2	Discovery of fast-acting dual-stage antimalarial agents by profiling pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne cycloadditions. European Journal of Medicinal Chemistry, 2021, 209, 112889.	5.5	10
3	Leveraging Peptaibol Biosynthetic Promiscuity for Next-Generation Antiplasmodial Therapeutics. Journal of Natural Products, 2021, 84, 503-517.	3.0	15
4	Antiplasmodial Compounds from Deep-Water Marine Invertebrates. Marine Drugs, 2021, 19, 179.	4.6	10
5	Ring Distortion of Vincamine Leads to the Identification of Re-Engineered Antiplasmodial Agents. ACS Omega, 2021, 6, 20455-20470.	3.5	4
6	Cyclic Tetrapeptide HDAC Inhibitors with Improved <i>Plasmodium falciparum</i> Selectivity and Killing Profile. ACS Infectious Diseases, 2021, 7, 2889-2903.	3.8	11
7	Synthesis, Structure–Activity Relationship, and Antimalarial Efficacy of 6-Chloro-2-arylvinylquinolines. Journal of Medicinal Chemistry, 2020, 63, 11756-11785.	6.4	7
8	Re-Engineering of Yohimbine's Biological Activity through Ring Distortion: Identification and Structure–Activity Relationships of a New Class of Antiplasmodial Agents. ACS Infectious Diseases, 2020, 6, 159-167.	3.8	20
9	Marine Microbiome as a Source of Antimalarials. Tropical Medicine and Infectious Disease, 2019, 4, 103.	2.3	5
10	Microwave-assisted, rapid synthesis of 2-vinylquinolines and evaluation of their antimalarial activity. Tetrahedron Letters, 2019, 60, 1736-1740.	1.4	18
11	Identification of Bis-Cyclic Guanidines as Antiplasmodial Compounds from Positional Scanning Mixture-Based Libraries. Molecules, 2019, 24, 1100.	3.8	7
12	DeepMalaria: Artificial Intelligence Driven Discovery of Potent Antiplasmodials. Frontiers in Pharmacology, 2019, 10, 1526.	3.5	47
13	Characterization of Plasmodium falciparum Atypical Kinase PfPK7– Dependent Phosphoproteome. Journal of Proteome Research, 2018, 17, 2112-2123.	3.7	24
14	4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 120-129.	3.4	35
15	Dragmacidin C, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites. Marine Drugs, 2017, 15, 16.	4.6	25
16	Spirocyclic chromanes exhibit antiplasmodial activities and inhibit all intraerythrocytic life cycle stages. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 85-92.	3.4	18
17	Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection. Optics Communications, 2015, 355, 533-537.	2.1	2
18	Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS) in the Human Malaria Parasite Plasmodium falciparum. International Journal of Molecular Sciences, 2014, 15, 22320-22330.	4.1	15

#	Article	IF	CITATIONS
19	Global Analysis of Protein Expression and Phosphorylation of Three Stages of <i>Plasmodium falciparum</i> Intraerythrocytic Development. Journal of Proteome Research, 2013, 12, 4028-4045.	3.7	161
20	The Bis(Indolyl)Imidazole Alkaloid Nortopsentin A Exhibits Antiplasmodial Activity. Antimicrobial Agents and Chemotherapy, 2013, 57, 2362-2364.	3.2	26
21	An atypical cyclin-dependent kinase controls Plasmodium falciparum proliferation rate. Kinome, 2013, 1, .	0.5	25
22	Ubiquitin proteasome system and the atypical kinase PfPK7 are involved in melatonin signaling in <i>Plasmodium falciparum</i> . Journal of Pineal Research, 2012, 53, 147-153.	7.4	34
23	Evidence for prenylation-dependent targeting of a Ykt6 SNARE in Plasmodium falciparum. Molecular and Biochemical Parasitology, 2011, 175, 162-168.	1.1	20
24	Plasmodium falciparum NIMA-related kinase Pfnek-1: sex specificity and assessment of essentiality for the erythrocytic asexual cycle. Microbiology (United Kingdom), 2011, 157, 2785-2794.	1.8	38
25	Chloroplastâ€derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnology Journal, 2010, 8, 223-242.	8.3	153
26	A Plasmodium falciparum Transcriptional Cyclin-Dependent Kinase-Related Kinase with a Crucial Role in Parasite Proliferation Associates with Histone Deacetylase Activity. Eukaryotic Cell, 2010, 9, 952-959.	3.4	36
27	The Longin Domain Regulates the Steady-State Dynamics of Sec22 in <i>Plasmodium falciparum</i> . Eukaryotic Cell, 2009, 8, 1330-1340.	3.4	9
28	Molecular machinery of signal transduction and cell cycle regulation in Plasmodium. Molecular and Biochemical Parasitology, 2009, 165, 1-7.	1.1	47
29	A methodsâ€based biotechnology course for undergraduates. Biochemistry and Molecular Biology Education, 2009, 37, 227-231.	1.2	3
30	2-Oxo-tetrahydro-1,8-naphthyridines as selective inhibitors of malarial protein farnesyltransferase and as anti-malarials. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 494-497.	2.2	52
31	Characterization of a PRL protein tyrosine phosphatase from Plasmodium falciparumâ~†. Molecular and Biochemical Parasitology, 2008, 158, 1-10.	1.1	37
32	Potent, Plasmodium-Selective Farnesyltransferase Inhibitors That Arrest the Growth of Malaria Parasites: Structureâ^'Activity Relationships of Ethylenediamine-Analogue Scaffolds and Homology Model Validation. Journal of Medicinal Chemistry, 2008, 51, 5176-5197.	6.4	33
33	Efficacy, Pharmacokinetics, and Metabolism of Tetrahydroquinoline Inhibitors of <i>Plasmodium falciparum</i> Protein Farnesyltransferase. Antimicrobial Agents and Chemotherapy, 2007, 51, 3659-3671.	3.2	40
34	Second Generation Tetrahydroquinoline-Based Protein Farnesyltransferase Inhibitors as Antimalarials. Journal of Medicinal Chemistry, 2007, 50, 4585-4605.	6.4	66
35	Identification of Plasmodium falciparum family of SNAREs. Molecular and Biochemical Parasitology, 2007, 152, 113-122.	1.1	40
36	Structurally Simple, Potent, Plasmodium Selective Farnesyltransferase Inhibitors That Arrest the Growth of Malaria Parasites. Journal of Medicinal Chemistry, 2006, 49, 5710-5727.	6.4	36

#	Article	IF	CITATIONS
37	Functional characterisation of the regulatory subunit of cyclic AMP-dependent protein kinase A homologue of Giardia lamblia: Differential expression of the regulatory and catalytic subunits during encystation. International Journal for Parasitology, 2006, 36, 791-799.	3.1	26
38	Pre-replication complex organization in the atypical DNA replication cycle of Plasmodium falciparum: Characterization of the mini-chromosome maintenance (MCM) complex formation. Molecular and Biochemical Parasitology, 2006, 145, 50-59.	1.1	16
39	Protein Farnesyltransferase Inhibitors Exhibit Potent Antimalarial Activity. Journal of Medicinal Chemistry, 2005, 48, 3704-3713.	6.4	170
40	Structurally Simple Farnesyltransferase Inhibitors Arrest the Growth of Malaria Parasites. Angewandte Chemie - International Edition, 2005, 44, 4903-4906.	13.8	37
41	Resistance to a Protein Farnesyltransferase Inhibitor in Plasmodium falciparum. Journal of Biological Chemistry, 2005, 280, 13554-13559.	3.4	66
42	Two Plasmodium falciparum Ribonucleotide Reductase Small Subunits, PfR2 and PfR4, Interact with Each Other and are Components of the in vivo Enzyme Complex. Journal of Molecular Biology, 2005, 347, 749-758.	4.2	15
43	PfPK7, an atypical MEK-related protein kinase, reflects the absence of classical three-component MAPK pathways in the human malaria parasite Plasmodium falciparum. Molecular Microbiology, 2004, 55, 184-186.	2.5	88
44	In vitro and in vivo antimalarial activity of peptidomimetic protein farnesyltransferase inhibitors with improved membrane permeability. Bioorganic and Medicinal Chemistry, 2004, 12, 6517-6526.	3.0	45
45	Characterization of a unique aspartate-rich protein of the SET/TAF-family in the human malaria parasite, Plasmodium falciparum, which inhibits protein phosphatase 2A. Molecular and Biochemical Parasitology, 2003, 126, 239-250.	1.1	20
46	ldentification and Initial Characterization of Three Novel Cyclin-related Proteins of the Human Malaria Parasite Plasmodium falciparum. Journal of Biological Chemistry, 2003, 278, 39839-39850.	3.4	69
47	Protein Farnesyltransferase and Protein Prenylation inPlasmodium falciparum. Journal of Biological Chemistry, 2002, 277, 42066-42073.	3.4	131
48	Molecular characterization and expression of an alternate proliferating cell nuclear antigen homologue, PfPCNA2, in Plasmodium falciparum. Biochemical and Biophysical Research Communications, 2002, 298, 371-376.	2.1	23
49	Cyclin-dependent kinase homologues of Plasmodium falciparum. International Journal for Parasitology, 2002, 32, 1575-1585.	3.1	71
50	Characterization of an Eukaryotic Peptide Deformylase from Plasmodium falciparum. Archives of Biochemistry and Biophysics, 2001, 396, 162-170.	3.0	63
51	Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Molecular Microbiology, 2001, 39, 26-36.	2.5	148
52	Characterization of a novel serine/threonine protein phosphatase (PfPPJ) from the malaria parasite, Plasmodium falciparum. Molecular and Biochemical Parasitology, 2001, 115, 29-39.	1.1	22
53	Activation of a Plasmodium falciparum cdc2-related Kinase by Heterologous p25 and Cyclin H. Journal of Biological Chemistry, 2000, 275, 8952-8958.	3.4	91
54	Shikimate pathway in apicomplexan parasites. Nature, 1999, 397, 220-220.	27.8	10

#	Article	IF	CITATIONS
55	Characterization of protein Ser/Thr phosphatases of the malaria parasite, Plasmodium falciparum: inhibition of the parasitic calcineurin by cyclophilin-cyclosporin complex. Molecular and Biochemical Parasitology, 1999, 99, 167-181.	1.1	64
56	Evidence for the shikimate pathway in apicomplexan parasites. Nature, 1998, 393, 801-805.	27.8	436
57	Protein prenyl transferase activities of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1998, 94, 175-184.	1.1	107
58	An RCC1-type guanidine exchange factor for the Ran G protein is found in the Plasmodium falciparum nucleus. Molecular and Biochemical Parasitology, 1998, 95, 165-170.	1.1	9
59	Antimalarial Activities of Polyhydroxyphenyl and Hydroxamic Acid Derivatives. Antimicrobial Agents and Chemotherapy, 1998, 42, 2456-2458.	3.2	48
60	Identification, Cloning, and Mutational Analysis of the Casein Kinase 1 cDNA of the Malaria Parasite, Plasmodium falciparum. Journal of Biological Chemistry, 1997, 272, 26132-26138.	3.4	47
61	Current status of the Plasmodium falciparum genome project. Molecular and Biochemical Parasitology, 1996, 79, 1-12.	1.1	55
62	Identification of a family of Rab G-proteins in Plasmodium falciparum and a detailed characterisation of pfrab6. Molecular and Biochemical Parasitology, 1996, 80, 77-88.	1.1	68
63	Plasmodium falciparum:The Small GTPase rab11. Experimental Parasitology, 1996, 83, 250-251.	1.2	17
64	Detection of a functional promoter/enhancer in an intron-less human gene encoding a glutamine synthetase-like enzyme. Gene, 1995, 153, 163-169.	2.2	31
65	Analysis of expressed sequence tags from Plasmodium falciparum. Molecular and Biochemical Parasitology, 1994, 66, 97-104.	1.1	91
66	Characterization of the rDNA unit and sequence analysis of the small subunit rRNA and 5.8S rRNA genes from Tritrichomonas foetus. Molecular and Biochemical Parasitology, 1992, 52, 75-83.	1.1	43
67	Sequence microheterogeneity of the three small subunit ribosomal RNA genes ofBabesia bigemina: expression in erythrocyte culture. Nucleic Acids Research, 1991, 19, 3641-3645.	14.5	71
68	Protein synthesis in rabbit reticulocytes: Mg2+ - inhibition of ternary complex (met-tRNAf·eIF-2·GTP) formation by reticulocyte eIF-2. Biochemical and Biophysical Research Communications, 1987, 146, 114-120.	2.1	4
69	Mechanism of protein synthesis inhibition by vaccinia viral core and reversal of this inhibition by reticulocyte peptide chain initiation factors. Journal of Biosciences, 1987, 11, 503-513.	1.1	3
70	Mechanism of peptide chain initiation in animal cells: A reevaluation. Molecular and Cellular Biochemistry, 1986, 70, 105-11.	3.1	4